
Collision Detection and Deformation of Soft Bodies

Rohan Motheram and Nathan Tribble

Abstract
This paper investigates simple methods for modeling
soft body physics and deformations. Various objects
were represented by a two dimensional surface mesh
with a mass spring network that connects each vertex
to every other vertex. Newton’s laws of motion were
implemented for each individual motion to compute the
velocities and positions. An axis aligned bounding box
tree was used to accelerate the detection of collision and
basic velocity inversion was performed to compute the
new velocities. Damping was also implemented to en-
sure that the models were stable. The results are semi-
realistic with substantial increase in efficiency when
computing collisions.

Key Words: deformation, soft-body, dynamics, col-
lision

1 Introduction

1.1 Motivation

Rigid body dynamics simulations use the classical
Newton’s Laws of Motion to simulate forces and the
motion of an object. However, one major assumption
that is made is that the objects are perfectly rigid and
never deform. In reality, no object is truly rigid and
many objects have clear deformations when they come
into contact with other objects. Soft Body Physics is an
extension to the classical rigid body dynamics simula-
tion to account for deformations in objects. The objects
still follow the basic Newton’s laws of motion, but de-
form when colliding with another object.

1.2 Recent Work

Much of the prior work in soft body physics is in mod-
eling the deformations of the objects and also efficiently

detecting collisions between multiple objects.

1.2.1 Deformation Model

Kenwright and Davison [1] present a simple method
that models the entire object as a mass-spring system.
Each vertex is treated as a simple point mass and is con-
nected to every other vertex by a spring. This model
only requires the surface mesh data and does not re-
quire any 3D meshing. Debunne [2] proposes an adap-
tive finite element method to model and compute de-
formations in objects. This method uses a stress and
strain based approach along with the principle of min-
imum potential energy to find find the positions of all
the nodes that minimize the overall strain energy in the
model. This method offers a very high level of accu-
racy at the cost of being very difficult to implement and
being very computationally expensive.

A unique approach presented by [3] computed the
overall change in volume of the mesh after collision.
The ideal gas law is then used to find the pressure distri-
bution of the model. This approach is not considered in
our implementation, but the simplification of the veloc-
ity computed presented in the paper is used to calculate
velocity after collision.

1.2.2 Collision Detection

Classical Rigid body dynamics simulations use pre-
computed data structures to determine when there is a
collision. However, these data structures assume that
the object never changes shape throughout the simula-
tion. Once an object deforms, the data structure is no
longer valid and needs to be updated. If the process of
constructing the data structure is not efficient, the sim-
ulation can become very slow, especially when objects
are continuously deforming. Therefore, data structures
that can be constructed efficiently while still allowing
for efficient collision detection are necessary. Larsson

Page 1

[4] proposes the axis aligned bounding box tree. This
data structure consists of a single bounding box that is
split into multiple subvolumues. All of the geometric
primitives that make up the object are assigned to a leaf
node of the tree based off the centroid of the primitive.
This paper also presents many different methods for tree
construction and traversal, including top-down traversal
and bottom-up traversal. When the triangles within two
leaf nodes are checked for intersection, an efficient tri-
angle intersection algorithm, proposed by Moller [5],
allows for fast determination of whether to triangles in-
tersect.

2 Deformation Model

Given a 2D triangular mesh, a good deformation model
should be able to efficiently compute deformations
while also looking visually accurate. The deformations
do not need to be numerically accurate but they should
look visually convincing. Since we only have a 2D
mesh of an object, our choices for modeling deforma-
tions were limited to just the simple mass spring ap-
proach, proposed by Kenwright [1]. This model does
compromise on efficiency and visual accuracy, but it
is the simplest to implement. Any other models re-
searched would require a significant amount of time
while also requiring a 3D mesh. Each vertex of the
model is connected to an ideal, linear spring with a
spring constant k. The force exerted by any individual
spring connected to vertices v1 and v2 can be computed
using Hooke’s Law, presented in equation 1, where dnew
is the new length of the spring, dold is the original length
of the spring, and n̂v1−v2 is the normalized vector from
v1 to v2.

Fs =−k(dnew −dold)n̂v1−v2 (1)

3 Damping Correction

In continuous time, this ideal spring model does not
lose energy over time, resulting in vertices oscillating
infinitely once disturbed from equilibrium. However,
our simulation is in discrete time, with objects being up-
dated in small time steps. For this reason, the model be-
comes completely unstable due to solver inaccuracies.
Figures 2 and 1 shows an example of such instability.
Two bunnies collide and bounce off. Figure 1 shows
the bunnies shortly after bouncing. Figure 2 shows the
bunnies a long time after bouncing.

