

Interactive Visualization S’18

Final Project Report - Fortnite StatVis
Garret Premo

Introduction

Fortnite is a game that is currently taking the world by storm. With over 45 million players

and 3 million concurrent users, it has a massive pool of data that is growing constantly.

Amongst this mass of data, gameplay statistics will always be something of interest to the

players. As a player myself, I know this to be especially true as it’s a common area of

comparison amongst friends who also play Fortnite. There are some websites that allow

you to view statistics, however, none of them are very interactive nor do they allow

comparisons between players. That was the main source of motivation for this project and,

with it, provided a goal that would be appreciated by the Fortnite community: an interactive

statistic comparison for the every-day Fortnite player.

My original research question was to find whether or not I could map these statistics

against location points on the Fortnite Map (see Figure 1). My hypothesis, at the time, was

that it could be done, provided location data could be found via an online API. After

searching countless sites and forum posts, the conclusion was made that there was no

such api. This caused a large shift in the overall focus of this project.

Data Collection

The main source of data for this project comes from it’s main area of comparison, and is

the current standard for players viewing statistics in Fortnite. It is a website called

fortnitetracker, which uses Fortnite api calls to get the statistics for every player in every

match that is played. Comparisons can be made between players, however, it requires

multiple pages to be open, as there is no specific functionality for this.

Collecting the data was done in two

main stages. The first stage consisted

of gathering a list of usernames from

the leaderboard section of fortnite-

tracker. This was to be done for each

of the individual PC, Xbox One, and

Playstation 4 leaderboards. To do this,

a web scraping application called ParseHub was used. The application would go through an

arbitrary number of pages on the leaderboard and collect each player’s username in order

of rank.

The second stage was running each username through fortnitetracker’s public API. This API

provided many useful statistics for each player, including statistics for eliminations, deaths,

wins, matches played, win %,

elimination:death ratio,

eliminations/minute, average match

time, and more. Furthermore, these

statistics we split up into subsections of lifetime statistics, season statistics, solo games, duo

games, and squad games. Overall, using this API as the main data source provided very

thorough data. The biggest difficulty was a simple time constraint, as the API could be

called a max of once every two seconds. The time constraint did limit the scope of my

project, however. The original intention was to gather statistics for as many players as

possible. With a player base of 45 million, it could have taken weeks to get data for every

player, even using multiple API keys.

Visualization Design Evolution

The initial plan for this visualization was to overlay statistics onto the actual Fortnite Map

(Figure 3). As the project progressed, it was becoming apparent that getting the necessary

location data would not be a possibility,

without an extremely biased dataset e.g.

using manually gathered data from my

own games and friends’ games.

Gathering this data manually would

mean jotting down the exact landing

location at the beginning of each game,

as well as other data points of interest

throughout the game. This could have

included: time survived; damage taken;

damage dealt; etc.

Since the original plan was not seeming

feasible to complete in the given time

frame, this is where the project took a massive pivot towards visualizing and comparing

statistics. Part of this process involved deciding how to visualize this data. After searching

for different ways to show multi-dimensional datasets, some experimentation was done

with a scatter plot matrix in d3. The idea in this visualization was to show comparisons for

statistics gathered with the ability to brush over points of interest.

The first test of this visualization (Figure 4) shows 5 dimensions of data. Wins, eliminations,

elimination:death ratio, and score are displayed against each other as scatter plots in the

matrix. Each point is an individual player, and the fill color for each point shows the

platform of the user. Green being PC, Xbox being orange, Playstation 4 being blue. Each

point on one graph corresponds to one point on every other graph. The labeling for the

test was not included, because the data used was entirely fake to produce a proof of

concept (and sanity check).

Figure 4: The first experimental implementation of the visualization showing false data as a proof of concept.

This type of matrix made brushing a fairly simple process. Brushing is a technique that

consists of simply clicking and dragging an area over any points in one graph. This causes

those points to be highlighted, while graying out all points that are not selected. The

purpose of brushing is to provide an intuitive, interactive way to identify the relationships

between points across the entire matrix.

Most of the effort placed into the interactive part of this visualization was the brushing, as it

provides the most clarity and understanding for larger datasets. Since the scope of this

project was mainly large datasets, this became incredibly important, as the more intricate

matrices were much harder to understand (Figure 5). Without the ability of brushing, it

would be incredibly difficult to tell how points in some graphs correspond to other graphs.

Figure 5: The Final (complete) implementation of the visualization showing A 6x6 scatterplot matrix with ~1250

top PC players (globally). The bottom left-hand corner (Total Matches Played) is brushed over, and all

corresponding points are highlighted blue. The dimensions of data (from upper-right to bottom-left) are: wins;

win%; kills; kill/death ratio; score; matches played.

Feedback

The area of feedback that I took the most from were my peers who actively played Fortnite.

A lot of friends were intrigued by the original map overlay idea, however, pessimistic. The

newer iterations of the project brought in a lot of new feedback. Most of which was adding

more customizability to the statistics that are being shown in the matrix. One of the biggest

points of feedback was adding dropdown menus to select certain data points for each row

and column. This would be the best way of interactively comparing statistics on a broad

level, as it gives the user direct control of the statistics. Other points of feedback included

choosing the size of the dataset, toggling which platform is displayed, zooming into

portions of interest, draggable rows/columns, and, of course, support for datasets by

specific region.

The feedback I gained was directly from a subset of my main target audience, and was

incredibly constructive. The potential for features that could be implemented was near

endless.

Features

The main layout of this project was a scatter plot matrix. The matrix was made using d3,

and utilized source code found in the d3 examples section. This matrix could accept any

number of dimensions of data via a csv file. The csv file was formatted by a python script

which parsed through the raw JSON data received by the fortnitetracker API.

The main feature of this visualization was brushing. It could be applied to any graph in the

matrix, and would in turn update all other graphs by highlighting the points corresponding

to the points selected. After a brush area has been established, it could be freely dragged

within the graph to highlight other points without creating a new brushing. A brushing

could be removed by simply clicking anywhere on the graph.

The main challenges faced in this project was implementing new ideas for features that

were gained through feedback. The nature of d3 is not one that allows much room for

quick implementation. Trying to make a legend, dropdown menus for rows/columns, and

changing color scheme were examples of some challenges that were faced that could not

be solved.

References

1. fortniteTracker fortnitetracker.com/leaderboards

2. fortniteTracker API https://fortnitetracker.com/site-api

3. Scatterplot Matrix D3 example https://bl.ocks.org/mbostock/4063663

