
Planetary Atmospheric Scattering
Jerry Lu∗

luj10@rpi.edu
Rensselaer Polytechnic Institute

Troy, New York, USA

Evan Shi∗
shib5@rpi.edu

Rensselaer Polytechnic Institute
Troy, New York, USA

Figure 1. A view of the planet from outer space, created using our system.

Abstract
Atmospheric scattering is a complex process that occurs
when sunlight interacts with particles in a planetary atmo-
sphere, resulting in visually striking phenomena such as the
blue sky and colorful sunsets. In this report, we present a
comprehensive analysis of the precomputed atmospheric
scattering method by Eric Bruneton and Fabrice Neyret [1],
detailing our experimentation and implementation of this
approach, which efficiently simulates the light scattering pro-
cesses in real-time by precomputing the light transport equa-
tion, considering all possible viewpoints, view directions,
and sun directions. By utilizing a series of precomputed look-
up tables (LUTs) for key components such as transmittance,
single scattering, multiple scattering, and ground irradiance,
our implementation maintains a high level of performance
and yields compelling results.

Keywords: Atmospheric scattering, precomputation, look-
up table (LUT)

1 Introduction
Motivated by the interest to achieve a high degree of real-
ism in environment simulation and inspired by the recent
lecture on subsurface scattering, our group intends to investi-
gate real-time sky and atmosphere rendering techniques that
take multiple scattering into account. We aim to create high-
quality atmospheric planets renderings that provide views
ranging from ground-level to outer-space perspectives, thus
presenting a visually compelling and immersive experience
for the viewer. However, atmospheric scattering is a com-
plex problem as it involves intricate light interactions with

∗Both authors contributed equally to this report.

various particles and gases within a planet’s atmosphere,
and the light transport equation in a participating medium
applied to the atmosphere is very difficult to solve. Therefore,
many promises have been made in earlier works to render
atmospheric phenomena such as sunsets, sky colors, and
aerial perspectives in real-time.
Eric Bruneton and Fabrice Neyret’s [1] approach aims to

overcome these challenges by employing precomputed at-
mospheric scattering techniques. The method significantly
reduces the computational demands commonly associated
with atmospheric rendering using precomputed look-up ta-
bles for key components like transmittance, single scattering,
multiple scattering, and ground irradiance. In this report,
we explain our implementation of the approach in detail,
showcasing the potential to generate visually appealing and
accurate representations of planetary atmospheres while
maintaining high performance. Due to time constraints, our
implementation does not include the complete methodology
described in the original paper; specifically, we omitted the
illuminance as well as the shadows and light shafts compo-
nent. Despite these modifications, our implementation still
captures the essence of the original work and produces ac-
curate and lovely renderings of the planetary atmosphere
without compromising the overall results.

The next sections are organized as follows. Section 2
briefly introduces the physical model and the rendering equa-
tion used in previous works. Sections 3, 4, 5, and 6 present our
implementation to precompute the transmittance, the single
scattering, the second and higher orders of scattering, and
the ground irradiance. Section 7 highlights miscellaneous
tools employed within our rendering engine. Finally, section
8 showcases our results and discusses potential future works.



Jerry and Evan

2 Atmospheric models
Atmospheric scattering primarily consists of two physical
phenomena: Rayleigh andMie scattering, which are the main
contributors to the colors of our sky. Rayleigh scattering is
an optical phenomenon predominantly responsible for clear
blue skies and vibrant orange-red sunsets. As light passes
through the air, it interacts with small molecules whosewave-
lengths are much shorter, resulting in wavelength-sensitive
scattering. In contrast, Mie scattering takes place during
overcast weather and creates the distinctive Tyndall effect.
It occurs when the size of airborne particles, such as those
found in fog, smoke, and dust, is approximately equal to or
greater than the wavelength of light. Unlike Rayleigh scatter-
ing, Mie scattering does not exhibit wavelength sensitivity
and has a limited capacity to alter the color of incoming light.
A more detailed overview of atmospheric scattering is shown
in Figure 1. In this section, we first provide a brief overview
of the physical model employed for the project, followed by
an introduction to the rendering equation used to solve radi-
ance. Additionally, we present a survey of important related
works that informed and supported our project.