Figure 1: Post-Collision Response of two bunnies

Figure 2: Post-Collision Response of two bunnies

This issue can be mitigated by introducing damping
into the model. Each vertex of the object will experi-
ence a force that is directly proportional to the velocity
of the vertex, denoted in equation 2

FD =−cv (2)

This force always opposes the motion of the vertex
and causes the motion to decay over time. However,
the motion can still go unstable if the internal spring
forces are too strong. For this reason, a sufficiently
high enough damping constant c needs to be chosen
such that the object will slowly return to its equilibrium
position after being disturbed from its equilibrium po-
sition. However, the damping also cannot be too large,
as it will reduce the visual appearance of deformations.
Additionally, having a damping coefficient that is way
too large can result in errors like the example shown in
Figure 3.

Page 2

Figure 3: Post-Collision Response of two bunnies -
High Damping

In this figure, a damping coefficient of 2000 was used
to demonstrate the effects of excessive damping. When
the twoo bunnies collide, the change in velocity results
in an extremely large damping force that is enough to
make the vertices of contact move far off-screen in just
one time increment. This is an effect that occurs due
to the simulation being in discrete time. In continuous
time, the objects will decay, no matter how large the
damping coefficient is.

Overall, the amount of damping that is necessary is
heavily depended on the objects that is being simula-
tion. Determining the correct damping to use for each
object would require a large amount of experimentation,
making it a very time consuming process. For this rea-
son, an adaptive damping model was chosen, shown in
equation 3.

FD =−min(
||ΣFs||

10
,10)∗ cv (3)

This adaptive model multiples the damping force by
the minimum of the magnitude of Fs/10, or 10. This al-
lows for damping to be scaled as necessary when the net
force experiences is larger, but also prevents the damp-
ing force by being scaled by more than a factor of 10 to
prevent damping from becoming too large. The damp-
ing constant c is still present in the equation and is used
to specify the general strength of damping in the simu-
lation.

4 Collision Detection
In order for our simulation to run smoothly, we need a
method to both determine if a collision is present and
which vertices of a the objects are colliding. We chose
to implement the axis aligned bounding box tree method
proposed in Larsson [4].

For each object loaded into the scene, an AABB tree
was constructed for that object’s mesh. For simplicity
each non leaf node always has two children, making the

tree perfectly balanced. The root node of the tree con-
sists of the bounding box that encloses the entire mesh
when it is loaded into the scene. This root bounding box
is then split into multiple hierarchy levels.

When splitting a node, the longest axis was split at
the center of the bounding box. Two new nodes are
created to represent the left and right half. The next hi-
erarchy level is created by splitting all of the leaf nodes
present in the tree.

After all the hierarchy levels are created, all of the tri-
angles that make up the mesh are assigned to one of the
leaf nodes in the tree, based off the centroid of the tri-
angle. The resulting tree and triangle assignment forms
the structure of the tree for the entire simulation. Since
the tree is perfectly balanced and has log(n) levels, the
entire tree will ideally have 2n nodes, with the lowest
level having n nodes. Constructing the entire tree will
take nlog(n) time.

During each time increment of the simulation, the
bounding boxes of every node in the tree are updated
to reflect the new positions of all of the primitives in the
mesh. A node is updated by computing the bounding
box contained by all of the triangles assigned to all the
subsequent children of that node. The tree structure it-
self and the triangle assignment remains the same. For
each level of the tree that needs to be updated, the simu-
lation must loop through all of the triangles in the mesh.
For a perfectly balanced tree (which is always the case
for our simulation), there will be at most log(n) levels
in the tree, resulting in an O(nlog(n)) time complexity
for updating the tree.

To check for collisions between two objects, the root
node of both trees are checked for bounding box inter-
section. If the bounding boxes intersection, then all of
the immediate children are checked with each other for
collision. This process repeats recursively until two in-
tersecting nodes are both leaf nodes. When both nodes
are leaf nodes, all of the triangle in each node are tested
for intersection. If any triangles intersect, all the ver-
tices that form the triangles are added to a set of all in-
tersection vertices.

Ideally, only small portions of two objects are inter-
secting with each other. For the case when one leaf node
is barely intersecting a leaf node in another tree, check-
ing for collision will take O(logn) time. However, if
an object fully contained within another objects and all
vertices intersect, then checking for collisions will take
O(n2) time. Assuming that proper corrections are per-
formed (discussed in section 6) to ensure objects do not
continue to overlap after a collision is detected, this sce-
nario will not happen and therefore does not need to be
accounted for.

Page 3

For simplicity, this model assumed that all vertices
part of an intersecting triangle are intersecting with the
other object. This simplification does slightly reduce
the visual accuracy of the deformations, but is accept-
able for fine enough meshes.

5 Velocity Computation and Post-
Collision Correction

For our simulation, we implemented a simplification of
the velocity computation approach proposed by [3]. In-
stead of finding the normal and tangential components
of the velocities, the the velocities for all colliding ver-
tices were simply inverted and multiplied by an elastic-
ity constant.

