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This report presents our work on implementing full spectrum photon map-
ping, which models the spectral distribution of light in a scene. Our modifica-
tions to the basic RGB photon mapping algorithm include a representation of
photons that includes wavelength and energy values, and a method for calcu-
lating the spectral reflectance curve of a material from its RGB albedo value.
Our approach enables the simulation of complex light behavior, such as
dispersion and spectral caustics. Results from our experiments demonstrate
the effectiveness of our approach.
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1 INTRODUCTION
Rendering realistic images that accurately capture the behavior
of light in the real world is a fundamental challenge in computer
graphics. One aspect of light behavior is its spectral dynamics, the
behavior of light dependent on the rays wavelength. To achieve
realistic renderings for scenes containing dispersive elements, it
is important to model the spectral distribution of light and its in-
teractions with the materials in the scene in a physically based
method.
Photon mapping is a popular algorithm for simulating caustics

and indrect lighting in a scene, which has been widely used in
computer graphics to generate realistic images. In our homework
3 implementation, photon mapping used RGB values to represent
the energy of light, which limited its ability to accurately model
spectral dynamics of light.
We begin by reviewing related work in the field of photon map-

ping and discussing the limitations of the basic RGB photonmapping
algorithm. We then provide an overview of the modifications we
made to the algorithm to enable full spectrum capabilities, including
a detailed explanation of the photon representation, RGB radiance
estimation, the calculation of the spectral reflectance curve and
dispersion physics. We also discuss the advantages, challenges, and
limitations of our implementation, and present results from our
experiments that demonstrate the effectiveness of our approach.
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2 PRIOR WORK
In [Evans and McCool 1999], the authors used stratified sampling
of the wavelength, 𝜆, and applied quasi-Monte Carlo bidirectional
path tracer to achieve full spectrum rendering (focused on spectral
caustics) at a convergence of 1

𝑁
rather than 1√

𝑁
where 𝑁 is the

number of samples. In their work each ray samples an independent
𝜆 to calculate the spectral radiance of each pixel.

The next workwe looked at was the technical report for a industry
grade rendering engine for use in movies [Fascione et al. 2018]. The
implementation the authors used for the engine was to sample the
full spectrum of light with each ray to get a full radiance sample,
this is likely faster than the previous method but comes with the
drawback of being memory intensive as each ray stores the light
intensity at each wavelength .
In the final work we found, [Tandianus et al. 2015] finds opti-

mizations for full spectrum rendering with photon mapping. Each
photon was sampled with an individual wavelength and energy.
They also used clustering methods to combine some wavelengths
to save time computing ray reflection logic.

3 IMPLEMENTATION
We chose to use the photon mapping as Tandianus; we did not
implement the clustering optimization as the implementation would
take too long.

3.1 Photon Representation
To implement full spectrum photon mapping, it was necessary to ad-
just the representation of photons used in the RGB photon mapping
algorithm. In our previous work on homework 3 (RGB Ray Tracing
and RGB Photon Mapping), photons were represented as energy
in the RGB color space, with each component ranging between 0
and 1. However, for full spectrum photon mapping, photons need
to be represented as having both a wavelength and an energy. To
achieve this, we converted the energy of each photon from RGB
color space to a spectral representation. Specifically, each photon is
now assigned a wavelength value 𝜆 and an energy value, enabling us
to track the full spectrum of light energy as it interacts with objects
in the scene. This modification to the photon representation was
essential for accurately rendering dispersion and spectral caustics
on objects.

3.2 Photon Behavior
3.2.1 Photon Gathering. The first modification we need to make to
the photon behavior is to account for the fact that we have different
wavelengths. In RGB photon mapping, we collect 𝑁 photons and
take the sum of their energies divided by the area containing the
photons. For full spectrum photon mapping, we will have to modify
this behavior to gather the light energy distribution across different
wavelengths. Additionally, since this component will be integrated
into an RGB path tracer, we will have to ensure that the final output
is in RGB values.
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To accomplish this, we first need to convert the spectral power
distribution (SPD) of the photons into tristimulus values in the XYZ
color space. These tristimulus values represent the amount of energy
in each of the three color channels required to create a particular
color. From there, we apply a 3x3 matrix transform to these values
to convert them from the XYZ color space to the RGB color space.
An SPD is a function that describes how the energy of light

is distributed across different wavelengths. We can represent this
function as 𝐸 (𝜆), where 𝜆 is the wavelength and 𝐸 (𝜆) is the energy
at that wavelength. In order to calculate the XYZ color values, we
use the CIE Color Matching Function (CMF) [UCL 2006], which
describes the sensitivity of a viewer to a color channel at a certain
wavelength. We can represent this sensitivity as 𝑆 (𝜆), where 𝑆 :
R→ R3.