2.1 Physical model
Incorporating the aforementioned scatterings, we can de-
velop a physical model consists of air molecules and aerosol
particles, in a thin spherical layer of decreasing density be-
tween 𝑅𝑔 = 6360 𝑘𝑚 and 𝑅𝑡 = 6420 𝑘𝑚. At any given point,
the proportion of light scattered 𝜃 degrees from its inci-
dent direction is determined by the product of a scattering
coefficient 𝛽𝑠 and a phase function 𝑃 . The particle density
influences 𝛽𝑠 , while 𝑃 delineates the angular dependency. For
smaller air molecules, both 𝛽𝑠 and 𝑃 are defined by Rayleigh
theory[8]:

𝛽𝑠𝑅 (ℎ, 𝜆) =
8𝜋3 (𝑛2 − 1

)2
3𝑁𝜆4

𝑒
− ℎ

𝐻𝑅

𝑃𝑅 (𝜇) =
3

16𝜋
(
1 + 𝜇2

)
where 𝜇 = cos𝜃 ,ℎ = 𝑟−𝑅𝑔 is the altitude, 𝜆 is the wavelength,
𝑛 is the index of refraction of air, 𝑁 is the molecular density
at sea level 𝑅𝑔, and 𝐻𝑅 = 8 𝑘𝑚 is the thickness of the atmo-
sphere if its density were uniform. Similarly, the Mie theory
defines the scattering coefficient 𝛽𝑠 and a phase function 𝑃

for larger aerosols for a smaller height scale 𝐻𝑀 ≈ 1.2 𝑘𝑚
with an exponentially decreasing density[8]:

𝛽𝑠𝑀 (ℎ, 𝜆) = 𝛽𝑠𝑀 (0, 𝜆) 𝑒−
ℎ
𝐻𝑅

𝑃𝑀 (𝜇) = 3
8𝜋

(
1 − 𝑔2

) (
1 + 𝜇2

)
(2 + 𝑔2) (1 + 𝑔2 − 2𝑔𝜇)

3
2

Aerosols also absorb a fraction of the incident light, which
is measured with an absorption coefficient 𝛽𝑎

𝑀
. Combining

the absorption and scattering coefficient gives us the extinct

Figure 2. An overview of atmospheric scattering. A: zero
scattering. B: single scattering. C: multiple scattering. Solving
for a physically accurate radiance of light 𝐿 reaching x from
direction v when the sun is in direction s requires: D: light
reflected at x0. E: transmittance 𝑇 results from absorption and
out-scattered light. F: is the light scattered in direction −v. G:
light scattered towards x between x0 and x, from any direction.
Note that occlusion, like the mountain in the figure, can signif-
icantly affect the final calculated 𝐿. As a result, we account for
occlusion in zero scattering but disregard it in other cases to
minimize performance overhead.

coefficient 𝛽𝑒
𝑀

= 𝛽𝑎
𝑀
+ 𝛽𝑠

𝑀
1. The ozone layer also has a large

impact on the appearance of the Earth’s atmosphere, and the
absorption of ozone contributes to the sky’s blue hue when
the sun is near the horizon. We approximate the absorption
rate by the following equation:

𝛽𝑎𝑂 (ℎ, 𝜆) = 𝛽0𝑂 (𝜆)max
{
0, 1 − ∥ℎ − 25𝑘𝑚∥

15𝑘𝑚

}
In real-time rendering, we can not afford to compute light
scattering for each individual wavelength. Instead, we ap-
proximate the energy distribution across the spectrum using
the three RGB components, so the 𝜆 term is assigned to a cer-
tain value, referred to as 𝜆0. Therefore, we have the following
functions for scattering coefficient 𝛽𝑠 , extinction coefficient
𝛽𝑡 and phase function 𝑃 :