6 Post-Collision Correction
In real lift, impact occurs at the instant that two objects
collide. However, our simulation is in discrete time and
objects are checked for collisions in small time incre-
ments. For this reason, when a collision is detected be-
tween two objects, a small portion of one object may
already be inside the other object. An example of this
occurring with two intersecting bunnies is shown in fig-
ure 4, where a portion of the feet on the bunny on the
left is inside the bunny on the right.

Figure 4: Overlapping of two bunnies

The major issues with this are that it slows down the
simulation since more triangles have to be checked for
intersection and also that velocity computation does not
work properly if the elasticity is less than one. To ac-
count for this issue, the previous position of all vertices
are tracked throughout the simulation. When a collision
occurs, all of the intersecting vertices are backtracked

to their previous position, before they were in collision
with another object.

7 Newton’s Laws of Motion

The total net force on any given mesh node is equal
to the sum of the spring forces and the damping force,
shown in equation 4

ΣF = m
d2x
dt2 = ΣFs +FD (4)

This resulting differential equation can be solved using
any numerical ODE solver. We chose Verner’s 8th order
Runge Kutta method to minimize the amount of insta-
bility in our simulation.

8 Implementation and Testing

For the implementaion, a basic OpenGL Renderer was
used to visualize the various objects on screen. Mesh
data was stored in separate files containing the vertex,
edge, and face data. Currently, all test cases involve
”hard-coding” which files to load and the different con-
stants to use. All test cases were run on an Intel i9-
11900K and an Nvidia GeForce RTX 3090 Graphics
Card.

9 Results

For all test cases, a maximum tree depth of 12 was cho-
sen and a damping constant of 1 was chosen along with
an elasticity of 0.9.

9.1 Simple Sphere Collision

Our first test case consisted of two spheres with a uni-
form spring constant of 40, a mass of 1, a damping
constant of 1 and moderate initial velocities. The two
spheres move towards each other and collide. The re-
sulting deformations from the collision are shown in
figures 5 and 6.

Page 4

Figure 5: Deformation of Simple Spheres

Figure 6: Deformation of Simple Spheres - Another
View

Judging from the results, both spheres experience a
similar amount of deformation after collision. The de-
formations also look visually convincing and the sim-
ilar deformations make sense since both spheres have
the same stiffness.

9.2 Sphere Collision - Differing stiffness

The second test case consisted of one large sphere with
a uniform spring constant of 5, and a second sphere with
a uniform spring constant of 100. Both spheres have a
mass of 1, and a damping constant of 1. Similar to the
first test case, both spheres start with a moderate initial
velocity and move towards each other. The resulting
deformations are shown in Figure 7.

Figure 7: Deformation of large soft sphere

The results depict a substantial deformation for the
large sphere and minimal deformation for the small
sphere. The results accurately depict the differences is
stiffness between the very soft large sphere and the very
hard small sphere.

9.3 Sphere and Bunny Collision

Our third test case consisted of a sphere and a bunny
with a uniform spring constant of 40, a mass of 1, and
a damping constant of 1, with the same initial veloci-
ties as the previous two test cases. The deformations of
the sphere and the bunny are shown in Figures 8 and 9,
respectively

Figure 8: Deformation of the sphere

Page 5

Figure 9: Deformation of the bunny

The results depict a somewhat realistic inwards de-
formation of the sphere and minor compression of the
bunny’s tail. The simulation was also able to run effi-
ciently while the objects were colliding.

9.4 Bunny and Teapot Collision

Our fourth test case consisted of a bunny with an uni-
form spring constant of 40 and a teapot with a uniform
spring constant of 10.

Figure 10: Bunny and Teapot - Before collision

Figure 11: Bunny and Teapot - After Collision

Figure 12: Bunny and Teapot - After Collision (Closer
view)

The results indicate a small (but noticable) deforma-
tion for the small bunny and a larger deformation for the
teapot, which correctly reflects the differences in spring
constants for each material. However, the defotmation
of the teapot is somewhat inaccurate since the vertices
that initially contact the bunny are shifted to the right
after the collision, likely due to the simplification in ve-
locity computation. The bunny deformation looks plau-
sible and the contacting vertices deform inwards, which
is expected.

9.5 Multiple Objects

Our final test case involves three sphere with varying
sizes. All spheres have a uniform spring constant of
40 and a damping coefficient of 1. The sphere on the
top has a much higher initial velocity than the other two
spheres. Figures 13, 14 and 15 show the initial position
of the spheres, the deformation of the top sphere after
colliding, and the deformation of the right sphere after
colliding.

