Realtime Approximation of Light in Curved Spacetimes

Wyatt Marvil

4/24/2023

Abstract

In this paper, we present an approach to approx-
imating light in curved spacetimes in real-time
with GPU raytracing. Our method allows for the
simulation of complex gravitational lensing ef-
fects and other phenomena in curved spacetimes
in real-time, making it ideal for use in interactive
applications such as video games and virtual re-
ality. We achieve this by using both explicit and
implicit numerical integration techniques to effi-
ciently trace rays through the curved spacetime,
and by leveraging the parallel processing capa-
bilities of modern GPUs to accelerate the com-
putation. Our approach produces high-quality,
but physically inaccurate approximations of light
curving effects, while also being scalable and flex-
ible enough to handle a wide range of scenarios
and configurations. We demonstrate the effec-
tiveness of our method through several examples,
and show that it creates sufficiently convincing
relativistic behavior. Our work has the potential
to enable new forms of interactive and immersive
experiences that leverage the rich and fascinat-
ing geometry of curved spacetimes.

1 Introduction

The behavior of light in the presence of gravity
has long been a subject of fascination and study
in the field of theoretical physics. In the theory
of general relativity, the curvature of spacetime
affects the path of light rays, leading to phenom-
ena such as gravitational lensing and black holes.
Raytracing is a powerful technique used in com-
puter graphics to render realistic images of three-
dimensional objects. In the context of general
relativity, raytracing can be used to simulate the
behavior of light in the presence of massive ob-
jects such as black holes. In this paper, we will
discuss the implementation of a Vulkan compute
raytracer that is capable of rendering approxi-
mations of relativistic effects.

We will start by exploring the literature
around rendering relativistic phenomena in Sec-
tion 2. In Section 3, we will introduce the ar-
chitecutre of our GPU raytracer, and how it al-
lows us to implement arbitrary metrics. Section
4 will explain the implementation of a Newto-
nian approximation for general relativity, while
section 5 will cover accurate relativistic models
such as the Schwarzschild and Kerr metrics. Sec-

tion 6 will be a brief aside on rendering celestial
accretion disks and radiative heat transfer. We
will close the paper with our results, conclusions,
and avenues for future work.

2 Related Work

The simulation of light in curved spacetimes has
been an alluring topic across several fields, in-
cluding theoretical physics, cinema, and interac-
tive media. Several methods have been proposed
to model the behavior of light in general relativ-
ity, ranging from analytical solutions to numeri-
cal techniques.

One commonly used approach is based on the
use of geodesics, which are the curves followed
by particles (including light) in the presence of
gravity. The geodesic equation can be solved
analytically for certain spacetimes, such as the
Schwarzschild metric, which describes the space-
time around a non-rotating black hole. How-
ever, for more complex spacetimes, analytical
solutions are often not available, and numerical
methods must be used.

Numerical methods for simulating the behav-
ior of light in curved spacetimes include modified
ray-tracing algorithms, which simulate the path
of light rays through a curved spacetime. One
example is the work of [9], using ray bundles to
approximate the Kerr metric. These methods
are computationally intensive and are typically
used for offline simulations. Realtime simula-
tions usually require faster methods, and several
approaches have been proposed to address this
issue.

One such approach is based on the use of pre-
computed lookup tables, which store the paths
of light rays for a given set of initial conditions.
These lookup tables can be used to approximate
the path of light rays in real-time, but they are
limited to a specific set of initial conditions and
cannot account for changes in the spacetime ge-
ometry.

Another approach is based on the use of
numerical integration techniques, such as the
Runge-Kutta method, to solve the geodesic

equation in real-time. However, these methods
can still be computationally expensive, especially
for spacetimes with high curvature.

Recently, machine learning techniques have
been applied to the problem of simulating light in
curved spacetimes. One approach is based on the
use of neural networks to approximate the path
of light rays, which can be trained on a set of
precomputed paths. Another approach is based
on the use of reinforcement learning, where an
agent learns to navigate through a curved space-
time by maximizing a reward function.

