
ViruSim: An Interactive Epidemic Simulator
Alexander D. Christoforides

Rensselaer Polytechnic Institute
chrisa4@rpi.edu

Chris Dicovskiy
Rensselaer Polytechnic Institute

dicovc@rpi.edu

Figure 1: A screenshot from the developed ViruSim application which exhibits the live-updating graph in the top
right which shows the proportions of the susceptible, infected, and removed populations, the main visualization
space color coded by agent status, and the parameters panel in the bottom-left. Also notice how live counts for
each population are displayed below the main visualization area in the statistics panel.

ABSTRACT
In an age like today where people across the globe have
unprecedented access to information and data online, it is in-
evitable that misinformation can spread and affect the overall
public’s knowledge regarding certain situations. More specif-
ically, and undoubtedly related to our project topic, when
global pandemics or events occur, an immense amount of ma-
terial is published online in attempt to educate the public, ei-
ther in both good or bad faith ways. Through the information
dissemination mechanism most prevalent today, the internet,
people can find a variety of sources which recommend a
swath of differing opinions regarding disease prevention and
methods for mitigating further the disease’s virulent spread.
Additionally, it has become apparent through news stories
reported online and on television that lay people sometimes
do not have a well-founded intuition with respect to how
viruses spread and various actions people can take to mit-
igate it. We put forth an implementation of an interactive
visualization (ViruSim) with the purpose of educating lay
people on how viruses spread and how various factors per-
taining to the virus and human behavior can either help or

harm the spread of the disease. Additionally, we put forth
an extension of cellular automaton simulations which takes
inspiration from previous agent-based simulation research
to create an easily digestible visualization accompanied by a
live-updating graph which visually shows the proportions of
the population who are either susceptible to the disease, in-
fected with the disease, or removed (recovered or deceased).

KEYWORDS
epidemic simulation, agent-based simulation, cellular au-
tomata, interactive, visualization

1 INTRODUCTION
During a pandemic situation like the one currently occur-
ring (COVID-19), having resources to educate the general
population on how viruses spread and how human behavior
affects its overall spread is quintessential in mitigating the
devastating consequences of the disease. This interactive
visualization project aims to give a well-founded intuition
to users and is an implementation of an epidemic simulation
by way of agent-based, cellular automata. After reading a



Interactive Visualization, Spring 2020, RPI Christoforides | Dicovskiy

collection of relevant literature on mathematical epidemic
models, such as the SIS and SIR models as discussed in sec-
tion 4, we felt we were capable of designing our own model
which in its own capacity is able to visualize the spread of an
epidemic in such a way that is not only based on fact but also
can educate lay people how certain actions and simplified
parameterizations of viruses can affect the overall virulence
and spread of a disease. We wanted our simulation to be ac-
cessible and usable by anyone, so we felt a strong, minimalist,
and straightforward user interface (UI) was important to the
application.
Through interaction with the easy-to-navigate UI, users

are able to select various parameterizations of the virus and
human behavior (only density allowed to be tweaked with
at this time) and visually see the resulting spread and conse-
quences of the hypothetical disease. Various situations can
be created with the limited number of parameters already
implemented and further extensions to this application can
make it ever-more complex and allow for more intricate and
nuanced scenarios which more accurately reflect the spread
and consequences of viruses. In the following sections, we
talk in more detail regarding our motivations, goals, imple-
mentation details, and general results.

2 PROJECT MOTIVATIONS AND GOALS
In this section we discuss the various motivations and goals
for the project and how they relate to the final, developed
product. Section 2.1 discusses our primary motivations for
this project and section 2.2 touches upon other pieces of work
which we found online to help inform the idea structure and
form of our project.

2.1 Motivations
As previously stated in section 1, our motivations lie solely
in the necessity for easily accessible and true information
regarding how viruses spread at a surface level. The current
COVID-19 situation that plagues the world highlights many
holes in peoples’ intuitions regarding how viruses spread
and how various precautions and advice given by govern-
ment organizations and global watchdogs go undigested. As
an example, the state of Georgia in the United States is go-
ing against all advisories given by the Centers for Disease
Control (CDC) and World Health Organization (WHO). The
state is in no better state than it was previously and the lead-
ership there sees it fit to reopen the state to help mitigate
the economic impacts that the virus has had on its citizens
[5].

