
Optimizing Ray Tracing
Jialu Xu

xuj14@rpi.edu
Rensselaer Polytechnic Institute

Troy, New York, USA

Figure 1: Ray Tracing of Randomly Generated Spheres.

ABSTRACT
This paper presents the optimization of a previously implemented
naive recursive ray tracing algorithm by incorporating three dis-
tinct approaches: Russian Roulette, parallelization, and Bounding
Volume Hierarchy (BVH). We discuss the implementation details
and evaluate the performance benefits of each method, highlight-
ing their effectiveness in reducing computational complexity and
improving overall rendering times. By combining these optimiza-
tion techniques, we demonstrate a significant enhancement in the
efficiency of the ray tracing process, while maintaining the core
visual fidelity and quality of the rendered images.

KEYWORDS
ray tracing, parallel, bvh

1 INTRODUCTION
Ray tracing has emerged as a popular method for rendering photo-
realistic images in computer graphics. However, naive recursive ray
tracing algorithms often suffer from high computational complexity,
which leads to slow rendering times. This issue is especially notice-
able on less powerful hardware, such as low-end laptops, where
the performance limitations can severely impact the feasibility of
ray tracing for real-time applications. Motivated by the need to
optimize ray tracing performance on less capable devices, this paper
presents three optimization techniques – Russian Roulette, paral-
lelization, and Bounding Volume Hierarchy (BVH) – to improve
the efficiency of a naive recursive ray tracing implementation.

By incorporating these methods, we aim to alleviate the perfor-
mance constraints experienced on low-end hardware and broaden
the range of devices capable of executing ray tracing algorithms
efficiently.

2 RELATEDWORK
In this paper, I implemented multiple techniques discussed in pre-
vious works used in my ray tracing algorithm.

2.1 Russian Roulette
Russian Roulette was introduced by Arvo and Kirk (1987)[1] as
a method for reducing the computational complexity of global
illumination algorithms. In their work, the technique was applied
to a structure similar to photon mapping, rather than traditional
ray tracing. My study aims to incorporate Russian Roulette into a
naive recursive ray tracing algorithm and analyze its performance
impact in terms of rendering times and image quality.

2.2 Parallelization
Parallelization has been a popular research topic in the realm of ray
tracing optimization. OpenMP is a widely-used API that supports
multi-platform shared-memory multiprocessing programming in
C, C++, and Fortran. It has been instrumental in facilitating par-
allel processing for various applications, including ray tracing. In
their work, Yviquel et al. (2023)[6] discussed the OpenMP cluster
programming model, providing valuable insights into its use for
parallelizing code. Building upon this foundation, my work focuses
on parallelizing the loops and recursion in a naïve recursive ray
tracing algorithm using OpenMP. I demonstrate the performance
gains achieved through parallelization.

2.3 Bounding Volume Hierarchy
As early as 1980, Rubin and Whitted [2] proposed a hierarchy struc-
ture to accelerate the rendering process. Following this, Weghorst
et al. [5] built the BVH using the modeling hierarchy. The Bound-
ing Volume Hierarchy has since become one of the most common



Xu.

acceleration structures in ray tracing. Wald et al. (2007) [3] intro-
duced a fast and parallel construction of BVH using the Surface
Area Heuristic (SAH). A decade later, Wald [4] revisited this topic
in his blog, discussing potential improvements for modern-day ap-
plications and the use of BVH in real-time scenarios. I implement
the basic BVH structure to the ray tracing algorithm and analyze
its performance based on the number of primitives in the scene.

3 BACKGROUND AND PRIOR
IMPLEMENTATION

Before discussing the optimization techniques, I briefly describe
the key components of my prior implementation, which serves as
the basis for the improvements presented in this paper.

Initially, I implemented a naive recursive ray tracing algorithm,
which is a recursive function that loops through lights to trace
shadows and recursively calls itself to handle bounced rays. The
core of the ray tracing process involves casting rays through each
pixel of the image and calculating the color contribution from the
intersected objects and light sources.

To save the rendered images, I used a function that traces the
rays for every pixel and saves the resulting image in the Portable
Pixmap (PPM) format. The PPM format was chosen for its simplicity
and ease of implementation.

To improve the quality of the rendered images and reduce alias-
ing artifacts, I employed a stratified jitter technique. This method
generates a vector of uniformly distributed points before each sam-
pling loop, which are then used to sample the scene.