Other work has also been done to move offline
methods to realtime with GPU acceleration [3].
There is also the work of [1] to create massive,
life-scale interactive simulations for consumer ex-
ploration of cosmology.

We based our method on numerically solv-
ing discretized geodesics with a metric-agnostic
integration model. We can toggle between ex-
plicit euler integration and an implicit fourth or-
der Runge-Kutta method, and we can also uti-
lize any spacetime metric that operates in three
spatial dimensions (even non-physical solutions,
such as the white hole in [10])

3 Raytracer Architecture

To build our GPU raytracer, we began with
the compute raytracing sample from Sascha
Willems’ Vulkan examples repository [12]. On
top of this sample, we added several features
to support our project, including a free-flight
camera, a dynamically updated Shader Storage
Buffer Object (SSBO) for blackhole objects, and
an additional cubemap texture sampler for in-
tegrating skyboxes and backgrounds. This base-
line raytracer performs implicit intersection tests
against spheres and planes, and includes hard
shadows and multibounce reflections.

3.1 Ray Marching

The first step in supporting relativistic behav-
ior in our renderer is to move to a raymarch-

Figure 1: Raymarched scene with trivial Bend-
Path, 117 FPS

ing scheme instead of the standard intersection
traces.

Algorithm 1 Ray Marching Intersections
1: procedure INTERSECT(Ray)
2 id +— —1

3 for i < iterations do

4 id, t + Intersect(r)

5: if t < eps then
6

7
8

break
r < BendPath(r, dt)

return ¢d

On each iteration, we test the current ray for
intersections. t is the distance to the nearest
intersection in world units, and once it falls be-
low a certain value, we assume a final intersec-
tion. Next, we calculate the ray for the next
iteration by calling a BendPath function, which
will return a position and direction exactly one
timestep away, accounting for the curvature of
spacetime as dictated by the current spacetime
metric.

The trivial BendPath function simply returns
the ray, yielding a conventional raytracer.

Algorithm 2 Bend Path

1. procedure BENDPATH(Ray r, float dt)
2: return r

Rays that miss the scene entirely can render a

static background color or sample from an HDR
cubemap. If the ray falls within a Schwarzshild
radius, it is physically unable to escape the grav-
ity of a nearby blackhole, and we can terminate
the ray marching loop early and return an ID
denoting black.

4 Newtonian
tion

Approxima-

The Newtonian approximation for general rela-
tivity is an unphysical model that assumes the
photon has a mass of 1kg. However, it is much
simpler to implement than the more complicated
relativistic models we will discuss later, and to
the human eye they are mostly indistinguishable.

Algorithm 3 Newtonian Bend Path

1: procedure BENDPATHNEWT(Ray r, float
dt)

2: newPos + vec3(0.0)

3: for b in blackholes do

4: r < b.pos - r.pos

5: r2 < dot(r,r)

6: rSW <+ 2 x b.mass

e if r2 < rSW xrSW then
8: break

9: g < b.mass/r2

10 newPos < newPos+ g xnorm(r) xdt
11: r.dir < norm(pos — r.pos)

12: T.p0S = pPos

13: return r

We can compute the Schwarzschild radius
from the mass of the blackhole. This can be used
to terminate early, since any position that falls
within this distance of a massive object will be
unable to escape.

rSW =2%Gx M/c?

For numerical precision, we do not use the real
world values for Newton’s gravitational constant
(6.674310"1m3kg—1s72) or the speed of light
(299792458 m/s). Instead, we set assume both
of them to be 1.0.

Next, we modify the ray position, and accu-
mulate gravitational force across the scene. We
use Newton’s law of gravitation, taking m; to be
1kg.

mims

F,=Gx
g r2
After applying the accumulated force to the
new position, scaled by the simulation timestep,
we can compute the new direction by normaliz-
ing the difference between the new and old posi-
tions.