This is not an isolated incident by any stretch of the imag-
ination. Vocal minorities specifically across the United States
are holding rallies urging government officials to lift the
state-wide shutdowns currently enacted in the majority of

states in the United States. What motivates us the most is
that while these groups are minorities with respect to their
size, they appear to have a significant amount of influence
as we see more and more states flirt with the ideas espoused
by the protesters and intentions of the president [2].
It is because of these instances and a demonstrated lack

of general knowledge online and in media regarding how
viruses spread that we decided to create this project.

2.2 Miscellaneous Project Inspirations
When designing our project, we took inspiration from two
different sources: one linked to us by our professor from The
Washington Post [7] and another from a YouTube video [1].

Figure 2: Disease spread simulation from Harry
Stephens at theWashington Post [7]. In the non-static
form of the visualization, the agents (circles) move
around and collide with each other; this is how the
disease is spread. Additionally, the graph at the top up-
dates as the simulation continues and shows the por-
tions of the population who are susceptible, infected,
or removed.

The first, as seen in figure 2, highlights moving agents in
a simulation and uses contact between them to determine
whether or not a susceptible agent becomes infected; it also
shows a stream-like graph which communicates the propor-
tions of each population in the simulation colored by their
infected status.While this implementationwas accomplished
in D3 (https://d3js.org/), we thought it would be possible to
implement something similar in a native desktop, python
application instead. Additionally, we saw their version of the
stream-like graph and sought to make something similar on
a larger scale so that it was easier to read. Furthermore, the
author’s explanation of various situations that they setup in
the simulation inspired us to think about possibly having a
mechanism for allowing custom creation of scenarios with
hand-drawn boundaries, but the time we had for the project

https://d3js.org/


ViruSim: An Interactive Epidemic Simulator Interactive Visualization, Spring 2020, RPI

did not permit this and will be explored further in section
8 where we discuss possible future work extensions to our
existing project.

Figure 3: Disease spread simulation from
3Blue1Brown, a YouTuber [1]. This visualization
similarly utilizes moving agents (as seen in figure
2) and throughout the video demonstrates various
scenarios and analyzes their impacts on the overall
spread of the disease. Notice how this visualization
also has a stream-like graph; inspiration for ours
came from here as well. Notably, the shown scenario
of quarantining 50% of the infectious cases can be
seen and acted as a catalyst for us to think of other
types of situations that we could implement and
control in the future.

The second miscellaneous project inspiration came from
a YouTube video titled “Simulating an epidemic” by YouTu-
ber 3Blue1Brown [1] (see figure 3). This simulation can be
characterized as very similar to the one created by Harry
Stephens from The Washington Post as the both feature
moving agents and a live-updating stream-like graph to com-
municate the number of agents who are susceptible, infected,
and removed over time. This resource in general proved to
be insightful however since the video covered many more
possible scenarios that you can construct with a simulation
like theirs and allowed us to ponder many new features and
possible extensions (discussed in section 8) that we could
integrate into our project.

2.3 Goals
Goals for this project can be categorized as both abstract and
technical. To understand what these are, please read sections
2.3.1 and 2.3.2 respectively.

2.3.1 Abstract Goals . Our goals with this project can gener-
ally be understood as providing an easily accessible piece of
software which allows people who do not understand viruses
and the general mechanics of disease spread to come to de-
velop a better, fact-based intuition regarding how viruses

actually spread given a set of simplistic parameters which
govern how the simulation is ran.When planning the project,
we knew that we did not want to target experts or provide
a piece of software to them which can help them develop
models and legislative policy since the existence of this type
of software for them already exists and is magnitudes more
complex than the type of software we initially set out to
write. From a survey of popular media sites and reactions
by people online, it was clear that many people did not fully
understand why stay at home orders and social distancing
policies are so essential in the fight against a disease like
COVID-19; this led us to generate our goal of making this
type of software. Substantively, the simulation should be eas-
ily understood and the parameters should be self explanatory
so that the barrier to entry regarding the use of our software
would be as low as possible.

