
Fluid Ray Tracing - Final Project Report

An Zhang
Rensselaer Polytechnic Institute

zhanga11@rpi.edu

James Sours
Rensselaer Polytechnic Institute

soursj@rpi.edu

Abstract—This document presents the final project report for
a fluid ray tracing project by An Zhang and James Sours. The
motivation for the project is to produce convincing renders of
liquids by creating a smooth and reasonable simulation of the
liquid surface in 3D and animating fluid dynamics. The project
aims to model phenomena such as refraction and participating
media and improve the quality of liquid simulation by solving
more complex phenomena such as water splash and explosion.
Additionally, the project seeks to consider caustics of liquid
surface using photons map and extend the photon mapping
solution to store photons in 3D space. The paper discusses
related works such as the introduction of full and surface cell
and the accurate description of the velocity of fluid surface.
The methodology employed includes the Navier-Stokes equations,
Bounding Volume Hierarchy (BVH) acceleration for ray tracing.
The results of the project include a comparison of BVH’s and
various effects. The conclusion of the project emphasizes the
importance of fluid ray tracing in producing realistic renders of
liquids.

Index Terms—fluid simulation, ray tracing, photon maps

I. Introduction
In recent years, the development of video games and movies

has been characterized by a rapid pace of innovation and
advancement. To create realistic visual effects in these media,
it is necessary to use advanced algorithms for simulation and
rendering. Among the many challenges involved in computer

graphics, one of the most complex and intriguing is the
simulation and rendering of fluids.

Simulating and rendering a fluid presents a challenging
problem because it requires the accurate representation of
complex physical phenomena such as surface tension, tur-
bulence, and refraction. Even a simple image of a “broken
straw” in a cup of water involves multiple physical effects
that must be accurately simulated, such as the way the light
bends as it passes through the fluid. Despite these challenges,
the ability to simulate and render fluids with high accuracy has
become increasingly important in a wide range of applications,
from the creation of stunning visual effects in movies to the
development of realistic simulations for scientific research.
Therefore, investigating advanced techniques for ray tracing
on fluids is a crucial area of research for computer graphics
and scientific visualization.

This paper presents a method for simulating and rendering
fluids in three dimensions, with a particular focus on the
accurate representation of the fluid surface and the simulation
of wave motion. To achieve this goal, we employ mathematical
techniques based on the Navier-Stokes equation to calculate
the velocity of fluid surface cells, which enables us to create a
smooth and realistic simulation of the fluid surface. Once we
have obtained a basic fluid simulation, we apply the ray tracing
algorithm to render the fluid, including accurate refraction



Fig. 1: velocity components on a typical cell(i, j, k). Graph
cited from [1]

effects. To further enhance the realism of the simulation, we
also use photon mapping to generate caustic effects, which
add to the complexity and beauty of the rendered image.

To support our approach, we introduce a data structure for
storing fluid primitives that enables faster access and more
efficient computation, while also improving the accuracy and
realism of the simulation. Overall, this paper aims to provide
a detailed and comprehensive overview of our method for
simulating and rendering fluids, highlighting the challenges
involved in this complex and challenging task, and presenting
novel approaches for achieving high-quality results.

II. Related Works
In recent years, a number of researchers have explored

various approaches to simulating and rendering fluids using
computer graphics techniques. One promising direction in this
area is the introduction of full and surface cell methods [1],
which enable the separation of fluid surface and inner parts,
allowing for more efficient and accurate calculation of the
velocity gradient.

Another important development in fluid simulation is the use
of particle interpolation techniques, which have been shown
to be effective in creating realistic fluid simulations [1]. By
modeling the fluid as a collection of particles, and using
interpolation methods to calculate the properties of the fluid at
each point in space, these approaches have achieved impressive
results in simulating the behavior of fluids in a wide range of
scenarios.

However, more complex and realistic fluid simulations re-
quire additional considerations. For example, a more accurate
approach for describing the velocity of fluid surface has
been proposed [2], which involves adjusting implicit equation
errors and solving for the behavior of breaking waves. These
techniques can significantly improve the performance and

Fig. 2: Special case for surface cell in 2D

accuracy of fluid simulations, and have been shown to be
effective in a variety of contexts, including real-time rendering
and scientific simulation.

There is a highly intriguing paper in the related work
that introduces an innovative algorithm for producing water
refraction without the use of ray tracing [3]. The approach
involves pre-computing the refraction angle and mapping the
calculation to a transformation matrix, which is subsequently
utilized to distort the viewing and produce the desired re-
fraction effect. This paper provides valuable insight into the
techniques that may be employed to implement refraction and
the expected outcomes that may be obtained.