𝛽𝑠 (ℎ, 𝜆) = 𝛽𝑠𝑅 (ℎ) + 𝛽𝑠𝑀 (ℎ)
𝛽𝑒 (ℎ, 𝜆) = 𝛽𝑠𝑅 (ℎ) + 𝛽𝑒𝑀 (ℎ) + 𝛽𝑎𝑂 (ℎ)

𝑃 (𝜇) =
𝛽𝑠
𝑅
(ℎ)

𝛽𝑠 (ℎ)
𝑃𝑅 (𝜇) +

𝛽𝑠
𝑀
(ℎ)

𝛽𝑠 (ℎ)
𝑃𝑀 (𝜇)

which we will use for calculating atmospheric scattering and
discuss in later sections.

1𝛽𝑒
𝑅
= 𝛽𝑠

𝑅
for air molecules.



Planetary Atmospheric Scattering

2.2 Rendering equation
In the work by Eric Bruneton and Fabrice Neyret, the ren-
dering equation is presented as follows:

𝐿(x, v, s) = (𝐿0 + R[𝐿] + S[𝐿]) (x, v, s)
where 𝐿(x, v, s) represent the radiance of sunlight in direc-
tion s, reaching point x0 from the viewing direction v (see
Figure 2). In order to better understand the rendering equa-
tion, we need to specify a few additional terms:

𝑇 (x, x0) = exp ©­«−
∫ x0

x

∑︁
𝑖∈{𝑅,𝑀 }

𝛽𝑒𝑖 (y) d𝑦
ª®¬

I[𝐿] (x0, s) =
𝛼 (x0)
𝜋

∫
2𝜋

𝐿(x0,𝝎, s)𝝎 .n(x0) d𝜔 or 02

J [𝐿] (y, v, s) =
∫
4𝜋

∑︁
𝑖∈{𝑅,𝑀 }

𝛽𝑠𝑖 (y)𝑃𝑖 (v,w)𝐿(y,𝝎, s) d𝜔

Assume the ray x + 𝑡v extends to the atmosphere’s bound-
ary, where x0 is either at the ground or the atmospheric
boundary where 𝑟 = 𝑅𝑡 , then𝑇 represents the transmittance
between x𝑜 and x, I represents the radiance of light reflected
at x0, and the radiance J of light scattered at y in direction
−v. With these notions, the terms in the rendering equation
can be expanded as follows:

𝐿0 (x, v, s) = 𝑇 (x, x0)𝐿𝑠𝑢𝑛 or 03

R[𝐿] (x, v, s) = 𝑇 (x, x0)I[𝐿] (x0, s)

S[𝐿] (x, v, s) =
∫ x0

x
𝑇 (x, y)J [𝐿] (y, v, s) d𝑦

where 𝐿0 represents the attenuation value of direct sun-
light 𝐿𝑠𝑢𝑛 as it reaches x via 𝑇 (x, x0). R[𝐿] denotes the light
reflection at x0 and the attenuation value of the light be-
fore it reaches x. Meanwhile, S[𝐿] is the internal scattering
towards x between x to x0.

2.3 Related works
Given the intricate and recursive characteristics of the pre-
viously mentioned rendering equation, solving the 𝐿 is ex-
tremely difficult. Therefore, using naive approaches to attain
real-time planetary atmospheric scattering in applications
like game engines is impractical. Previous works have made
numerous simplifying assumptions to approximate solutions
requiring much less computational power. For instance, we
can reduce the rendering equation to 𝐿 = (𝐿0+R[𝐿0]+S[𝐿0])
to only include the zero scattering. However, even S[𝐿0] is
hard to solve in reality, leading some works to propose ana-
lytical solutions that rely on certain assumptions, such as a
flat Earth with constant[3] atmospheric density or excluding
Mie scattering[4]. Besidesmaking simplifications to the phys-
ical model, there are approaches utilize precomputations[6].
Similarly, the works by Eric Bruneton and Fabrice Neyret[1]
2I is null on the top atmosphere boundary.
3If v ≠ s or the sun is occluded by terrain, 𝐿0 becomes null.

as well as Sébastien Hillaire[2], which we adopted for this
project, relies on precomputation but renders the sky and
aerial perspective in real-time. It considers all viewpoints,
from ground level to space, and takes multiple scattering into
account, which sets apart approaches that ignore multiple
scattering (see [7] for a comprehensive survey). In addition,
the technique can compute up to four scatterings in real-
time, which is a significant improvement compared to the
double scattering Monte-Carlo simulation with an analytical
model[5] for multiple scattering computations. In the later
sections, we will explain each precomputed look-up table in
detail.