2.3.2 Technical Goals . From a technical perspective, our
goals primarily pertain themselves with being able to not
only create an application capable of simulating the spread
of a disease under various parameterizations but also easily
communicating those results to viewers through a graph-like
visualization. While giving the user an area where they can
see the raw numbers of agents in the simulation who are
susceptible, infected, or removed, is nice, we believe that
this is not good enough in allowing people to develop the
intuition we have mentioned in prior sections. To alleviate
this shortcoming, another technical goal we have is creating
and implementing a type of live-updating graphwhich is able
to clearly communicate the proportions of the population
which fall into the three categories which label every agent in
the simulation (susceptible, infected, removed). Additionally,
to better digest the results of the simulation and to give users
a view of how changes in the simulation parameters give
rise to varying consequences in the effect of the virus spread,
a pause and resume and restart simulation mechanism is
necessary, and thus another goal for our project.

3 AUDIENCE, RESEARCH QUESTION,
AND HYPOTHESIS

Below is a review of our target audience, proposed research
question, and following hypothesis.

3.1 Audience
The audience for this project was rather important to define.
This is primarily a tool meant for lay people not necessarily
knowledgeable about the spread of diseases; the audience
can be loosely defined as anyone interested at seeing the
occasional cataclysmic sequence of chain reactions that con-
stitute an epidemic, from a third-person, almost bird’s eye
view. If we could magically make people use our application,
we would target everyday people who currently do not have



Interactive Visualization, Spring 2020, RPI Christoforides | Dicovskiy

a grounded intuition regarding how viruses spread and how
certain aspects of viruses and human behaviors directly con-
tribute to the overall success of a virus. A specific audience as
an example would be the people previously mentioned who
are protesting the government to lift stay at home orders; if
they understood the ramifications of doing this, not only in
an economical sense but also in terms of the resulting virus
spread, then we believe the intuition they would gain would
lead them to change their general position regarding policies
enacted by the government to stymie the spread of the virus.

3.2 Research Question
Can an application made for lay viewers communicate the
effectiveness of the recommendations given by government
bodies and health officials in an epidemic or pandemic sce-
nario? Our primary target audience helped us to come up
with this research question for our project. In a time where
it appears that many do not understand the fundamentals
regarding how viruses spread, we saw it fit to create an ap-
plication which is easily accessible and understandable by
most lay users to help them gain an intuition regarding how
viruses spread and how various things like social distancing
help to mitigate the destructive nature of the virus currently
spreading. Even though in-depth answering of this question
would most likely require a user study (which is unfeasible
for this project), we can make general assumptions and im-
plement best practices which have already been proven to be
useful in helping to communicate results to the viewer in an
effective manner; one such finding we draw upon is using an
attractive, slightly-modified, color-blind aware color scheme
from ColorBrewer (https://colorbrewer2.org/) to color our
agents and detail our live-updating graph.

3.3 Hypothesis
We hypothesize that after end users toy around with the
parameters of our simulation, they will acknowledge the
importance of the recommendations given by the aforemen-
tioned government bodies and health officials, the most no-
table being social distancing, or at least develop an intuition
which would eventually lead them to understand the rec-
ommendations by government bodies and health officials.
While we cannot guarantee that a user of the application
will immediately understand virus spread at a surface level,
we can confidently assert that they should be able to develop
an intuition which would lead them to viewing the virus in
a way which is more in line with the description from health
officials. Even though this would be hard to test given the
lack of a formal user study (since this is a school project), fol-
lowing best practices to create visualizations like this help us
to rationalize the possibility for users to develop the intuition
we seek to give them through this application.

4 PRIORWORK
Below you can find a small survey of existing academic lit-
erature which we used and expanded upon in the creation
of this project. To create our model, we took inspiration
from the references below and integrated those aspects into
our project to create something based upon prior areas of
research.

4.1 Three Basic Epidemiological Models,
Hethcote, 1989

Hethcote, in his work titled Three Basic Epidemiological
Models, reviews three models for infectious disease spread
and lays out the general math formulations and equations
necessary to not only understand the various models, but to
also simulate them. While both the SIS and SIR models are
reviewed, the third is more or less a description and concep-
tualization of a model which takes into account vaccines and
herd immunity and their subsequent effect on the spread of
the disease. Hethcote goes into precise detail regarding the
notations used to formulate the various models and explains
how subtle variations in each can have a dramatic effect on
the results of the disease spread being modeled [4].