To calculate the tristimulus values, we can compute the following
integral:

𝐶XYZ =

∫ Λmax

Λmin

𝑆 (𝜆)𝐸 (𝜆)𝑑𝜆. (1)

However, since both 𝐸 (𝜆) and 𝑆 (𝜆) are discrete in our implemen-
tation, we use Monte Carlo integration to approximate the integral.
Specifically, we can use the following equation to estimate the tris-
timulus values:

𝐶XYZ =
1
𝑁

∑︁
𝑖

𝑆 [𝜆𝑖 ]𝑒𝑖
𝑃 [𝜆 = 𝜆𝑖 ]

(2)

Since the CIE-CMF is a discrete function we can only use values
of lambda 380-7280 nanometers at a step size of 5 nanometers. We
randomly sample on that distribution giving us 𝑃 [𝜆 = 𝜆𝑖 ] = 1

81 and
simplifying our equation to:

𝐶XYZ =
81
𝑁

∑︁
𝑖

𝑆 [𝜆𝑖 ]𝑒𝑖 (3)

where 𝑁 is the total number of photons, 𝑆 [𝜆𝑖 ] is the color match-
ing function for the wavelength of photon 𝑖 , and 𝑒𝑖 is the energy of
photon 𝑖 at its respective wavelength.

In order to incorporate this calculation into photon mapping, we
will have to divide the tristimulus values by the area of the tightest
circle containing the photons. This is because the photons should
lie on approximately a two-dimensional surface.

This modified calculation will allow us to accurately represent the
full range of colors visible to the human eye, including the effects of
dispersion and spectral caustics, within the framework of an RGB
path tracer.

3.2.2 Photon Reflectance. In order to find the reflectance of a pho-
ton, we need to have a spectral reflectance curve that describes how
much light of each wavelength is reflected by a surface. We want
this curve to be consistent with the RGB path tracer, meaning that
it should be derived from a single RGB triplet. We can then use this
curve to calculate the amount of reflected light for each wavelength,
which will be used in the photon mapping algorithm.

We would like our spectral reflectance curve to bounce the same
amount of energy at each color to ensure this consistency. For
example the triplet (1,1,1) should bounce full energy, (0,0,0) should
bounce no energy (1,0,0) should bounce only ’red’ wavelengths.
We can write a formalized version of this constraint as:

𝐶RGB spec = 𝐶RGB raw

= 𝑇XYZ→RGB

∫ Λmax

Λmin

𝑆 (𝜆)𝐸 (𝜆)𝜌 (𝜆)𝑑𝜆

= 𝐿 ·𝑀RGB

where 𝜌 (𝜆) is the spectral reflectance curve, 𝐸 (𝜆) is the SPD of
the incoming light, 𝑆 (𝜆) is the color matching function, 𝑇XYZ→RGB
is the transformation matrix from XYZ to RGB color space,
𝐶RGB spec is the RGB values for the reflected light for the full spec-
trum of wavelengths, 𝐶RGB raw is the RGB value for the reflected
light for the RGB path tracer, 𝐿 is the intensity of the incoming light,
and𝑀RGB is the RGB albedo value for a given material.

