
Interactive Visualization Spring 2020 (RPI)

Photospheres
Frederick Choi, Dev Rangarajan

April 30, 2020

1 Introduction

A common issue that novice designers run into is try-
ing to look for the right image that should go on a
poster or graphic. The first step here is often to go on
Google and search for an image. But perhaps simply
a search for "beach party" is not enough, and the de-
signer wants something that fits better aesthetically.
However, a novice designer may have a lack of vocab-
ulary to describe image they want. Perhaps Google
images does not have the exact tags they are look-
ing for. The question becomes: how can we search a
large image database without the use of text or tags?

In this case, some way of searching for images that
is based purely on visual attributes can be of help.
In this paper we introduce Photospheres, a text-free
image searching tool that organizes images into hier-
archical clusters for fast browsing.

Some other applications can include browsing per-
sonal pictures to build a scrapbook, slideshow, or col-
lage. As a commercial tool, it can be integrated into
OneDrive or Google Photos.

It could also be used to find a good desktop back-
ground or theme. It could especially be help for
searching type fonts, since finding a type font of a spe-
cific aesthetically quality is difficult since there are no
semantic tags (unlike searching for a "beach party"
image), and many of the distinguishing descriptors
(kern, serifs, etc.) may require specialized knowledge
of type fonts to understand.

2 Background & Related Works

other tools, how do we compare, where did get our
inspiration from, cover all the references we have

As mentioned above, Google Photos is a common first
step for most people looking for an image. Adobe
Stock is another tool created specifically for design-
ers that can be used to find images. However, both
of these tools require the user to use keywords or

some refine based on categories/subcategories with
text. This project investigates the viability of an im-
age search algorithm that does not rely on text.

The approach outlines in this paper focuses mostly
on clustering. Clustering is used in many disciplines
for reducing the complexity of a data set as well as
finding specific datum. For example, Yin et al.1 dis-
cuss clustering student programming assignments to
reduce the load on graders, since similar assignments
should get similar grades and probably similar feed-
back. In that paper they discuss using t-SNE by
Maaten et al2 to visualize clusters, which is used in
this paper.

Some hierarchical clustering techniques were bor-
rowed from Gifford.3

3 Algorithm

3.1 Overview

Design Goals. Photospheres is designed around
the following goals:

1. The user should be able to find a more satis-
factory image than with just text-based search-
ing/refinement

2. The user should be able to find a satisfactory
image quickly

In addition, the tool should work with any image set,
and not be specialized to any single image set or cat-
egory of images. Overall satisfaction with the tool
itself is important. The tool should not be frustrat-
ing to use or difficult to learn how to use. While
“satisfactory” is not a concrete quantity, a user test
subject should be able to provide some feedback on
how satisfied they are with an image they found. A
scale of 1-10 could suffice for a rough estimate. Mean-
while, the time it takes to find a satisfactory image
can be directly measured.

The hypothesis is that hierarchical clustering paired

1



with fast navigation and informative previews can ri-
val image searching with text.

The visualizations in this paper are implemented with
d3.4

Clustering. A hierarchical clustering of the images
is created in a top-down recursive manner. The im-
ages are clustered using the algorithms described be-
low, and images within each cluster are further sep-
arated into sub-clusters recursively until the depth
limit is reached or the cluster is too small.

The idea is to break down a large set of images into
a very small (7 in this prototype) number of clus-
ters. Ideally, the user would which one or two clusters
might contain the image they are looking for, which
cuts down the search space by an order of magnitude.
Then, within these clusters, the user should be able to
again identify which clusters are relevant and refine
the search further.

An analogy is looking through folders on a filesystem
to find a specific file. Folders within folders organize
the data into groups, and the user identifies based on
the name of the folder and a preview of its contents
(on some operating systems) which groups may con-
tain the desired file. In that way, a relevant file can
be found very quickly without even using a search
bar. For the case of image searching, a good cluster-
ing algorithm must be used to organize the images
in to sensible groups, and a good preview to effi-
ciently communicate to the user the images within
that group.