4.2 Agent-Based Simulation Tools in
Computational Epidemiology, Patlolla
et al., 2004

Patlolla et. al put forth an analysis of the state-of-the-art
modeling methods used for simulating the spread of dis-
eases in their paper titled Agent-Based Simulation Tools in
Computation Epidemiology. The authors mention the lack
of computational models relating to epidemiology since the
access to data in the past was more bleak than it is today;
they motivate new methods of computational epidemiol-
ogy through the existence of an abundance of data today
and discuss the benefits of technologies which utilize agent-
based models. Patlolla explains the various usage scenarios
of agent-based and cellular automata models and how each
one is better at modeling various situations like local and
global outbreaks. Throughout the piece, they explain how
some agent-based models are created and the various factors
that can be explored in attempt to more accurately simulate
the locomotion and interactions between humans in a soci-
ety. While they implemented a model based on collected data,
they outline the underlying simulation required to generate
“believable” actions taken by the agents; the theory behind
modeling the “thresholds” as demonstrated by Patlolla et. al
was expanded upon in our implementation of ViruSim [6].

https://colorbrewer2.org/


ViruSim: An Interactive Epidemic Simulator Interactive Visualization, Spring 2020, RPI

4.3 Modelling disease outbreaks in realistic
urban social networks, Eubank et al.,
2004

Eubank et al., in their article Modelling disease outbreaks
in realistic urban social networks, describe the processes in-
volved in their model for simulating disease outbreaks. The
model is based off bipartite graphs which reflect the real-life
patterns of physical contact between people. These bipartite
graphs are meant to represent two elements of the simula-
tion, notably the people and locations; the people here are
edge-connected to locations. These edges are noted by ar-
rival and departure times, indicating when the person came
and left the location. Should two or more people coexist at
a location simultaneously, a disease-harboring agent would
spread the disease to a non-disease-harboring agent. Using
bipartite graphs in this manner is effective in showing the
potential for disease to spread solely based on the presence
of agents in a hypothetical, non-spatial location in a simu-
lation. While this is somewhat contrary to the idea of our
physical 2D simulation, the article provides much insight on
how we could potentially implement graph theory to model
relationships between agents and their physical locations
based on proximity [3].

5 VISUALIZATION DESIGN EVOLUTION
In the following sections, we discuss the design of our visu-
alization and how it has evolved over time.

5.1 Initial Vision and Storyboard
Our initial design for this project revolved around creating
a simulation for easy consumption in addition to helping
people develop an intuition regarding how viruses spread
given a set of easy-to-understand parameters and a clear
visualization method. The initial storyboard used to design
and construct this project can be seen in figure 4.

The initial plan was to create a multi-agent-based simula-
tion which utilizes agent movement and collisions in order
to transmit the disease from an infected agent to a suscepti-
ble agent. Viewers would have been able to see the agents
moving, in real-time, in the main visualization space in the
application and they would be allowed to tweak parameters
pertaining to the simulation in addition the epidemiologi-
cal model which the simulation would use when trying to
simulate the phenomena. While the simulation is running,
a live-updating chart would begin to fill out where each
time slice represents a given time step in the simulation;
the time slices show the proportions of the population who
are susceptible to the disease, infected with the disease, and
removed (killed by or recovered from the disease). These
were the initial design goals we conceived before creating
the implementation, but as explained in section 5.2, not all of

Figure 4: The above is a picture of our storyboard
which we used to plan and design our application.
Take note of the two user stories we included and see
how they are both different from the visuals and func-
tionality of our end result project in figure 1.

these made sense and were later revised to better accomplish
the overarching goals we set out to achieve with this project.

5.2 Design Revisions
Detailed below are three major design revisions we went
through in attempt to make the project useful and function-
ally make sense with respect to the goals we outlined in
sections 2.3.1 and 2.3.2.

5.2.1 Revising Usage of the SIS and SIR Models. When ini-
tially designing the project, we thought it useful to delve
into the details of both the SIS and SIR models described in
Hethcote’s work [4] to devise a simulation which embod-
ies the key characteristics and parameters which exist in
these models. Upon further investigation, however, we noted
that these were the definitive mathematical models which
describe how a virus ideally spreads within a given popula-
tion and does not lend itself towards the abstract goals (see
section 2.3.1) we were trying to accomplish. Simulating the



Interactive Visualization, Spring 2020, RPI Christoforides | Dicovskiy

SIS and SIR models given various parameterizations would
yield the same results every time since the models describe
idealized disease spread in contrast to being a framework
which generalizes disease spread and the various factors
which contribute to it; as previously stated, simulating them
would result in the same simulation outputs to occur each
and every time.
Based on these findings, we made the decision to move

away from these models as the underlying basis for our sim-
ulation and move towards a more agent-based system as
discussed in both [6] and [3]. The prior work mentioned
describes ways to devise meaningful parameters which gov-
ern how simulations, most notably disease simulations, can
operate. This proved more fruitful as it gave us the ability
to create agents which react to these parameters in a non-
deterministic way, thus giving rise to our simulation results
which can be seen through the operation of our applica-
tion; instead of receiving the same results every time, users
can change the carefully-constructed parameters and see
nuanced changes with respect to the findings presented in
the simulation.