Scott Burns developed a method for using three curves, 𝑃𝑁 x3 (𝜆),
to create an arbitrary spectral reflectance curve given an RGB triplet
[Burns 2020b] [Burns 2020a] that approximately satisfies the above
condition. His method can be written as follows:

𝜌 (𝜆,𝑀RGB) = 𝑀RGB · 𝑃𝑁 x3 (𝜆) (4)
where 𝑃𝑁𝑥3 (𝜆) is a matrix that contains three discretized curves,

one for each RGB color channel, and𝑀RGB is the RGB albedo value
for a given material. The spectral reflectance curve can then be
calculated as a simple weighted sum of the curves according to
the RGB albedo value. This method allows us to create a spectral
reflectance curve that is consistent with the RGB path tracer and can
be used to accurately simulate the reflection of light in our photon
mapping algorithm. 𝑃𝑁𝑥3 is a discrete curve as it is the solution to
a complex non-linear program:

minimize
𝑁∑︁
𝑖=1

(
𝑧𝑟𝑖+1 − 𝑧𝑟𝑖

)2 + (
𝑧
𝑔

𝑖+1 − 𝑧
𝑔

𝑖

)2
+
(
𝑧𝑏𝑖+1 − 𝑧𝑏𝑖

)2
s.t. 𝑇𝑒𝑧

𝑟

=


1
0
0


𝑇𝑒𝑧

𝑔

=


0
1
0


𝑇𝑒𝑧

𝑏

=


0
0
1


𝑒𝑧

𝑟

+ 𝑒𝑧
𝑔

+ 𝑒𝑧
𝑏

≤ 1

Fig. 1. 𝑃81𝑥3 and solution to non-linear problem

Where 𝑧𝑟 = ln 𝑃𝑟 , 𝑧𝑔 = ln 𝑃𝑔 and 𝑧𝑏 = ln 𝑃𝑏 and𝑇 is a 𝑁x3 matrix
that transforms a full spectrum reflectance curve to an RGB albedo
triplet. Since 𝑃 is a matrix that allows us to construct any reflectance
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Fig. 2. Indirect lighting of Cornell Box when CIE-CMF CSV was accidentally
swapped for the P function CSV, certain reflectance values with this CSV
leading to certain very bright outliers

Fig. 3. Correct indirect lighting from Cornell Diffuse Box scene using full
spectrum photon mapping to verify the spectral reflectance curve and
gathering modification implementations work

curve with only a dot product operation we only have to solve the
non-linear program once. We solved this with scipy.optimize
in python then saved the matrix as a CSV which was loaded in
C++ as an std::unordered_map<float, Vec3f> for constant time
reflections (with respect to wavelength samples).

3.2.3 Dispersion Physics. Dispersion occurswhen light passes through
amediumwith varying refractive indices, causing the differentwave-
lengths of light to bend at different angles according to Snell’s Law.
This results in a separation of the colors of the light, creating a
rainbow effect.
First we will recall Snell’s Law:

𝑛𝑖 sin𝜃𝑖 = 𝑛𝑜 sin𝜃𝑜 → sin𝜃𝑜 =
𝑛𝑖

𝑛𝑜
sin𝜃𝑖 (5)

Fig. 4. Approximation of general IOR function: click for interactive graph

Where 𝑛 is the index of refraction, 𝜃 is the angle between a ray
and the normal, 𝑖 is the incoming ray, 𝑜 is the outgoing ray. For the
purpose of easy vector algebra we can represent as:

𝑅 · 𝑁 =

√︂
1 − ( 𝑛𝑖

𝑛𝑜

√︁
1 − (𝑁 ·𝑉 )2)2 (6)

Where 𝑅 is the reflected ray, 𝑁 is the normal, 𝑉 is the incoming
ray. We can use this to simulate dispersion as dispersion occurs
when the IOR is wavelength dependent, or IOR(𝜆) ≠ 𝑐 . To find a
general purpose IOR(𝜆), we looked at physical dispersion curves
and found that many are similar to an exponential decay function,
which means we can use the following approximation (shown in
figure 4):

IOR(𝜆) = (ior_1 − ior_2) 𝑒−
1

spread (𝜆−Λmin ) + ior_2 (7)

Where ior_1 is the IOR at the minimum sampled 𝜆 ior_2 is
the IOR of the asymptote or the IOR as 𝜆 → ∞ and spread is an
arbitrary constant between 0 and ∞ that controls the rate of decay.

Fig. 5. Dispersion with exaggerated IOR function
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Fig. 6. Initial spectral reflectance curve test: purple is the source SPD, blue
shows the reflected SPD, sensitivity to red, green shown in respective colors;
Left: working approximation, Right: failing approximation (ratio of predicted
to real red reflectance is 1.5); for better resolution / interactivity click here

Fig. 7. Indirect radiance estimate for dispersion without cone filtering, same
scene and photons as figure 5

4 DISCUSSION

4.1 Challenges
Over the course of this work we encountered many issues that were
critical to the project but also pushed our understanding of the
methods required to achieve the desired result.