Visualization. These clusters are visualized using
a couple techniques that embody a few design prin-
ciples. The clusters are clearly distinguishable, since
they are the primary method of navigation through
the image database. Clicking on a cluster reveals in
more detail its sub-clusters. This is fast in order to
minimize the time lost and mental cost of entering
a wrong cluster. This is also done in a way to en-
sure coherence between the two views and to mini-
mize disorientation. Hovering over a cluster pops up
a preview window that to conveys to the user an idea
of what images are contained in a cluster before they
click into it.

3.2 Clustering

The core of the tool presented in this paper is hierar-
chical clustering. A few different methods of cluster-
ing, including different feature transforms and clus-
tering algorithms were investigated. The techniques

presented here should be extendable to any image set.

3.3 Feature Transform

Principle Component Analysis. PCA can used
to extract a basic feature set from the images. After
converting the images into vectors where each com-
ponent is a single RGB channel of a single pixel, PCA
can be used to extract the pixels and color channels
which explain the most variance in the images. The
primary advantage here is its simplicity. However,
this method suffers from its high dependence on lo-
cality. For example, a house on the left side of an
image will produce a vector that is dissimilar to a
vector produced by an image with a house on the
right side.

The prototype presented in this paper uses an im-
plementation of PCA from the Scikit Learn5 pack-
age for Python that uses the probabilistic PCA
model from Tipping et al.6 The number of com-
ponents constrained by computation time and re-
fined through rough visual analysis/agreement with
the t-SNE based visualization. However, more robust
methods such as the elbow method7 are likely to yield
better results.

Figure 1 shows comparisons of k-means clusters and
t-SNE. From these plots, it seems that the clus-
ters assigned by k-means with a 20-component PCA
agrees reasonably well with the embedding from t-
SNE. Points that belong to the same cluster are em-
bedded close to each other. Having fewer components
also makes for faster computation time. Thus for the
purposes of the prototype presented in this paper, a
20-component PCA was used as a feature transform.

Image Hashing. Image hashing is a hashing algo-
rithm that takes a raw image, and outputs a hashed
value for that image. Image hashing is a technique
originally developed for copyright detection.8 The
hashing algorithm differs from a typical hashing al-
gorithm; its goal is to produce similar hashes for simi-
lar images. Our hypothesis was that we could cluster
using the hamming distance (the number of differ-
ent characters between two strings) to cluster similar
hashes and thus similar images together. However,
k-means does not work with non euclidean distance
metrics, so we would need to implement a different
clustering algorithm. Agglomerative clustering is a
more generic clustering algorithm which works with
hamming distances. Agglomerative clustering works
by putting all elements into clusters, and then group-
ing the closest clusters together until the all elements
are contained in the same super cluster.

2



(a) k=10 (b) k=20

(c) k=40

Figure 1: Comparison of k-means clustering
t-SNE in 2 dimensions. Each point represents
an image. The top k eigenvectors from the
image set were used to compute the clustering
and t-SNE. The color represents cluster mem-
bership while points area plotted according to
t-SNE.

Keras. Keras is a Python API for deep learning.
It allows for simplified use of other neural network
packages such as TensorFlow (used for this project).
Keras has some pre-trained neural networks for im-
age classification. The one we used in this project
was VGG-16 (Visual Geometry Group 16 Layer Net-
work9). The entire dataset was run through this
model, and then a feature set was returned. We
then used k-means to cluster the features together
and get the final output. These features are deter-
mined by the neural network, and are represented as
vectors. This has less of a dependence on the position
of objects within an image, and should thus be better
suited to this application.

3.4 Recursive Clustering

Let I be a set of images. Using one of the feature
transforms discussed above, a feature vector X is
computed from the images. A hierarchy of clusters is
formed based on these transformed values are follows.

Let a cluster be denoted by (I, C) where I is the set
of images within that cluster and C is the set of sub-
clusters/child clusters. Algorithm 1 outlines the pro-
cedure for computing a recursive k-means clustering,
though k-means can be substituted for any clustering
algorithm.