Having provided this background information, I will now discuss
the optimization techniques applied to enhance the performance
of the ray tracing algorithm.

4 RUSSIAN ROULETTE
The Russian Roulette technique is an optimization method that
aims to reduce the computational complexity of ray tracing by
probabilistically terminating rays early in the tracing process. This
technique involves the use of a probability 𝑝 to determine whether
a ray should continue being traced or be terminated early. When

tracing a ray, if a random number generated within the range of
[0, 1] is below 𝑝 , ray tracing continues; otherwise, it terminates,
effectively reducing the number of rays and intersections to be
processed.

Algorithm 1 Russian Roulette

function TraceRay
if rand(0, 1)< 𝑝 then

𝑎𝑛𝑠 ←TraceRay/𝑝
else

𝑎𝑛𝑠 ← 0
end if

end function

To ensure energy conservation when using Russian Roulette, the
color contribution of each ray must be adjusted to account for the
probabilistic termination. This is achieved by dividing the resulting
color by the probability p. The energy conservation equation (Eq.
1) can be expressed as follows:

𝐶𝑜𝑙𝑜𝑟 = 𝑝 ∗ (𝑐𝑜𝑙𝑜𝑟/𝑝) + (1 − 𝑝) ∗ 0 (1)

By applying this equation, we can maintain the overall illumina-
tion consistency in the scene even when rays are terminated early.
However, as discussed in the next paragraph, this technique has
certain limitations when applied to my ray tracing implementation.

Upon incorporating Russian Roulette into my ray tracing algo-
rithm, I observed a reduction in rendering time, as shown in Table
1. As the probability 𝑝 decreases, the rendering time is reduced.
However, the image quality degrades significantly. This can be at-
tributed to the fact that my ray tracing implementation only uses
one ray per pixel. Consequently, if a ray is terminated early, there
is no additional contribution to that pixel, resulting in the need for
anti-aliasing to smooth out the image. In contrast, techniques such
as photon mapping and path tracing that employ Russian Roulette
typically have multiple contributions to a single pixel, so the energy
conservation principle can still produce high-quality results.

Table 1: Russian Roulette Results

𝑝 1.0 0.9 0.5
Time(sec) 309.451 314.264 234.966

Result



Optimizing Ray Tracing

Due to the significant impact on image quality, I decided not
to use the Russian Roulette technique to optimize my ray tracing
algorithm.

5 PARALLELIZATION
To further optimize my ray tracing algorithm, I employed paral-
lelization usingOpenMP, anAPI designed to supportmulti-platform
shared-memory multiprocessing programming. By parallelizing the
loops, I was able to achieve significant performance improvements.
Additionally, I utilized the shared variable feature of OpenMP to
prevent data races, ensuring the integrity of the parallel processing.

During the implementation of parallelization, I encountered a
Segmentation Fault error. After researching the issue, I discov-
ered that the problem stemmed from the use of push_back() and
rand(), which can only be executed by a single thread at a time. To
address this, I employed OpenMP’s critical block feature, enabling
these operations to run safely within the parallelized code.

The table below shows the rendering times for different numbers
of threads:

Table 2: Parallelization Results

num thread 1 2 3 4
time (sec) 573.521 369.5 309.451 288.898

The results show a clear reduction in rendering time as the
number of threads increases. In particular, when comparing the
single-threaded execution to the 4-threaded execution, there is
a substantial improvement in performance. However, the relative
improvement in rendering time diminishes as the number of threads
increases. This is due to the presence of shared blocks that can only
be executed by one thread at a time, limiting the overall parallel
efficiency.

Figure 2: Parallel Rendering on Reflective Spheres

Additionally, the quality of the rendered images (Figure 2) re-
mains consistent across all test cases, demonstrating that the par-
allelization effectively speeds up the rendering process without
sacrificing image quality.

6 BOUNDING VOLUME HIERARCHY
The Bounding Volume Hierarchy (BVH) is a widely-used acceler-
ation structure for ray tracing that aims to reduce the number of
intersection tests required when rendering a scene. By organizing
scene primitives into a tree-like hierarchy of bounding volumes,
the algorithm can quickly cull portions of the scene that are not
intersected by a ray, resulting in substantial performance improve-
ments.