Once such challenge was our initial method of spectral reflectance
curve construction. The initial attempt was to approximate a solu-
tion to the condition outlined in section 3.2.2, by taking the weighed
sum of the sensitivities and taking the norm at that wavelength
such that:

𝜌 (𝜆) = 𝑆 (𝜆)𝑇𝐶RGB√︁
𝑆 (𝜆)𝑇 𝑆 (𝜆)

(8)

We tested this first in Desmos (figure 6, an online graphing cal-
culator), the initial results looked correct and verified the stated
condition. We then moved to a simulation in Python where we had
an array of photons and applied 𝑒′ = 𝜌 (𝜆)𝑒 to each but got odd
results, the SPD of the reflected photons was not aligning with the
RGB albedo value. After looking back at the Desmos graph, we
realized that the simulated sensitivities distribution were mutually
exclusive. If we moved the sensitivities to overlap each other, the
method we created failed; the calculated reflectance values did not
match the predicted.
The other large issue we encountered was fuzzy edges on the

caustic leading to unclear dispersion as can be seen in figure 7.

This was caused by photons far the sampled point having a large
contribution to the radiance estimate. This was made clear when
we implemented cone filtering as documented [Jensen 2010] which
applies a weight 𝑤𝑝 = 1 − 𝑑𝑝

𝑘𝑟
, where 𝑘 is a constant, 𝑑𝑝 is the

distance of the photon to the sampled point and 𝑟 is the distance
of the farthest photon in the grouping. We multiply each photon’s
flux by this weight and adjust the final sum by dividing it by 1 − 2

3𝑘
to normalize the sum. This removed the issue of the fuzzy caustics.

4.2 Advantages
This method is faster than using full spectrum photon mapping in
addition to full spectrum ray / path tracing. We can use the tradi-
tional RGB rendering techniques while estimating the full spectrum
radiance dynamics using photon mapping cutting down the cost of
adding an additional dimension to the rendering equation’s integral.
Our method also allows for physically accurate / physically in-

spired phenomena. With the exception of the spectral reflectance
curve estimation, each step was inspired by the natural world and
the physical laws that governs it.

4.3 Disadvantages
While this method is faster than full spectrum photon mapping and
full spectrum ray / path tracing, it still requires a large amount of
photons to render visible dispersive effects. Most sceneswe rendered,
shot at least 1,000,000 photonswith 500 collected photons to get clear
results. It is clear that we need to implement more optimizations in
order to render more complex scenes.
Additionally, the drawbacks of only using photon mapping for

spectral dynamics is that we lose the ability to render chromatic
aberration, the phenomenon where light received though a disper-
sive medium is scattered, as well as the ability to render rainbows
in participating media.

5 RESULTS

Fig. 8. Glass sphere on plane (1,000,000 photons; 100 gathered; 1 hour)
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Fig. 9. Cornell Box with glass sphere inside (10,000,000 photons; 500 gath-
ered; 5 hours)

Fig. 10. Indirect radiance estimate from figure 9 (light source was moved to
a small area above the sphere instead of in front)

6 CONCLUSION
In this report, we presented our work on implementing full spec-
trum photon mapping, which allows for accurate modeling of the
spectral distribution of light in a scene. Our modifications to the
basic RGB photon mapping algorithm included introducing a pho-
ton representation that includes wavelength and energy values, the
ability to get RGB values from full spectrum photon mapping and a
method for calculating the spectral reflectance curve of a material
from its RGB albedo value. Our approach enables the simulation
of complex light behavior, including the effects of dispersion and
spectral caustics.
In conclusion, full spectrum photon mapping is an important

extension of the basic RGB photon mapping algorithm for spectral
caustics, and our work demonstrates its effectiveness in accurately
modeling the spectral distribution of light in a scene.

Fig. 11. Glass Box on plane (1,000,000 photons; 500 gathered; 2 hours). This
render did not come out well as in order to render in a reasonable amount
of time I had to turn up the Russian Roulette continue probability to 0.8
meaning that photon / ray depth is limited to a small depth

Fig. 12. Photons shot in figure 11
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