As one can see in figure 4, we moved away from the drop-
down item which allows users to select the model they wish
to use and instead kept the simulation parameters box and
additionally added more entries to this list so that more com-
plex and comprehensive simulations could be ran.

Figure 5: This shows our attempt at trying to create
free-moving, circular agents which can collide with
each other with pygame. Unfortunately, as seen in
the picture above, we were not able to generate circu-
lar agents which can collide. Additionally, when the
simulation is ran, the squares were not even colliding
with each other as well. In the interest of developing
a working application which still adhered to our goals
described in sections 2.3.1 and 2.3.2, we opted to switch
to an agent-based, cellular automata based simulation.

5.2.2 Agent-Based Cellular Automata instead of Free-Moving
Agents. Originally, the plan for the main visualization area of

Figure 6: The image above shows our initial attempt
at visualizing the agents in our simulation. As seen in
the image, it is hard to discern certain agent statuses
when they are displayed so small on the screen. Addi-
tionally, it is hard to discern certain geographic distri-
butions and identify how their position and size affect
the overall ability of the disease to spread.

the project was to have circular agents move around freely
and collide with other agents to simulate them passing along
the disease from themselves to another susceptible agent.
This proved difficult however, so we opted to switch to a
hybrid simulation which takes inspiration from both agent-
based simulations and cellular automata based simulations.

The results we received from running the simulation lined
up with various other visualizations on this topic which did
not solely simulate the SIS and SIR models. Despite the diffi-
culties, we were able to generate free moving agents but they
were not circular and did not collide with each other (see
figure 5). While it was not what we initially envisioned, the
new method of visualization still proved useful and faithful
to our goals. In some ways, it may be more effective since it
does not clutter the visualization with many moving agents
and instead discretized the agents which emphasizes their
status and area of effect with respect to the potential agents
they could affect in their immediate vicinity. As future work,
we would like to change this model to use the freely-moving
agent-based method for simulating these phenomena since
we would be able to introduce a level of complexity per-
taining to the agents which determine how they move and
behave; this would give rise to more complex simulation
scenarios and results that could prove more intuitive.
Along with this change, we originally thought that it

would be better to have more cells visible at once during
the simulation. After seeing this for the first time however,
we saw how tiny each of the agents were and we came to the
conclusion that it would be difficult to discern certain agent
statuses in addition to various geographic distributions in
the data which help prevent further spread of the disease
(see figure 6).



ViruSim: An Interactive Epidemic Simulator Interactive Visualization, Spring 2020, RPI

5.2.3 UI Color Scheme. The initial color scheme at the be-
ginning of the project was undecided, so we both came to
the conclusion that we should employ a color scheme which
captures the eye’s attention in addition to highlight the vari-
ous regions of the application to the user for easy use. When
the initial colors were chosen, we made a conscious decision
to use colors which would really stand out and allow view-
ers, especially those with some troubles seeing, to be able to
discern the various parts of the application. In figure 7 you
are able to see the initial coloring we decided to use.

Figure 7: This is an image which shows the old user
interface coloring that we initially had for our project.
While it was mainly used for debugging purposes, we
chose colors that were different in order to help some
viewers identify which panel they were looking at
more clearly. The colors selected here were too sat-
urated and had no coherent theme, but the underly-
ing principle behind selecting them remained present.
The final version of our application utilizes one main
background color since it is more aesthetically pleas-
ing and panels could still be distinguished easily due
to the difference in brightness between panel back-
grounds and the application’s background.