Algorithm 1 Recursive K-means
X ← Feature-transformed input data
I ← Raw images
k ← # clusters per branch
split_threshold, depth_limit← Recursion limits
1: function Cluster(X, I)
2: export mean of I as preview
3: if depth_limit ≤ 0 or # points in X <

split_threshold then
4: return cluster (I, ∅)
5: else
6: Run k-means to partition X into clusters

X ′
i for 0 ≤ i < k

7: Partition I into I ′i corresponding to X ′
i

8: C ← { Cluster(X ′
i, I ′i, split_threshold,

depth_limit− 1) for 0 ≤ i < k }
9: return (I, C)

3.5 Visualization

Once the images have been processed into clusters,
they must be presented to the user in a useful way.
The following principles guided the design of the in-
terface:

1. Navigation through the clusters should be fast
to minimize the cost of a user navigating to the
“wrong” cluster

2. Clusters should be sensible to humans

3. Previews should be representative and the user
should be able to guess what images a cluster
would contain

Interactions. Keeping the design goals in mind,
the visualizations presented in this paper implement
the following interactions.

1. Clicking on a cluster reveals more detail of the
cluster and its sub-clusters while diverting the
attention from other clusters

2. Hovering over a cluster shows a preview of the
cluster, indicating what images the cluster likely
contains.

In addition, the clusters are clearly distinguishable,
since they are the primary method of navigation
through the image database. Any transitions are an-
imated since two views of the same data can change
drastically which is potentially disorienting if a sud-
den transitions were used instead. Hovering over a
cluster pops up a relatively small preview window
that is close to the mouse cursor in order to minimize

3



Figure 2: A screenshot of the circle packing
visualization with only outlines rendered to
accentuate the tightly packed nature of the
circles

the area of the base visualization it occludes while
placing it close to where the user’s gaze is likely al-
ready focused.

3.6 Circle Packing

In this visualization, all the clusters and sub-clusters
are represented as circles. Sub-clusters are packed
within its parent cluster such that it fits entirely
within its parent cluster while remaining tangent to
its sibling clusters and/or its parent cluster. Figure
2 illustrates this tightly packed layout of the circles.

The “empty” space within a cluster but outside its
sub-clusters opens up an opportunity for more inter-
action. Hovering over this empty space pops up a
small preview modal near the user’s cursor contain-
ing a preview of that cluster. The preview is simply
a pixel-to-pixel average of the images within the clus-
ter, but better summarizing techniques can be inves-
tigated. After all, the point is to convey to the user
what images are likely contained within the cluster
before they have to search through it.

Figure 3 contains a screenshot of the preview modal
as the user hovers over a cluster. It also illustrates the
zooming feature. Clicking a cluster will trigger an an-
imation that focuses in on that cluster as illustrated.
Note that the sub-clusters come into view with more
detail in frame (c), whereas some of the finer details

(a) t=0.00s (b) t=0.38s

(c) t=0.75s

Figure 3: Frames of the cluster zooming ani-
mation for the circle packing visualization

are absent in frame (a). The other clusters are al-
most entirely cropped out. This keeps with the idea
of diverting the attention away from the other clus-
ters and focusing on the one the user selects.

Figure 4 displays a typical color scheme used in the
prototype presented in this paper. The clusters are
colored by depth, with darker circles corresponding to
deeper sub-clusters. The color scheme in this figure
is a sequential color scheme from Color Brewer.10 At
the lowest level, the images are represented as white
circles to contrast from the saturated cluster colors,
and previews simply show the image itself as seen in
figure 5. Additionally, the name of the image appears
on the preview for retrieval outside the tool.

3.7 t-SNE based layout

t-SNE as described by Maatan et al.2 is an algorithm
for embedding high dimensional data into low dimen-
sional space. However, this algorithm runs slowly on
high dimensional input data, so features are extracted
first extracted from the images (recall X from section
3.3). For the prototype in this paper, an implemen-
tation from Scikit Learn5 was used.