III. Fluid Simulation
To simulate the behavior of fluids, we employ the full and

surface cell method proposed by previous researchers [1]. This
approach enables us to separate the fluid surface from the inner
part, allowing for more efficient and accurate calculation of
the velocity gradient. Additionally, we use marker particles
to interpolate the velocity at specified positions [1], which
provides a more accurate and realistic representation of the
surrounding fluid behavior.

However, while previous researchers have made important
contributions to the field of fluid simulation and rendering, the
method for updating surface cell velocity in some special cases
has not been clearly described. To address this limitation, we
propose a novel approach for calculating the behavior of the
fluid surface, which builds on previous work and introduces
new mathematical techniques for modeling and simulating
fluid behavior.

A. Update Surface Cell

Each full cell velocity will obey the continuity equation,

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (1)



Fig. 3: Simulation for fluid drop

where after discretization, ∂u stands for the derivative or the
change rate if u which is ui+1/2,j,k−ui−1/2,j,k and ∂x stands
for the length of cell in x-axis. Thus ∂u

∂x stands for the ratio of
change of u over x-length of the cell. Same for ∂v

∂y and ∂w
∂z .

In this project, we assumed not only full cell obey this
equation but also the surface cell. One special case in 2D
which did not talked by Foster is when two side in opposite
direction is not open and other two sides are open, shown as
figure 2.

In this case, we decide to vanish the velocity in x and y
separately. Because we have both open sides in y-axis which
have zero velocity, we can modify the equation 1 to:

∂u

∂x
=

ui+1/2,j,k − ui−1/2,j,k

dx
= 0 (2)

In order to satisfy this equation 2, we decide to set
both ui+1/2,j,k and ui−1/2,j,k to their average which is
ui+1/2,j,k+ui−1/2,j,k

2 . In this case, we have numerator of the
equation 2 equal to 0. After solving this case, we can gener-
alize the solution for each case in 2D to 3D simulation.

In 3D simulation, when surface cell has more than 1 open
side, we will vanish velocity of x, y and z separately which
means we only consider each opposite pair of velocity,

• When one side is closed and the other is open, we take
set the velocity of the open side to the closed side.

• When both side is closed we set both side equal their
average value.

When surface cell has only 1 open side, we choose to vanish
velocity by set the open side equal to the sum the amount of
velocity comes into the cell from other 5 closed sides. For

example, if we have the side wi,j,k+1/2 is open and the other
5 sides are closed. We will update the top side by:

wi,j,k+1/2 = wi,j,k−1/2 −
dz

dx
(ui+1/2,j,k − ui−1/2,j,k)

−dz

dy
(vi,j+1/2,k − vi,j−1/2,k)

Moreover, equation above also satisfy the equation 1.

B. Marching Cubes

To achieve this, we utilize the marching cubes algorithm,
which is an effective method for rendering fluid surfaces [4].
We generate an isosurface of a scalar field defined by the fluid
marker particles. The algorithm partitions the scalar field into
small cubes and determines the configuration of the isosurface
within each cube. Depending on whether the corners of each
cube are inside or outside the surface, the algorithm can use
any of 16 possible configurations of triangle surfaces per cube.

To define the scalar field, we employ a distance function
that returns a value of 0 in empty cells, a value of 2 in full
cells, and a value that depends on the number of particles over
density in cells containing a surface. Although this approach
is not strictly accurate, it yields a heuristic approximation of
the surface’s shape that suffices for our purposes.

The output of the marching cubes algorithm consists of
a set of triangles, and we compute normals for each vertex
of the triangles by evaluating the gradient of the scalar
field. These normals are utilized in our illumination model to
create realistic lighting effects that produce visually appealing
renderings of the fluid surface.



C. Stability

Moreover, the stability of the fluid system heavily depends
on the chosen time step. If the time step is too large, the fluid
particles may traverse several cells using the local velocity,
and the cells in their path may have different velocities, which
can result in instability. Therefore, we have designed an auto-
adjustment algorithm for the time step. Whenever the time
step is large enough to make the maximum speed particles
move a distance greater than the size of a fluid cell, we will
decrease the time step. This approach prevents phenomena
such as velocity explosion and ensures the stability of the
simulation.