6.1 Construction
The construction of a BVH involves taking a vector of primitives
and recursively building a tree-like structure with axis-aligned
bounding boxes (AABBs) around these primitives. The algorithm
starts by calculating the overall bounding box that encapsulates all
the primitives in the scene. Once the initial bounding box is created,
the algorithm proceeds to split the group of primitives into two
smaller sets based on the largest dimension of the parent AABB. By
sorting the primitives along the chosen dimension, the algorithm
can efficiently divide the list into two equal parts.

The recursive splitting process continues, with each subsequent
child node containing a smaller subset of primitives enclosed within
its own bounding box. This process is repeated until each leaf node
contains only one primitive.

The time complexity of constructing a BVH is𝑂 (𝑛𝑙𝑜𝑔𝑛), primar-
ily due to the sorting step involved in partitioning the primitives.
Table 3 showcasing the construction times for different numbers of
primitives demonstrates that the time required for BVH construc-
tion is quite minimal, even for large numbers of primitives. This
low construction time, coupled with the substantial performance
improvements provided during the ray tracing process, makes BVH
an appealing choice for optimizing ray tracing algorithms.

During testing with 500 × 500 spheres, the program successfully
loaded the meshes and constructed the BVH tree. However, when
attempting to render the scene using OpenGL, a Segmentation
Fault error occurred. To further investigate the issue, I tested the
program with 100× 100 spheres, which were successfully rendered,
albeit with significant lag when moving the camera. Increasing the
number of spheres to 200 × 200 resulted in a GL_INVALID_VALUE
error, indicating that the maximum buffer size had been exceeded.

While it is possible that modifying the OpenGL connection
scripts could resolve this issue, due to time constraints, I did not
explore this solution further. Despite this limitation, the BVH con-
struction process demonstrated significant performance improve-
ments for the ray tracing algorithm.

6.2 Intersection Tests
The intersection test for BVH plays a crucial role in optimizing the
ray tracing process by reducing the number of intersection tests
required when rendering a scene. The test works by traversing the
tree structure, starting from the root node and moving down to the



Xu.

Table 3: BVH Construction Results

Sphere Count 20×20 50×50 500×500 20×20 (rand)
Time(sec) 0.0025 0.0226 6.1542 0.0027

Result

[leaving updateVBOs]
GL ERROR(0) GL_INVALID_VALUE
...
Segmentation Fault

leaf nodes, checking the bounding boxes for intersection with the
ray.

Initially, the algorithm checks whether the ray intersects the
root node’s bounding box. If there is an intersection, the algorithm
proceeds to test the child nodes’ bounding boxes. This traversal
process is guided by a depth-first search strategy, which prioritizes
visiting the closest bounding boxes to the ray origin. This ensures
that the closest intersection point is found efficiently.

When the algorithm reaches a leaf node, it invokes the intersec-
tion function of the specific primitive stored in the node to deter-
mine if an actual intersection occurs. If an intersection is found,
the algorithm updates the hit variable with the closest intersected
primitive and the corresponding intersection point. This process
allows the algorithm to discard irrelevant parts of the scene quickly
and focus on the primitives that are most likely to contribute to the
final image.

Figure 3: BVH Result

By exploiting the hierarchical structure of the BVH, the algorithm
can significantly reduce the number of intersection tests needed,
resulting in substantial performance improvements. I tested on
a 20 × 20 randomly generated scene, the use of this acceleration
structure can lead to dramatic reductions in rendering time. In the

test case as shown in figure 3, the rendering time was reduced from
5.5 hours to just 2 hours, showcasing the effectiveness of BVH in
optimizing ray tracing.

7 TEST ENVIRONMENT
The testing setup is as follows:

• Hardware: The experiments were conducted on a low-end
laptop equipped with a Ryzen 3 3350U processor. This
choice of hardware highlights the potential performance
improvements achievable on modest systems.

• Ray tracing parameters: The ray tracing algorithm was con-
figured with the following settings: 50 bounces, 50 shadow
samples, and 16 anti-aliasing samples. These values were
selected to provide a balance between image quality and
computation time.

• Thread count: For the BVH and Russian Roulette testing,
three threads were used to speed up the testing.

• Scene for Russian Roulette & Parallel testing: A simple scene
consisting of two reflective spheres was used for testing
the Russian Roulette and Parallel optimization techniques.