In contrast to the circle-packing layout, no clusters
are drawn directly. Instead, all the images are repre-

4



Figure 4: A screenshot of the circle packing
visualization with colors

Figure 5: A screenshot of the circle packing
visualization at the image level

Algorithm 2 Recursive K-means with t-SNE
X ← Feature-transformed input data
I ← Raw images
k ← # clusters per branch
split_threshold, depth_limit← Recursion limits
1: function Cluster(X, I)
2: export mean of I as preview
3: if depth_limit ≤ 0 or # points in X <

split_threshold then
4: return cluster (I, ∅)
5: else
6: Run k-means to partition X into clusters

X ′
i for 0 ≤ i < k

7: Partition I into I ′i corresponding to X ′
i

8: C ← { Cluster(X ′
i, I ′i, split_threshold,

depth_limit− 1) for 0 ≤ i < k }
9: E ← t-SNE embedded coordinates of

points in X
10: return (I, E,C)

sented by relatively small circles whose positions are
determined by t-SNE and are colored by cluster (see
figure 6). t-SNE positions are computed within each
cluster, since each cluster represents a smaller data
set. t-SNE on a smaller data set can yield better
results as fewer points means it is easier to keep dis-
similar points far apart. Algorithm 2 illustrates how
this fits into the implementation.

Note that we lose the information about the struc-
ture of the hierarchy, and we lose the ability to “skip”
steps and preview a deeper sub-cluster. However, we
gain the ability to judge the spread of a cluster based
on how spread out it is in the visualization. In addi-
tion, points that are close by are likely to represent
related/visually similar images.

When the user hovers over a circle, the preview shows
both the image the circle represents as well as a pre-
view of the cluster. This is illustrated in figure 7.
When the user clicks on a circle, the cluster it be-
longs to comes into focus. The circles move to new
positions as determined by t-SNE within that clus-
ter, and are recolored according to subcluster. The
other circles fade out. Figure 8 contains frames of
this interaction.

4 Results

At the beginning of this project, we defined a set
of principles that our visualization would follow, and
also a set of potential tasks that it would need to han-

5



Figure 6: A screenshot of the t-SNE based
visualization

Figure 7: A screenshot of the hovering inter-
action in the t-SNE based visualization. The
upper image in the preview is the image cor-
responding to the circle under the cursor. The
lower image is a preview of the cluster (in this
case, the teal cluster).

(a) t=0.00s (b) t=0.38s

(c) t=0.75s

Figure 8: Frames of the cluster zooming ani-
mation for the circle packing visualization

dle. These are stated in section 3.1 and 3.5 of this
paper. The first principle about quick cluster naviga-
tion is accomplished with both visualization, and is
mostly a function of using d3. The second principle
about cluster sensibility is addressed by the specific
preprocessing results described later in this section.
The final principle about representative previews is
the same for all visualizations/algorithms. Currently,
all previews are the pixel by pixel mean of the images
in the cluster. This is good at showing the potential
colors, but bad at showing the potential features. It
is also useless after a certain number of clusters; it
tends to converge.

Due to a lack of resources, a formal user study has not
been performed. As such, we can only make hypothe-
ses about the accomplishment of our design goals.
Photospheres is an inherently subjective tool, meant
to help people search for things without words, so suc-
cess can only be determined if the user finds an image
that they feel fits their needs. The goal is not to be
objectively perfect, but to allow for lateral discovery
and expose users to images they may not have origi-
nally thought would work for their purpose. We can
conclude that Photospheres is capable of this, in that
it is possible to find a wide variety of photos, however
it is not easy to find a specific photo. The original
matching test where a user is given a photo and told
to find it in the interface is not practical at this time.
We believe that the current implementation of pho-
tospheres meets design goal 2 for some users. Design
goal 1 is both hard to achieve and hard to prove, es-
pecially because our target audience is used to the
text based search paradigm. At this time we are un-

6



able to make a strong conclusion about whether or
not we met this goal.

Both 20-PCA and Keras based K-means clustering
showed a lot of initial promise. These preprocessing
steps result in clusters that largely abide by the prin-
ciples laid out at the start of the project. It is difficult
to quantify their success, because if we had a metric
for how much sense the cluster makes to a human we
would be able to use that to create perfect clusters.
As such, it is impossible to prove that all clusters are
good and that the visualization could not be better.
However, we have not seen any clusters that are in-
disputable violations of the principles we outlaid at
the start. Further work and optimization can defi-
nitely be done with these algorithms, but we think
that they are the clear way forward.