IV. Ray Tracing and Rendering

A. Refraction

Refraction occurs when light travels from one medium to
another with a different refractive index, causing a change in
direction. The degree of bending that occurs depends on the
difference in refractive indices between the two media, which
is described by Snell’s Law:

η0 sin θ0 = η1 sin θ1 (3)

Where η0 is the refractive index of the origin material, η1 is
the refractive index of the destination material, θ0 is the angle
of incidence for the incoming ray and θ1 for the outgoing.

The input format was extended to include transparency and
refractive index fields for materials, allowing for proper trans-
mission of light rays through transparent objects in distributed
ray tracing. To achieve this, a feature was added to keep track
of exiting and entering fluid surfaces. Currently, the system
identifies the exit point by detecting when the same material
is hit twice. In addition to these modifications, we track the
original material during ray tracing to calculate the ratio of
optical densities.

In Figure 4, we experimented with different refraction
indices to render the bunny underwater, and observed that the
viewing angle was greatly affected by the refraction index.
We experimented with different refraction indices to render
the bunny underwater, and observed that the viewing angle
was greatly affected by the refraction index. The effect of
the refraction index on the viewing angle emphasizes its
importance in accurate physical modeling of the liquids.

B. Liquid Surface Illumination

We expanded the material input format to include fields
for transparency, refractive index, and specular exponent. We
tagged the fluid model with a surface material, we simply
apply these to the surface polygons.

Recall that the marching cubes algorithm outputs a set of
triangles approximating the isosurface of a particular scalar
field. However, rendering these directly was not acceptable
since it produced gem-like artefacts as picture in the left image
of Figure 5.

Since the gradient of the isosurface can be approximated
at triangle vertices, we hoped to use these to approximate the
normal at any point p in the triangular face.

Barycentric coordinates express a point p in the triangle as a
linear combination of the vertices a,b,c such that the following
hold

αa+ βb+ γc = p (4)
α+ β + γ = 1 (5)

α, β, γ ≥ 0 (6)

Informally, the barycentric coordinates give a measure of
how much the point “belongs” to each vertex.

αN(a) + βN(b) + γN(c) = N(p) (7)

Formally, since the barycentric coordinates vary continu-
ously as a function of p and take on value 1 when the p is equal
to the corresponding vertex, we found it appropriate to replace
the vertex positions in Equation 4 with their corresponding
normals to obtain Equation 7.

These interpolated normals were used in the ray tracer to
apply the Phong model at the fluid surface, to obtain the right
image in Figure 5. Although it results in a smoother droplet
when viewed from straight on, it does not remove the sharp
corners when viewed from the profile.

One future improvement might include a surface reconstruc-
tion method, such as the one implemented by Hoppe et al.
in [5]. This would be ideal for our purposes since it subdivides
the surface while preserving sharp creases like the one formed
when a fluid meets a wall.

We found that our initial specular exponent for the fluid
material of 100 produced images with unreasonable artefacts
(see Figure 6).

Figure 7 shows the effects of varying the Phong model expo-
nent on the highlights. Large exponents emphasize highlights,
which sometimes lead to unreasonable noise. Unlike common
static materials, the Phong model exponent cannot be fixed and
must be carefully chosen to render a realistic model, especially
in complex shapes where the same exponent could result in
white noise on the surface.

C. Raytracing Acceleration

We used a binary, axis aligned bounding box volume
hierarchy to accelerate our ray tracing, which is effective at
reducing computation [6].

Every leaf node held at most two primitives, and every
internal node holds two children. We also assign an axis
aligned bounding box to every node which contains its children
and/or primitives. This guarantee means that if a ray does
intersect one of the primitives, then it must also intersect the
bounding box. Contrapositively, if the ray does not intersect
the bounds, there is no need to test the ray against any of the
children, as show in Figure 8.

Constructing a BVH in practice means sorting the list of
primitives on some axis and splitting this at some point.



Fig. 4: Renderings of the bunny scene with varying refractive indices of the liquid material. From left to right they are: 1.5,
1.3, 1.1, and 1.0. Note how the apparent size of the bunny’s hind quarters in the “wall” sides of the liquid is magnified by the
refraction. At 1.0, there is no distortion present whatsoever. The physically accurate refractive index of water is 1.33, although
we most commonly set it 1.5 to exaggerate the effect.

Fig. 5: A fluid drop, floating in space. On the left, the normals
are constant across each triangle, resulting in a jagged, “gem-
like” appearance. Interpolating the normals (right) by the
barycentric coordinates results in a smoother image.