5 General Relativity

5.1 Null Geodesics

Unfortunately, the Newtonian method is only an
approximation. In order for our model to be
physically accurate, our photons need to travel
along null geodesics. A null geodesic is a path in
spacetime that is followed by a massless particle,
such as a photon. In other words, it is the trajec-
tory of light or other electromagnetic radiation
in a gravitational field.

Mathematically, a null geodesic is defined as a
curve in spacetime that is parameterized by an
affine parameter and satisfies the geodesic equa-
tion, which describes the path of a free particle
moving under the influence of gravity. The affine
parameter is a quantity that varies linearly along
the curve and is used to specify the position of
the particle along the curve.

One important property of null geodesics is
that they always travel at the speed of light, since
they are followed by massless particles. This
means that their worldlines are always tangent
to the light cone at each point along the curve.

In general, the approach to finding a null
geodesic involves solving the geodesic equation,
which is a set of second-order differential equa-
tions that describe the motion of a particle in
spacetime, and it can be written as follows:

dz® dxP
1 _
Tosan an = (1

APt
d\?

~—

where z# is a set of four coordinates that
describe the position of the particle in space-
time, A is an affine parameter that parameterizes
the curve, and T 5 are the Christoffel symbols,
which encode the curvature of the spacetime.

To solve the geodesic equation, one typically
starts with the metric tensor of the spacetime,
which specifies the geometry of the spacetime.
The metric tensor can be used to calculate the
Christoffel symbols, which in turn can be used
to write down the geodesic equation.

In general, the geodesic equation is a diffi-
cult set of equations to solve analytically, and
solutions may only be found for special cases
of spacetimes with particular symmetries, such
as the Schwarzschild metric for a non-rotating,
spherically symmetric black hole.

In this paper, we solve the geodesic equation
numerically for arbitrary 3+1 spacetimes using
the fourth order Runge-Kutta method.

5.2 Schwarzschild Metric

The Schwarzschild Metric is typically written in
terms of (¢,7,0,¢).

2GM dr?
ds? = — (1 —) At + —————+1r25in0¢?
(-5
The metric tensor g, is written as
—(1-26M) 2 0 0 0
0 (1-29)"" 9
0 0 r2 0
0 0 0 r2sin?6

In order to begin solving the geodesic equation
with this metric, we need to calculate the non-
zero Christoffel symbols.

GM 2GM
t _ 1t
Ftr - rrt - 272 <1 - 2r)
GM 2GM
', =——|(1-
B 22 (c2r)

o _GM 2GM\ !
rr 272 2r
1
M =1, ==z
or r0 r

1
¢ _ 1o _ s 2
F(j)r—rw—;sm %)

F& = Ff;@ =cot 6

We can plug these into the differential system
of equations given by the geodesic (1). Now, tak-
ing our ray as the initial value, we can solve the
geodesic equation as an initial-value problem dif-
ferential equation with a method of your choice.
For simplicity, we chose the widely used Runge-
Kutta method.

Algorithm 4 Fourth-order
method
1: procedure RUNGEKUTTA (Initial values yo
and tg, step size h, number of steps N)

Runge-Kutta

2: t=1tg

3: Y ="Yo

4: forn=1; N do

5: k1= f(t,y)

6: ko= f(t+ 5,y + 5k)

7 kgif(t+%,y+gk2)

8: ky = f(t+ h,y + hkj3)

9: Y=y -+ 2(ki + 2ko + 2k3 + ka)
10: t=t+h

5.3 Kerr Metric

The process is similar (but more difficult) for the
Kerr metric. It is left as an exercise to the reader.

6 Accretion Disk

Accretion disks, though not relativistic objects in
and of themselves, possess an aesthetically pleas-
ing quality due to their proximity to massive ce-
lestial bodies. These disks are essentially rotat-
ing disks of matter subject to the gravitational

Figure 2: A single blackhole with a thin accretion
disk (1.25x SW Radius), 52 FPS

force exerted by the corresponding massive ob-
ject.