• Scene for BVH testing: A more complex scene containing
400 randomly positioned and sized spheres was employed
to evaluate the BVH optimization technique. This scene
was chosen to showcase the performance improvements
provided by the BVH acceleration structure when dealing
with larger numbers of primitives.

8 FUTUREWORKS
There are many I didn’t implement for this paper/project:

(1) SAH-based BVH construction: One possible improvement
to the BVH construction process is to utilize the Surface
Area Heuristic (SAH) when splitting the primitives. SAH-
based approaches have been shown to produce better tree
structures by minimizing the expected cost of ray traversal
through the hierarchy. This can lead to even faster inter-
section tests and, ultimately, shorter rendering times.

(2) OpenGL code optimization: To handle larger scenes, the
OpenGL code could be modified to better manage the alloca-
tion and utilization of buffers. This may involve employing
techniques such as dynamic buffer allocation, texture at-
lases, or instancing to reduce the memory footprint and



Optimizing Ray Tracing

improve rendering performance for scenes with high prim-
itive counts.

(3) GPU-based ray tracing: Another promising direction for
future work is to leverage the power of the GPU for ray
tracing computations. Modern GPUs offer immense parallel
processing capabilities that can significantly accelerate ray
tracing performance. By implementing a GPU-based ray
tracing algorithm, we can exploit the inherent parallelism of
the ray tracing process and achieve substantial performance
improvements.

ACKNOWLEDGMENTS
To Professor Barb Cutler, for providing the code for connecting the
ray tracing algorithm to OpenGL for rendering.

REFERENCES
[1] James Arvo and David Kirk. 1990. Particle Transport and Image Synthesis. In

Proceedings of the 17th Annual Conference on Computer Graphics and Interac-
tive Techniques (Dallas, TX, USA) (SIGGRAPH ’90). Association for Computing
Machinery, New York, NY, USA, 63–66. https://doi.org/10.1145/97879.97886

[2] Steven M. Rubin and Turner Whitted. 1980. A 3-Dimensional Representation for
Fast Rendering of Complex Scenes. SIGGRAPH Comput. Graph. 14, 3 (jul 1980),
110–116. https://doi.org/10.1145/965105.807479

[3] Ingo Wald. 2007. On fast Construction of SAH-based Bounding Volume Hi-
erarchies. In 2007 IEEE Symposium on Interactive Ray Tracing. 33–40. https:
//doi.org/10.1109/RT.2007.4342588

[4] Ingo Wald. 2022. Parallel BVH Construction. https://ingowald.blog/2022/04/20/
parallel-bvh-construction/. Accessed on 21 Mar. 2023.

[5] Hank Weghorst, Gary Hooper, and Donald P. Greenberg. 1984. Improved Com-
putational Methods for Ray Tracing. ACM Trans. Graph. 3, 1 (jan 1984), 52–69.
https://doi.org/10.1145/357332.357335

[6] Hervé Yviquel, Marcio Pereira, Emílio Francesquini, Guilherme Valarini, Gustavo
Leite, Pedro Rosso, Rodrigo Ceccato, Carla Cusihualpa, Vitoria Dias, Sandro Rigo,
Alan Souza, and Guido Araujo. 2022. The OpenMP Cluster Programming Model.
In Workshop Proceedings of the 51st International Conference on Parallel Processing.
ACM. https://doi.org/10.1145/3547276.3548444

https://doi.org/10.1145/97879.97886
https://doi.org/10.1145/965105.807479
https://doi.org/10.1109/RT.2007.4342588
https://doi.org/10.1109/RT.2007.4342588
https://ingowald.blog/2022/04/20/parallel-bvh-construction/
https://ingowald.blog/2022/04/20/parallel-bvh-construction/
https://doi.org/10.1145/357332.357335
https://doi.org/10.1145/3547276.3548444

	Abstract
	1 Introduction
	2 Related Work
	2.1 Russian Roulette
	2.2 Parallelization
	2.3 Bounding Volume Hierarchy

	3 Background and Prior Implementation
	4 Russian Roulette
	5 Parallelization
	6 Bounding Volume Hierarchy
	6.1 Construction
	6.2 Intersection Tests

	7 Test Environment
	8 Future Works
	Acknowledgments
	References