After merging both parts of the code together (UI and
simulation), we took the time to analyze what we had and
switched the color theme so that there was one dominant
color which represented the four panels in the simulation
rather than use four different colors to accomplish the same
thing. Looking back, the original design, while it probably
would never have been used as the final product, looked
like a child made it. The main ideas were decent in that we
were thinking of using different colors to help some users of
our application, but the initial selections were too saturated
and eccentric. While they were mainly chosen for debug-
ging purposes, they were also selected in the same vain in
which we opted to use larger agent sizes; for some users,
one main color may not be as easy to see and this would
possibly have the ability to confuse viewers with respect to
what panel they were looking at. We eventually switched to
using one main background color and a darker shade of the

same color to distinguish the panel backgrounds from the
main background. We believe this to be just as effective; the
equidistant spacing between all the panels in the visualiza-
tion also contribute to a users ability to separate the panels
at which they are looking at and generally creates a more
coherent presentation for viewers to look at and analyze
results of the simulation.

6 VISUALIZATION DESIGN FEEDBACK
AND CRITIQUES

When creating this project, we were initially given some
feedback regarding our scope and possible extensions to the
proposed idea to make it better.

One comment revolved around making a Plague Inc. type
of game/visualization and to allow users to paint virus areas
in the visualization and see the corresponding results. While
this was never implemented, we saw it fit, given the current
functionality of the project, to create infected agents in a
random manner for now. Due to time constraints of adding
this extra level of interactivity, we believed it not feasible
within the given time frame. This is not to say, however, that
it was a bad suggestion by any stretch of the imagination. As
discussed in section 8, you can see our discussion regarding
more interactive painting features and can clearly see how
this influenced our thinking in this area.

Another pertained to allowing the user to specify the more
biologically-relevant factors of a virus to more accurately
simulate its spread. While this is an enticing extension to the
project, we again felt that it would not only be unfeasible
during the time allotted, but also way too complex and would
hinder the ability for our target audience to gain a surface
level intuition regarding virus spread and the ability for
modified human behavior to help curb its spread.

The SIR and SIS models were also mentioned as a point of
feedback towards us; while they were great to read about and
helped us develop the various parameters currently present
in our simulation, they are not useful with respect to simula-
tion since simulating them would yield the same results over
and over again unless a new parameterization was chosen
for the factors which are considered in those models. While
this is true, it led us to consider the potential use of the SIS
and SIR models in a comparison type of view which would
allow users playing with the simulation tool to understand
how the results they are seeing line up with an idealized
form of the virus spread. While not implemented, we discuss
this further in section 8.

One important recommendation we received was regard-
ing the overall scope of the application.When initially pitched
as an idea, all of the existing material was present, but also
other features such as multiple disease spread models and



Interactive Visualization, Spring 2020, RPI Christoforides | Dicovskiy

more complex agent models were part of the proposed de-
sign. When reading this feedback, it helped us to identify
which parts of the application were most critical given the
time constraint in addition to allowing us to hone in on our
audience and create an application which best targets them
and still achieves our goals outlined in sections 2.3.1 and
2.3.2.

Last, but certainly not least, while we presented our project
during class, one person mentioned possibly adding a health-
care utilization parameter which would simulate consump-
tion and over-exhaustion of real-world resources which are
necessary to deal with diseases. For further explanation of
this, please see section 8 which describes the potential areas
for future work on top of our existing application.

7 IMPLEMENTATION DETAILS AND
CORE FEATURES

Below is a survey of various existing libraries, custom data
structures, and algorithms we used in the creation of this
project. For quick reference, section 7.1 discusses the third-
party libraries we chose to use, section 7.2 discusses the main
features of the application, section 7.3 describes the custom
data structures we opted to use, and section 7.4 chronicles
the details of the algorithm that we employed to run the
simulation. Furthermore, section 7.5 explains the various
challenges we encountered along the way while developing
this project.

7.1 Usage of Existing Libraries
The visualization of our simulation model came about from
usage of the PyGame library. This extensive library was
mostly used to draw two-dimensional shapes onto the screen,
shapes which are representative of our agents. The library
also helped in creating the four panels present in the sim-
ulation in addition to allowing us to color our agents with
convenient RGB combinations. All of these necessary tasks
were accomplished via the pygame.draw.rect() function,
which would specify the coordinate location, size, and color
of a rectangle. On top of this, the library enabled us to create
the window, set the desired window properties, and allowed
us to specify that our application should be double-buffered
to avoid screen tearing.
ThorPy (http://www.thorpy.org/), a small library devel-

oped by Yann Thorimbert, was used for the creation of the
user interface employed in our application. ThorPy enabled
us to easily create interactive user interface elements which
can be fiddled with in order to tweak the settings currently
employed in the simulation. This library, while most features
were undocumented, gave us many freedoms with respect
to stylizing the elements in our desired way. Most impor-
tantly, the ability to group these elements in menus and

position them quickly and easily in the application made
our development process all the more quick. As previously
mentioned, most features in this library are undocumented,
one being how to retrieve data from the element, but after
looking through one of a handful of examples, we were able
to discern how to accomplish this and to our surprise, it was
trivial.