Rendering engines employ several techniques
to produce accurate representations of accretion
disks. One method is to precompute the geome-
try of a disk/washer and instance that geometry
throughout a scene as desired, by sending tri-
angle buffers to the GPU. Another approach is
similar to how we render our spheres and planes,
where we can send an SSBO with an array of
data detailing individual disk positions and radii.
We can then test intersections against an implicit
disk equation to get high precision mathematical
intersections. The third, and simplest approach
is to create a signed distance field (SDF) for the
disk, and test against that during our ray march-
ing.

We have chosen the third approach, utilizing
an SDF generated at the center of each black
hole in the scene. The SDF is an intersection of
a sphere and two inward-facing planes, with the
disk’s radius computed based on the black hole’s
mass, scaled by a factor of the Schwarzchild ra-
dius. It is important to note, however, that the
lower precision of this technique results in visible
aliasing along the edges of the disk, while spa-
tially relating one portion of the disk to another
is challenging, limiting its artistic potential.

6.1 Radiative Transfer

The most accurate method of rendering accre-
tion disks is known as radiative transfer. Re-
searchers use radiative transfer calculations to
model how the light emitted by the disk is
absorbed, scattered, and emitted as it travels
through the disk. This involves solving a set of
equations that describe the transfer of radiation
through the medium of the disk, taking into ac-
count the properties of the matter and the ge-
ometry of the disk.

One approach to modeling accretion disks is
to use Monte Carlo methods, in which individ-
ual photons are traced through the disk, with
their properties (such as wavelength and polar-
ization) changing as they interact with the mat-
ter in the disk. Another approach is to use nu-
merical methods to solve the radiative transfer
equations directly. Either of these techniques
could be applied to our baseline generalistic ren-
derer, and would be a good topic for later efforts.

7 Results

All of our renders currently use the Newtonian
Approximation scheme. We have implemented
a Schwarzschild metric with implicit 4th order
Runge-Kutta integration, but it currently does
not give accurate or satisfying results. We have
several examples, including a micro blackhole in-
doors, an Einstein Ring in deep space, multiple
interaction between massive bodies, and an in-
tersting case of gravitational lensing.

8 Conclusion

In this paper, we have presented a method for
approximating the behavior of light in curved
spacetimes using compute raytracing. Our
method allows for realtime rendering of complex
scenes with curved spacetimes, which was pre-
viously a computationally expensive task. By
utilizing compute raytracing, we were able to
achieve significant speedup compared to previous

methods that relied on traditional CPU-based
raytracing.

Our approach is based on approximating the
geodesics of light rays in curved spacetimes us-
ing a series of discrete steps, and integrating the
cumulative displacement due to spacetime cur-
vature. To demonstrate the effectiveness of our
method, we presented several examples of ren-
dering scenes with curved spacetimes, including
several blackholes and gravitational lensing. In
each case, our approach allowed for fast and con-
vincing rendering of these complex scenes in re-
altime.

In the future, we would like to continue pur-
suing more physically accurate spacetime met-
rics for simulating and rendering maximally re-
alistic gravitational phenomena, ideally indistin-
guishable from real world examples. There are
also some artifacts where geometry close to mas-
sive objects can sometimes have bands of missing
color. Issues like this are extremely difficult to
debug on the GPU, so in the future we would also
like to keep a CPU implementation up to date,
and use it as a testing ground to get the com-
plex math correct in a more developer-friendly
environement.

There is also opportunity for an adaptive sam-
pling method, which would allows us to focus
computational resources where they are needed
most, resulting in improved accuracy while main-
taining high performance. There is opportunity
for this in the raymarching scheme, where we
can fallback to conventional traced intersections
over large swaths of space that are not occupied
by massive objects. Perhaps we could utilize an
SDF of the massive objects with a cheaply com-
puted inverse square fall off to create small re-
gions where rays must be marched in discrete
chunks, while elsewhere they can be used for con-
tinuous implicit intersections.