3 Transmittance
The transmittance 𝑇 represents the proportion that remains
unabsorbed or unattenuated after a beam of light travels
from one point to another. By definition, 𝑇 depends only
on the positions of the two points and is independent of
terrain. Therefore, we can examine it under the assumption
of a smooth planetary surface (i.e., all distances from the
surface to the sphere’s center are equal to 𝑅) when solving
for 𝑇 . Upon determining 𝑇 , we store it in a precomputed
texture that will be accessed during the rendering process.

3.1 Transmittance model
In terms of computation, the transmittance between two
points 𝑝 and 𝑞 is the transmittance between 𝑝 and the near-
est intersection 𝑖 of the half-line [𝑝, 𝑞) with either the top or
bottom atmospheric boundary (See Figure 3). We then divide
this value by the transmittance between 𝑞 and 𝑖 (or use 0 if
the segment [𝑝, 𝑞] intersects the ground). Because the trans-
mittance values between 𝑝 and 𝑞 and between 𝑞 and 𝑝 are
the same, it is sufficient to know the transmittance between a
point 𝑝 in the atmosphere and points 𝑖 on the top atmosphere
boundary to compute the transmittance between arbitrary
points. The transmittance then depends on only two parame-
ters, which can be taken as the radius 𝑟 = ∥𝑜𝑝 ∥ and the cosine
of the “view zenith angle,” 𝜇 = 𝑜𝑝 (·𝑝𝑖/∥𝑜𝑝 ∥∥𝑝𝑖∥). Based on
the definition and the Beer-Lambert law, solving for trans-
mittance involves integrating the density of air molecules,
aerosols, and air molecules that absorb light (e.g., ozone)
along the same segment [𝑝, 𝑖].

3.2 Transmittance precomputation
To store the calculated transmittance, we need to map the
two parameters (𝑟, 𝜇) to the texture coordinates (𝑢, 𝑣), and
perform the inverse mapping when retrieving the solution
during the rendering process. The original paper provided a
generic mapping technique that works for any atmosphere
and provides an increased sampling rate near the horizon: 𝑟 =
∥𝑥 ∥, and 𝜇 equals a value 𝑥𝜇 between 0 and 1 by considering
the distance 𝑑 to the top atmosphere boundary, where 𝑑min =

𝑟top − 𝑟 and 𝑑max = 𝜌 + 𝐻 (See Figure 3).



Jerry and Evan

Figure 3. Details about transmittance, texture mapping, and single scattering. (a): the transmittance between 𝑝 and 𝑞. (b):
mapping between (𝑟, 𝜇) and the texture coordinates (𝑢, 𝑣). (c): the single scattered radiance at 𝑝 after the scattering event at 𝑞.

3.3 Transmittance look-up
While rendering, we can get the transmittance between two
arbitrary points 𝑝 and 𝑞 inside the atmosphere using just two
texture look-ups. This is because the transmittance between
𝑝 and 𝑞 equals the transmittance between 𝑝 and the top at-
mospheric boundary divided by the transmittance between 𝑞
and the top atmospheric boundary, and vice versa. It is worth
to mention that we also need the atmospheric transmittance
to the Sun when calculating single scattering and sky irra-
diance. During which step, we approximate by integrating
over its disc, assuming constant transmittance except below
the horizon. We calculate it using top atmosphere boundary
transmittance multiplied by the visible Sun disc fraction. It
is important to note that we do not perform the ray-ground
intersection testing step here. Instead, we implement the
function and use it on the caller side. This is because results
could be inaccurate for rays close to the horizon, as finite
precision and rounding errors in floating-point operations
can cause discrepancies.