Page 6

Figure 13: Initial position of spheres

Figure 14: Deformation of top sphere

Figure 15: Deformation of right sphere

Judging from the results, the top sphere deforms in

a way that is somewhat unrealistic. This is most likely
due to the simplification that was made when comput-
ing velocity after impact. However, the large sphere de-
forms in a visually convincing manner when colliding
with the right sphere. The simulation is able to run effi-
ciently even with three objects that each have over 600
triangles.

10 Discussion

Overall, all of our results ran efficiently, with many of
them having semi-realistic results. When running the
simulation with a brute-force triangle to triangle inter-
section without an AABB tree (equivalent to having an
AABB tree with just one root node), the simulation
dropped to about one frame per second when any two
objects got close to each other. The AABB tree almost
entirely removed this slowdown experienced and still
ran great even with more than two objects colliding at
the same time. However, our test cases had at most 3 ob-
jects present at the same time and the efficiency could
very possibly drop if a large amount of objects are being
simulated at the same time. The velocity computation is
somewhat inaccurate and is visibly clear for the last test
case. However, the objects deform in a manner that is
somewhat realistic when the impact velocities are rea-
sonable.

11 Limitations and
Future Work

Our simulation is intended to be a basic, preliminary
implementation of soft body physics and deformation.
Due to limitations in time, simplifications were made to
the implementation.

11.1 Deformation Model

All of our objects in the simulation are represented by
a 2D surface mesh. This is one of the biggest limiting
factors that resulted in us choosing a simple mass spring
system with each vertex connected to every other ver-
tex. Any other deformation model would require a 3D
mesh of the objects. Overall, this limitation does not al-
low us to represent how an inside of an object deforms,
limiting the accuracy of this model. Future work would
involve implementing full 3D triangulation of models
along with implementing the voxelation technique, pro-
posed by Kenwright [1].

Page 7

Another limitation in our model is that all of the ob-
jects are assumed to have a uniform stiffness and elas-
ticity. Additionally, the mass is also assumed to be the
same for all mesh nodes as well. For future simulations,
implementation and testing of variable-stiffness materi-
als would also be investigated.

11.2 Collision Detection

Currently, our implementation uses a binary AABB
Tree to determine collisions. Additionally, we only
implemented a top down tree traversal to check for
collisions. This implementation did work fine for all
of our test cases, but could potentially become ineffi-
cient for scenarios involving many different objects col-
liding with each other simultaneously. The most ob-
jects present in our simulation was three. Future work
would involve implementing an AABB tree with four
or eight children and possibly implement a bottom-up
tree traversal, as presented in [4]. Additionally, some of
the better tree splitting algorithms could also be imple-
memnted

12 Conclusion

Our project provides a preliminary experiment with var-
ious collision detection and impact computation meth-
ods. The result are sufficiently efficient, given our test
cases. and also provide a good baseline for further im-
provement.s Future work would aim to improve the tree
structure of the model while also implementing full 3D
deformation models.

References

[1] B. Kenwright, R. Davison, and G. Morgan, “Real-
time deformable soft-body simulation using dis-
tributed mass-spring approximations,” in CON-
TENT, The Third International Conference on Cre-
ative Content Technologies, 2011.

[2] G. Debunne, M. Desbrun, M.-P. Cani, and A. Barr,
“Adaptive simulation of soft bodies in real-time,” in
Proceedings Computer Animation 2000, pp. 15–20,
IEEE, 2000.

[3] H.-H. P. C. C. North, “The annual sigrad conference
special theme–real-time simulations november 20–
21, 2003 umeå unversity, umeå, sweden, confer-
ence proceedings,” pp. 29–34, 2003.

[4] T. Larsson and T. Akenine-Möller, “Collision de-
tection for continuously deforming bodies.,” in Eu-
rographics (Short Presentations), 2001.

[5] T. Möller, “A fast triangle-triangle intersection
test,” Journal of graphics tools, vol. 2, no. 2,
pp. 25–30, 1997.

Page 8

13 Appendix - Work Distribution
The major work in research and algorithm implementa-
tion was done by Rohan.

Testing and capturing results were done by Rohan
This project uses the base rendering code provided

by Barb Cutler.
The sphere mesh files were created by Nathan.
Most parts of the presentation and report were written

by Rohan, with minor edits done by Nathan.

Page 9

	Introduction
	Motivation
	Recent Work
	Deformation Model
	Collision Detection

	Deformation Model
	Damping Correction
	Collision Detection
	Velocity Computation and Post-Collision Correction
	Post-Collision Correction
	Newton's Laws of Motion
	Implementation and Testing
	Results
	Simple Sphere Collision
	Sphere Collision - Differing stiffness
	Sphere and Bunny Collision
	Bunny and Teapot Collision
	Multiple Objects

	Discussion
	Limitations and Future Work
	Deformation Model
	Collision Detection

	Conclusion
	Appendix - Work Distribution