7.2 Core Features
The ViruSim application window is segmented into four dis-
tinct sections that make up the features of the project. First,
the simulation section that takes up the majority of the space
in the application is where the visual aspect of the simulation
takes place. This naturally takes up the most space in the
application because it is the main feature. The agents in the
simulation are color-coded with visually qualitative colors
to distinguish between different states. This simulation is
always updating with agents changing color in a manner
that reflects the rules of the model. We hope that being able
to actually see the epidemic spread around this fixed area
is of enough interest to encourage users of the application
to toy around with the next feature, the parameters. The pa-
rameters encompass the interactive aspect of this interactive
visualization. This feature is meant to keep the user engaged
with designing the myriad of scenarios possible for an epi-
demic to spread. There are sliders and text boxes that allow a
user to change the infection chance, the infection radius, the
population density, the removal chance, the initial amount
of infected agents, and the random seed. Along with this,
there are buttons to run, pause and restart the simulation.
Next, is the graph which is nestled in the upper left corner
of the application. This feature informs the user, in a more
straightforward manner compared to the visual simulation,
the proportion of susceptible, infected and removed agents.
This is updated simultaneously with the visual simulation.
Finally, below the visual simulation is the statistics section.
This small feature is updated with every tick and keeps track
of the actual numerical composition of the agents’ statuses.

7.3 Data Structures
The ViruSim application requires a number of data structures
to organize and encapsulate distinct portions of code.

7.3.1 Agent. An Agent object is contains all the code that
is relevant for agents being updated at every tick of the
simulation, drawn to the screen, check for infection, and
check for recovery. These last two processes are dependent
upon the Disease object that the Agent class houses as a
member variable.

7.3.2 Disease. The Disease class behaves more as a struct
as it has no member functions, instead serving more as an

http://www.thorpy.org/


ViruSim: An Interactive Epidemic Simulator Interactive Visualization, Spring 2020, RPI

organizational body for a disease’s traits. It contains a ra-
dius, an infection chance and a removal chance, all three of
which are parameterized by the user. There is also a boolean
member variable that indicates whether the Agent with this
Disease object is recovering or not.

7.3.3 grid. Finally the data structure that contains all of
these agents is a two-dimensional Python list, grid. This
list has matrix-like indices that take into account the spatial
location in the simulation. For example an Agent at position
grid[0][0] is to the left of an Agent at position grid[0][1]
in the actual simulation.

7.3.4 UIPanel. Every user interface panel in the applica-
tion was modularized and created with a helper class in order
to create easily customizable panels for the content to be
placed within. Each UIPanel object was represented by a
position (𝑥 , 𝑦) and a width and height (𝑤 , ℎ). Additionally,
the panels contains optional header text which can be ren-
dered directly in the top-center of the panel using a member
function render_panel_title_text(). Through this and
other helper functions like get_title_height(), position-
ing other UI elements in those panels was made trivial and
allowed us to focus on other parts of the application’s devel-
opment.

7.3.5 Graph Data. To render the live-updating graph, a
list structure was used to contain all of the previous line
segments for all previous time steps. PyGame requires the
program to redraw all elements on the screen every frame so
caching the red, blue, and purple line segments for each frame
was necessary. To accomplish this, the list was formatted as
follows: 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 = [𝑠1, 𝑠2, 𝑠3, ..., 𝑠𝑛] : 𝑠𝑖 = ((𝑠𝑡𝑎𝑟𝑡𝑥 , 𝑠𝑡𝑎𝑟𝑡𝑦),
(𝑒𝑛𝑑𝑥 , 𝑒𝑛𝑑𝑦), 𝑐𝑜𝑙𝑜𝑟 ). The various 𝑥 and 𝑦 positions in the list
correspond to the start and end locations of a given line
segment; while drawing the segment, PyGame utilizes the
color argument to color the actual line. This means that for
each line drawn to the screen, three sub-lines are drawn.
Every frame, the application iterates over the entire list and
redraws all of the lines so that prior time slices are repre-
sented and new ones are continually added to the list for
visualization.