Ultimately, since constructing a perfectly balanced BVH
is impractically, we evaluated several heuristics. First, we
simply alternated the splitting axis, splitting at the median each
time (called “alternate” in Table I). Second, we split on the
axis on which the bounding box at the current level has the
longest dimension, again at the median (“longest”). Third, we
employed an estimate of the raytracing cost for a particular
axis and splitting point, and take the split that minimizes the
cost.

The cost of casting a ray into a BVH node U with children L
and R depends on the conditional probability of a ray entering
L given that it intersected U [7]. The relative conditional
probabilities are related to the surface areas SL and SR of
the children’s bounding boxes. The number of primitives nL

and nR give us the heuristic:

Cost(U) ≈ SLnL + SRnR (8)

Sample BVH’s are pictured in Figure 9. Although visually
the surface area heuristic has produced a closer fitting hier-
archy, we performed a comparitive experiment to verify this
intuition.

Fig. 6: Areas of high distortion produced unreasonable white
patches, which were replicated through out the liquid volume
due to reflection and refraction effects. The Phong exponent
is 100.

To evaluate the effectiveness of the three heuristics
(“longest”, “alternate”, “surface area”, and “control”, where
we did not use a BVH) we rendered four scenes with each
of the four heuristics and recorded the times in Table I. All
times are system time measured on a 0:02.0 VGA compati-
ble controller: Intel Corporation WhiskeyLake-U GT2 [UHD
Graphics 620].

Observe that the surface area heuristic from [7] consistently
rendered quicker than the other methods, thus validating our
initial belief. Despite this, the new heuristic did not drastically
out perform the others, although the gains would be more



Fig. 7: The fluid drop scene, just as the fluid drop joins the water rendered with varying specular exponents. From left to right,
the specular exponents are 100, 50, 20, 10, and 5. Note how the sharp white highlights in the leftmost images smear out as
the specular exponent decreases.

.

A

C

B
D

E

F

Fig. 8: Bounding Volume Hierarchies are effective at pruning
calls to the primitive intersection routine. By testing against
the bounding box for the right child, we eliminate the need to
consider its primitives.

noticeable when rendering a sequence of images.
The freedom to evaluate any possible split does improves

performance; however, the program spent considerably more
time constructing the BVH using this heuristic. While this
trade off is justified by Table I, it still represents a considerable
opportunity for performance improvement. While this could
be mitigated by restricting the search space of splits to choose
from, the emphasis on construction time remains important
due to the requirement us to rebuild the scene every time the
geometry changes.

D. Dynamic Scenes Limitation

The construction cost of the BVH was negligible compared
to the cost of rendering, regardless the heuristic used (see Ta-
ble I). Still, when rendering a sequence of closely related
scenes (such as those produced by our fluid animator!), we
would prefer to have the better rendering performance of the
surface area heuristic without paying the construction cost
every frame. In this subsection, we examine the root cause
of this restriction and propose potential solutions.

The marching cubes surface generation algorithm produces
a new set of triangles each time the scene geometry is updated.
Since the triangle data is not persistent, it is unsuitable to keep
them in a BVH without reconstructing it anew for each scene.
A possible solution would be to modify the marching cubes
algorithm to compare the preexisting generation of triangles
against the desired outcome.

To modify the marching cubes algorithm to compare pre-
existing triangles with the desired outcome, we would need to
implement a process for updating the positions of the existing
triangles based on changes in the scene geometry. This could
be done by tracking changes in the location of fluid marker
particles and recalculating the isosurface accordingly. The
updated surface geometry could then be compared with the
previous generation of triangles to determine which triangles
can be reused and which need to be modified or replaced. By
updating the positions of the existing triangles, we could avoid
the need to reconstruct the BVH each time the scene geometry
is updated, which would reduce the memory allocation and
computation time required for rendering. This method could
be particularly beneficial for rendering sequences of animated
scenes, as the same BVH could be used for multiple frames,
further reducing the overall computational cost of the process.

V. Results

We have presented a method for solving Navier-Stokes
equations for a specified situation, generating the mesh for the
liquid surface and rendering the result with a BVH-accelerated
ray tracer. See Figures 10 and 11 for raytraced snap shots of
the fluid animation. However, there are still some challenges
to overcome in our project.

VI. Future Work

One of the major challenges is the instability of the fluid
system over time, which makes it difficult to achieve the
desired results. Moreover, the current fluid algorithm has
difficulty in eliminating the divergence of system.