On the other hand, the implementations of image
hashing we tried were unsuccessful. The core prob-
lem is that image hashing is a technique that’s mostly
used for detecting duplicate images, or incredibly sim-
ilar images (think watermarks, single pixel changes,
scaling up or down, etc.) Most image hashing al-
gorithms start by converting the image to binary or
gray-scale, and then performing the hash. This in-
creases performance and robustness for the intended
use of image hashing, but doesn’t work for cluster-
ing in the way we hoped it would. When run on this
large set of low resolution images, image hashing puts
texturally similar images together, even if they are
completely different. There are some more advanced
algorithms that claim to take color into account, but
we did not have the time to implement them.

5 Discussion & Future Work

From our presentation it seems that our tool has
promise. People found it unique and interesting, and
some found it fun to use. As an image searching tool,
much more work needs to be done before it becomes
viable, let alone compete with Google Images.

Regarding cluster previews, simply taking the pixel-
to-pixel average yields poor previews. This average
usually turns out "muddy," and does not actually rep-
resent an actual image contained within the cluster.
Better summarizing techniques, possibly with multi-
ple preview images, can be investigated and are likely
to improve the tool.

In terms of efficiency, this prototype can do better.
It currently takes 2min to run the clustering on 4000
images on a 3Ghz processor. The ability to support a
large number of images is important, especially since

an image set as small as 4000 is unlikely to contain
anything relevant. It would be interesting to adapt
online clustering algorithms to this purpose. That
way the tool could be run as a service, with images
continually being added as new ones become available
online.

The framerate of the visualization also drops as low
as 4 frames per second for the largest clusters. This
is primarily due to the large number of shapes that
have to be animated and rendered. Perhaps instead
of using d3, it would be worth drawing through the
GPU instead using a library such as three.js.

Author Credits. Choi: Provided initial project
(circle packing, k-means). Investigated t-SNE based
visualization

Rangarajan: Investigated Image Hash based cluster-
ing and Keras based clustering.

6 References

[1] H. Yin, J. Moghadam, and A. Fox, “Cluster-
ing student programming assignments to mul-
tiply instructor leverage,” in Proceedings of the
Second (2015) ACM Conference on Learning@
Scale, pp. 367–372, 2015.

[2] L. v. d. Maaten and G. Hinton, “Visualizing
data using t-sne,” Journal of machine learning
research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[3] H. Gifford, “Hierarchical k-means for unsuper-
vised learning,” 2016.

[4] M. Bostock, V. Ogievetsky, and J. Heer, “D3
data-driven documents,” IEEE Transactions on
Visualization and Computer Graphics, vol. 17,
p. 2301–2309, Dec. 2011.

[5] F. Pedregosa, G. Varoquaux, A. Gramfort,
V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-
chine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[6] M. E. Tipping and C. M. Bishop, “Mixtures
of probabilistic principal component analyzers,”
Neural computation, vol. 11, no. 2, pp. 443–482,
1999.

[7] P. Bholowalia and A. Kumar, “Ebk-means: A
clustering technique based on elbow method and

7



k-means in wsn,” International Journal of Com-
puter Applications, vol. 105, no. 9, 2014.

[8] R. Venkatesan, S.-M. Koon, M. Jakubowski,
and P. Moulin, “Robust image hashing,” vol. 3,
pp. 664 – 666 vol.3, 02 2000.

[9] K. Simonyan and A. Zisserman, “Very deep con-
volutional networks for large-scale image recog-
nition,” arXiv preprint arXiv:1409.1556, 2014.

[10] M. H. Cynthia Brewer, “Colorbrewer 2.0.”
http://colorbrewer2.org/ (Accessed 12 February.
2020).

8


	Introduction
	Background & Related Works
	Algorithm
	Overview
	Clustering
	Feature Transform
	Recursive Clustering
	Visualization
	Circle Packing
	t-SNE based layout

	Results
	Discussion & Future Work
	References