4 Single scattering
By single scattering, we mean that there has only been one
scattering event since the light left the light source before it
reached the observer’s eye. The single scattered radiance is
responsible for the majority of the color we see because the
atmosphere scatters light at a relatively low rate.

4.1 Single scattering model
Consider the Sun light scattered at a point 𝑞 by air molecules
or aerosols particles before arriving at another point 𝑝 , the
radiance arriving at 𝑝 is the product of:

• the solar irradiance at the top of the atmosphere.
• the fraction of the Sun light at the top of the atmo-
sphere that reaches 𝑞, 𝑇 (Sun, 𝑞).

• the Rayleigh or Mie scattering coefficient at 𝑞.
• the Rayleigh or Mie phase function.

• the fraction of the light scattered at 𝑞 towards 𝑝 that
reaches 𝑝 , 𝑇 (𝑞, 𝑝).

where a total of 4 parameters needed (See Figure 3):

• 𝑟 is the distance from 𝑝 to the center of the sphere.
• 𝜇 is the angle formed by extending the radius from

point 𝑝 to atmosphere boundary and the line segment
connecting points 𝑝 and 𝑞.

• 𝜇𝑠 is the angle formed by extending the radius from
point 𝑝 to atmosphere boundary and the unit direction
vector towards the Sun 𝜔𝑠 .

• 𝜈 is the angle formed by the same unit direction vector
for 𝜇𝑠 and line segment connecting points 𝑝 and 𝑞.

4.2 Single scattering precomputation
Single scattering is quite expensive, and many evaluations
are needed to compute multiple scattering due to the recur-
sive nature of the rendering equation. We, therefore, want
to precompute the solution and save the results to texture,
which requires a mapping from the 4 function parameters to
texture coordinates. This requires a 4D texture, and a func-
tion that maps (𝑟, 𝜇, 𝜇𝑠 , 𝜈) to texture coordinates (𝑢, 𝑣,𝑤, 𝑧).
The mapping between 𝑟, 𝜈 and 𝑢, 𝑧 roughly follows the

same procedure we mentioned in the previous section. How-
ever, the mapping between 𝜇, 𝜇𝑠 and 𝑣,𝑤 is more complex.
The mapping for 𝜇 takes the minimal distance to the nearest
atmosphere boundary into account to map it to [0,1] interval.
On the other hand, the mapping for 𝜇𝑠 relies on the distance
to the top atmosphere boundary and uses a configurable
parameter, but still maintains a higher sampling rate near
the horizon.

4.3 Single scattering look-up
With the help from precomputed texture generated using the
method discussed previously, we can now get the scattering
between a point and the nearest atmosphere boundary with
two texture look-ups in real-time, which guarantees efficient
multiple scattering calculations described in the next section.



Planetary Atmospheric Scattering

In particular, we employ two 3D texture look-ups to simulate
a single 4D texture lookup using quadrilinear interpolation.

5 Multiple scattering
By multiple scattering, we mean that the light from the Sun
reaches the observer’s eye after undergoing two or more
bounces within the atmosphere. These bounces consist of
scattering events, where light interacts with atmospheric
particles, or reflections off the ground.

5.1 Multiple scattering model
Multiple scattering can be broken down into the sum of
double scattering, triple scattering, and so on, with each
term representing light reaching a point in the atmosphere
after exactly two, three, etc., bounces. In addition, each term
can be calculated based on the previous one; that is, the light
arriving at some point 𝑝 from direction 𝜔 after 𝑛 bounces is
an integral over all the possible points 𝑞 for the last bounce,
which involves the light arriving at 𝑞 from any direction,
after 𝑛 − 1 bounces.