In Figure 12, we rendered the bunny using photon maps,
which looked visually appealing, although the liquid shape did



Fig. 9: The bunny model with 200 triangles. Pictured from left to right, the bounding boxes constructed by the longest axis
heuristic, the alternate axes heuristic, and the surface area heuristic. Notice that the “surface area” bounding boxes differentiate
between the light (blue, on top) and the bunny far quicker than the other two. In general, it has the freedom to choose various
split points which creates bounding boxes more closely fit around the mesh.

not allow for caustic effects. Furthermore, we have not yet
achieved the expected caustic effect, such as the highlights
at the bottom of a swimming pool, in the photon mapping
process.

To address these challenges, future work will focus on
improving the stability of the fluid system, as well as refining
the algorithm to smooth the fluid surface. Additionally, we will
explore more advanced techniques to achieve realistic caustic
effects and other properties of liquid, such as the reflection
and absorption of light. We believe that these advancements
will significantly enhance the realism of the liquid simulation
and renderings, and thus contribute to the broader field of
computer graphics and simulation.

VII. Conclusion
In this project, both An and James collaborated on merging

the ray tracing code and fluid code, which took approximately
one week to achieve OpenGL rendering, which we used to
prototype scenes. Over the next three weeks, they focused on
writing the algorithm, with both team members contributing
significantly to the integration of the fluid base and ray tracing
base. For the Navier-Stokes simulation, An played a critical
role in extending a 2D solution to 3D. Meanwhile, James
devoted considerable effort to the implementation of BVH
for rendering fluid. After the successful implementation of the
algorithm, both An and James spent a significant amount of
time on debugging, creating various scenes, and writing the
paper.

REFERENCES

[1] Dimitri Metaxas Nick Foster. Realistic animation of
liquids. Graphical Models and Image Processing,
58:471–483, September 1996.

[2] Douglas Enright, Stephen Marschner, and Ronald Fedkiw.
Animation and rendering of complex water surfaces. ACM
Trans. Graph., 21(3):736–744, jul 2002.

[3] Hongli Liu, Honglei Han, and Guangzheng Fei. Two-
phase real-time rendering method for realistic water re-
fraction. Virtual Reality & Intelligent Hardware, 2(2):132–
141, 2020. Special issue on Visual interaction and its
application.

[4] Harvey E. Cline William E. Lorensen. Marching cubes: A
high resolution 3d surface construction algorithm. ACM
SIGGRAPH Computer Graphics, 21(4):163–169, 01 Au-
gust 1987.

[5] Hugues Hoppe, Tony DeRose, Tom Duchamp, Mark Hal-
stead, Hubert Jin, John McDonald, Jean Schweitzer, and
Werner Stuetzle. Piecewise smooth surface reconstruction.
Proceedings of the 21st annual conference on Computer
graphics and interactive techniques - SIGGRAPH ’94,
1994.

[6] MATTHEW PHARR. Physically based rendering: From
theory to implementation. MIT PRESS, 2023.

[7] J. David MacDonald and Kellogg S. Booth. Heuristics for
ray tracing using space subdivision. The Visual Computer,
6(3):153–166, May 1990.



Scene Name Primitive Count (thousands) Heuristic Construction Time (s) Tree Height (nodes) Rendering Time (s) Percent Increase vs. Control
bunny-pool 5.2 control 0.0030 0 460 –
bunny-pool 5.2 longest 0.025 12 51 89%
bunny-pool 5.2 alternate 0.026 12 46 90%
bunny-pool 5.2 surface area 1.2 17 40 91%
bunny-1k 1.0 control 0.0024 0 160 –
bunny-1k 1.0 longest 0.074 9 14 91%
bunny-1k 1.0 alternate 0.080 9 13 92%
bunny-1k 1.0 surface area 0.27 14 11 93%
bunny-200 0.2 control 0.00050 0 37 –
bunny-200 0.2 longest 0.027 7 8.2 77%
bunny-200 0.2 alternate 0.029 7 7.5 79%
bunny-200 0.2 surface area 0.066 11 6.7 82%

TABLE I: Performance gains due to various BVH construction heuristics on relevant scenes.



Fig. 10: Snapshots of the fluid drop animation. Note the predominance the unreasonable specular highlights, discussed in
Section IV-B).



Fig. 11: Snapshots of the fluid dam animation. Note the instability discussed in the paper.



Fig. 12: Photons absorbed by the bunny pool scene (left) and the rendered image (right). The first stage shot 10,000 photons.
Note the relatively uniform scattering of photons on the floor, as well as a few on the surface of the water. This results in an
image of comparable quality, although no observable caustic effects despite the curvature of the liquid surface.