9 Acknowledgements

We would like to give special thanks to Barbara
Cutler for a semester of support and encourage-
ment, and being a beacon of computer graphics

¥ Settings

General Relativistic Raytracing
NVIDIA GeForce RTX 3080
10.00 ms/frame (100 fps)

Figure 3: A blackhole threatening our beloved Cornell Box. (100 FPS)

B ~ .- € 5

%, ¥ Settings

| General Relativistic Raytracing
3 NVIDIA GeForce RTX 3080

" 11.36 ms/frame (88 fp:

Figure 4: A blackhole against a nebulous backdrop. Demonstrating the ”Einstein Ring” effect. (88
FPS)

¥ Settings

General Relativistic Raytracing
NVIDIA GeForce RTX 3080
23.81 ms/frame (42 fps)

s

- -
-

k2

Figure 5: Multiple interaction. 3 blackholes in
FPS)

knowledge in the RPI community, and also to
Ronan Tegerdine for being a living and breath-
ing rubber duck.

References

1]
2]

[5]

General relativity 1: Kerr black holes. 2022.

Kumar Ayush Avirup Mandal and Parag
Chaudhuri. Non-linear monte carlo ray trac-
ing for visualizing warped spacetime.

Chi-kwan Chan. Gpu-accelerated general
relativistic ray tracing for simulating black
hole images. YouTube video, 2020.

Jordy Davelaar and Zoltdn Haiman. Self-
lensing flares from black hole binaries:
General-relativistic ray tracing of black hole
binaries. Physical Review, 2022.

A. Y. Chen F. Bacchini B. Ripperda and
L. Sironi. Generalized, energy-conserving

close proximity, bending an HDR cubemap. (42

numerical simulations of particles in general
relativity. The Astrophysical Journal, 2018.

E Gourgoulhon F H Vincent, T Paumard
and G Perrin. Gyoto: a new general rela-
tivistic ray-tracing code. 2011.

Federico Carrasco Joaquin Pelle, Os-
car Reula and Carlos Bederian. Skylight:
a new code for general-relativistic ray trac-
ing and radiative transfer in arbitrary space-
times. 2022.

Geraint F. Lewis Chris J. Fluke Mad-
hura Killedar, Paul D. Lasky. Gravitational
lensing with three-dimensional ray tracing.
2011.

Paul Franklin Kip S. Thorne Oliver James,
Eugenie von Tunzelmann. Gravitational
lensing by spinning black holes in astro-
physics, and in the movie interstellar. Clas-
sical and Quantum Gravity, 2015.

¥ Settings

General Relativistic Raytracing
NVIDIA GeForce RTX 3080
9.80 ms/frame (102 fps)

4

|
"

'I

-
-
S
-
-
—

Figure 6: The whitehole acts inversely to a blackhole, pushing space away at the speed of light.
(102 FPS)

¥ Settings

General Relativistic Raytracing
NVIDIA GeForce RTX 3080 - N
27.78 ms/frame (36 fps) .

Figure 7: Gravitational lensing. The red sphere is fully occluded by the green sphere, but it appears
as though the red sphere is larger because the green sphere bends light around itself. (36 FPS)

Figure 8: Current state of the Schwarzschild metric implementation

10

Figure 9: Visible banding on the surface of some
geometry in close proximity to a blackhole

[10]

[11]

[12]

[13]

Mack Qian. Approximate black hole render-
ings with ray tracing. RPI Advanced Com-
puter Graphics, 2021.

Alain Riazuelo. Ray tracing in a
schwarzschild metric to explore the maximal
analytic extension of the metric and making
a proper rendering of the stars. 2018.

SaschaWillems. Vulkan.
https://github.com/SaschaWillems/Vulkan,
2023.

Jeremy Schnittman. Nasa visualization
probes the doubly warped world of binary
black holes. 2021.

11