Unfortunately, the calculation at each scattering order re-
quires a triple integral based on the previous scattering order:
one integral over all the points 𝑞 on the line segment from 𝑝

to the nearest atmosphere boundary in direction 𝜔 , as well
as a nested double integral over all directions at each point 𝑞.
It will be extremely inefficient if we perform the calculation
naively. As suggested by Eric Bruneton and Fabrice Neyret in
their work[1], we use the following algorithm when dealing
with multiple scattering:

Algorithm 1 Multiple scattering computation
1: Precompute single scattering in a texture.
2: for scattering order ≥ 2 do
3: for each point 𝑞 do
4: for each direction 𝜔 do
5: Look up (𝑛 − 1)-th scattering texture
6: Compute the scattered light at 𝑞 towards −𝜔
7: end for
8: end for
9: for each point 𝑝 do
10: for each direction 𝜔 do
11: Look up the texture computed on line 6
12: Compute the scattered light at 𝑝 towards 𝜔
13: end for
14: end for
15: end for

where the calculations for 𝑝 involve only a double integral,
and the calculations for 𝑞 involve only a single integral, since
it is based on the precomputed texture in the previous step.

5.2 Multiple scattering precomputation
To save computation time when calculating the next order,
wemust precompute each scattering order in a texture, which

requires a mapping from function parameters to texture co-
ordinates. Fortunately, all scattering orders rely on the same
(𝑟, 𝜇, 𝜇𝑠 , 𝜈) parameters as the single scattering described in
Section 4. Therefore, we can conveniently reuse the map-
pings defined for single scattering.

5.3 Multiple scattering look-up
Likewise, we can simply reuse the same look-up procedure
for single scattering to read a value from the precomputed
textures for multiple scattering.

6 Ground irradiance
Ground irradiance, which is the sunlight received at the
planet’s surface after 𝑛 ≥ 0 bounces, plays an important role
in precomputing the 𝑛-th order of scattering, where 𝑛 ≥ 2, in
determining the light path contributions with their (𝑛 − 1)-
th bounce on the ground. In this case, we require ground
irradiance only for horizontal surfaces situated at the bot-
tom of the atmosphere for a uniform albedo spherical planet.
Furthermore, during the rendering process, we need to com-
pute the contribution of light paths with their final bounce
on the ground to achieve an accurate result. Different from
the previous case, we need ground irradiance for varying
altitudes and surface normals, and precomputation is desired
for efficiency. In line with the original work, we precompute
irradiance only for horizontal surfaces at any altitude, using
2D textures as a substitute for the more complex 4D textures
required in the general case.

6.1 Ground irradiance model
Irradiance is calculated as the integral over a hemisphere
of the incident radiance, multiplied by a cosine factor. For
ground irradiance computation, we divide it into direct and
indirect components. The direct ground irradiance is de-
termined by the Sun’s incident radiance at the top of the
atmosphere, multiplied by the transmittance through the
atmosphere. Given the small solid angle of the Sun, we can
approximate transmittance as a constant and move it out-
side the irradiance integral, which should be performed over
the visible fraction of the Sun’s disc rather than the entire
hemisphere. For indirect ground irradiance, the integral over
the hemisphere must be calculated numerically. Specifically,
we need to compute the integral over all directions 𝜔 of the
hemisphere, considering the product of the radiance arriving
from direction 𝜔 after 𝑛 bounces and the cosine factor 𝜔𝑧 .

6.2 Ground irradiance precomputation
As mentioned in the previous section, the irradiance de-
pends only on 𝑟 and 𝜇𝑠 because we precompute the ground
irradiance only for horizontal surfaces. Therefore, we only
need a mapping from ground irradiance parameters (𝑟, 𝜇𝑠 )
to texture coordinates (𝑢, 𝑣), and a simple affine mapping is
sufficient because of the smooth ground irradiance function.



Jerry and Evan

Figure 4. Look-up tables/textures. (a): The 2D transmittance texture. (b): The 4D single scattering texture. (c): The 4D scattering
texture that combines all scattering orders (4 scattering orders in this case). (d) The 2D ground irradiance texture.

Figure 5. Planetary atmospheric scattering results from different camera angles and positions. (a): A dawn scene from
the planetary surface [Radiance]. (b) A sunrise scene from the planetary surface. (c) An outer space scene that showcases planetary
atmospheric scattering on a larger scale.

6.3 Ground irradiance look-up
The ground irradiance look-up is relatively straightforward,
as it can be accomplished with just a single texture look-up
similar to what we did for transmittance textures.

7 Miscellaneous
The section briefly discusses the engine we created to gener-
ate the results, our testing strategies and the work distribu-
tion for the project.

7.1 Engines
We have developed two distinct engines to showcase the out-
comes of our project: a command-line-based engine and a
graphical user interface (GUI) based engine. The first engine,
the command-line-based variant, is capable of generating a
two-dimensional image of a predefined scene in real-time,
with users having the ability to customize various elements
such as camera angles and positioning. The second engine,
utilizing a graphical interface, offers users an enhanced level
of control over the scene, including adjustments to sun posi-
tion, color balance, and even vertex and fragment shaders
modifications within the engine. These features enable users
to manipulate a range of aspects, creating a more immersive
and interactive experience. Both engine utilizes precomputed
LUTs from the atmosphere model we created.

7.2 Testing
Our testing approach is relatively simple: We examine the
resulting image to determine if it makes sense. Given the
calculations’ complexity and the project’s limited debugging
time, we couldn’t guarantee that the programs’ calculations
were entirely accurate. We thoroughly reviewed the model
multiple times, noting that minor errors haveminimal impact
on the image and can sometimes be challenging to detect.
Additionally, we incorporated numerous assertions within
the code to ensure that basic calculations and look-ups were
in the correct ranges. Nevertheless, we still encountered
many errors during the process. Figure 6 shows some of our
incorrect results.

7.3 Work distribution
As the project advanced, our team worked diligently to orga-
nize and assign tasks to efficiently and effectively accomplish
the core components mentioned in the proposal. Each team
member dedicated around 50 hours to the project, and while
we did not complete everything outlined in the proposal
due to limited time, we successfully implemented the basic
planetary atmospheric scattering, which was the project’s
primary focus.
Jerry Lu developed the CPU renderer, a command-line-

based engine that produces 2D images of a scene based on



Planetary Atmospheric Scattering

Figure 6. Precomputation failures. These were created by our first functional CPU renderer. The precomputation for the
planetary atmospheric scatterings was incorrect in the first place, which resulted in incorrect LUTs and broken scenes. The first
image shows a broken dawn scene caused by errors in scattering calculation. The second image shows a broken planet caused by
errors in texture look-up.

user-defined parameters. Jerry concentrated on single and
multiple scattering calculations, as well as ground irradi-
ance for planetary atmospheric scattering. Moreover, he op-
timized look-up tables and developed essential utilities for
loading and saving precomputed parameters, which enables
fast access to precomputed data for rendering purposes.
Meanwhile, Evan Shi centered his efforts on completing

the GPU renderer for the project, a graphics-based engine
that renders scenes in real-time using precomputed textures.
This engine allows users to adjust various parameters to
achieve different visual outcomes. In addition, Evan con-
tributed to the project by implementing transmittance and
multiple scattering calculations, as well as doing most of the
report writing.

8 Results and discussion
All rendering of this paper is provided by the CPU renderer,
which samples the entire spectrum to give a radiance spec-
trum of pixels. Based on this radiance spectrum, we can
calculate the color of the pixels in different ways. If not ex-
plicitly stated, the result is to first integrate the radiance
spectrum with the CIE XYZ basis, converting it to CIE XYZ
luminance and then to linear sRGB luminance. The output
images are saved as PNG at 8-bit for each channel, after the
luminance is gamma corrected (𝛾 = 2.2) and tone mapped.
Figure 5 (a) shows a less-accurate result with only 3 radiance
samples without converting to sRGB. The GPU renderer aims
to be real-time by sacrificing the color accuracy, which only
samples at RGB wavelengths for radiance.
Precomputation takes about 200 seconds to generate all

the LUTs in 20 threads with fourth order multiple scattering.
Once generated, the LUTs are simply copied to memory
and rendered immediately. The GPU renderer can read half
precision LUTs and render the atmosphere at more than

144 frames per second, and can adjust the camera and the
position of the sun in real time.

With the limited time, we could only work on implement-
ing Eric Bruneton and Fabrice Neyret’s work. As outlined in
the introduction, an efficient model [2] further speed up the
computation. Another future work that could fully exploit
the ability of rendering full radiance spectrum is to enable
the engine to write RGBE files, which could preserve all the
radiance data for high dynamic range displays. Although
we also mentioned cloud rendering in the proposal as a side
quest, this could also be a future work that could render the
interactions between the atmosphere and realistic clouds.

Figure 7. Screenshot of the OpenGL version

Acknowledgments This project, conducted for RPI Ad-
vanced Computer Graphics Spring 23, is primarily built upon
the prior works of Eric Bruneton and Fabrice Neyret. We
express our gratitude to them for supplying valuable refer-
ences.



Jerry and Evan

References
[1] Eric Bruneton and Fabrice Neyret. 2008. Precomputed Atmospheric

Scattering. Computer Graphics Forum 27, 4 (June 2008), 1079–1086.
https://doi.org/10.1111/j.1467-8659.2008.01245.x

[2] Sébastien Hillaire. 2020. A Scalable and Production Ready
Sky and Atmosphere Rendering Technique. Computer Graph-
ics Forum 39 (2020), 13–22. https://doi.org/10.1111/cgf.14050
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14050

[3] Naty Hoffman and Arcot J. Preetham. 2002. Rendering outdoor light
scattering in real time. Proceedings of GameDeveloper Conference (2002).

[4] H. Jensen, Kirk Riley, David Ebert, Martin Kraus, Jerry Tessendorf, and
Charles Hansen. 2004. Efficient Rendering of Atmospheric Phenomena.
(07 2004).

[5] A. J. Preetham, Peter Shirley, and Brian Smits. 1999. A Practical Analytic
Model for Daylight. In Proceedings of the 26th Annual Conference on

Computer Graphics and Interactive Techniques (SIGGRAPH ’99). ACM
Press/Addison-Wesley Publishing Co., USA, 91–100. https://doi.org/
10.1145/311535.311545

[6] T Schafhitzel, Martin Falk, and Thomas Ertl. 2007. Real-Time Rendering
of Planets with Atmospheres. Journal of WSCG 2007 15 (01 2007), 91–
98.

[7] Jaroslav Sloup. 2002. A Survey of the Modelling and Rendering of the
Earth’s Atmosphere. In Proceedings of the 18th Spring Conference on
Computer Graphics (Budmerice, Slovakia) (SCCG ’02). Association for
Computing Machinery, New York, NY, USA, 141–150. https://doi.org/
10.1145/584458.584482

[8] Knut Stamnes, Gary E. Thomas, and Jakob J. Stamnes. 2017. Radiative
Transfer in the Atmosphere and Ocean (2 ed.). Cambridge University
Press. https://doi.org/10.1017/9781316148549

https://doi.org/10.1111/j.1467-8659.2008.01245.x
https://doi.org/10.1111/cgf.14050
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14050
https://doi.org/10.1145/311535.311545
https://doi.org/10.1145/311535.311545
https://doi.org/10.1145/584458.584482
https://doi.org/10.1145/584458.584482
https://doi.org/10.1017/9781316148549

	Abstract
	1 Introduction
	2 Atmospheric models
	2.1 Physical model
	2.2 Rendering equation
	2.3 Related works

	3 Transmittance
	3.1 Transmittance model
	3.2 Transmittance precomputation
	3.3 Transmittance look-up

	4 Single scattering
	4.1 Single scattering model
	4.2 Single scattering precomputation
	4.3 Single scattering look-up

	5 Multiple scattering
	5.1 Multiple scattering model
	5.2 Multiple scattering precomputation
	5.3 Multiple scattering look-up

	6 Ground irradiance
	6.1 Ground irradiance model
	6.2 Ground irradiance precomputation
	6.3 Ground irradiance look-up

	7 Miscellaneous
	7.1 Engines
	7.2 Testing
	7.3 Work distribution

	8 Results and discussion
	References