7.4 Simulation Algorithm Discussion
Before the simulation can begin, a set amount of agents
must be spawned into grid depending upon the population
density parameter. This random distribution is achieved by
iterating through each slot in grid, producing a pseudo-
random number between 0.0 and 1, and initializing an Agent
in that slot if the generated number is below the population
density parameter. Simultaneously, initially infected agents
are also populating grid in random locations.

After grid is populated, the simulation can commence.
The simulation enters a loop that iteratively updates the
agents. Because only infected agents can alter the state of
the simulation, we only really have to check whether an
infected agent infects its neighbors, or removes itself from
the simulation.
For an Agent to infect another, it must itself be infected.

When this occurs, either by being an initial infected, or being
infected by another, it must, at every tick of the simulation
check its neighbors, generate pseudo-random numbers be-
tween 0.0 and 1 for each neighbor, and infect those with
numbers lower than the infection chance parameter deter-
mined by the user. The number of neighbors for each agent
is determined by the radius parameter, and can be explained
simply as the number of "rings" around an Agent. For ex-
ample, a radius of 1 would check the maximum 8 agents
that surround any Agent in the grid, besides those on the
boundaries. A radius of 2 is checking the neighbors of radius
1 neighbors along with the "ring" of agents that envelop the
radius 1 neighbors. This pattern is repeated for higher radii.
An Agent that has been infected by this process must par-
take in this infection checking of its neighbors, meaning the
speed of the simulation is often significantly slowed with a
significantly large amount of infected agents.

For an infected Agent to remove itself from the simulation,
it must also perform a pseudo-random number check. This
check is, like an infection check, done at every tick of the
simulation. If the 0.0 to 1 number generated is below the user
parameterized removal threshold, the infected Agent is now
considered removed and unable to infect or be infected.

7.5 General Challenges
An impediment faced during the programming of the model
forced us to change the model itself. We initially outlined
a model that would involve moving agents that would ran-
domly bump into each other in order to spread an infection.
But while almost everything was in place for this version of
the simulation to materialize, complications with PyGame’s
collision logic forced us to take drastic measures and build
current model. It was a shame really that we were unable
to get our initial model up and running, especially since it
meant we had to scrap a significant amount of code that did
work. For example, it took us quite a while to write up code
that had agents moving in an organic-looking manner. But
after struggling with PyGame’s implementation of collision
checking for almost two days, and panic setting in regarding
the deadline of the project, we made the difficult decision
to cut our losses with the progress we had made with our
original model.



Interactive Visualization, Spring 2020, RPI Christoforides | Dicovskiy

8 FUTUREWORK
There are many directions that ViruSim can be taken, but
most work will seem to center around adding more features
in the way of parameters, a tool that allows for the compari-
son of different models, a tool that allows for custom scenario
design, and a conversion from our current cellular automata
model to our original free-roaming agent simulation.
Firstly, adding more parameters could be have beneficial

use to the user in terms of interactivity, and an improvement
in general to the simulation as it promotes better fine-tuning
of an epidemic scenario. These parameters could include,
but are not limited to, a healthcare system, a governmen-
tal body system, and an Agent age system. The healthcare
system may take the form as a limited number of hospital
beds, which would have the benefit of improving the speed
at which agents are removed from the simulation, simultane-
ously decreasing the rate at which new agents are infected.
This could be interacted with a slider that determines the
maximum amount of hospital beds usable by agents. The
governmental body system could be implemented as an alter-
ation of behavior for the agents. Imagine this governmental
body enforcing social distancing, or quarantine. If this were
the case agents in the simulation would have to spatially
distance themselves from other agents in the case of social
distancing, or move into clusters in case of quarantine. This
behavior is not implementable with the current limitations of
Agent behavior, but could be given future improvements to
the model. Finally, an age system for the agents in the model
could allow for some interesting dynamics. Very young or
very old agents could be removed from the simulation at
faster rates simulating the weakened immune systems of
these two groups of people.

Having the ability to compare between different epidemic
models would be very interesting to see. As rudimentary
as the simulation is in its current state, it would still be
important to see how the model stacks up against the more
tested mathematical models of SIS and SIR. This tool would
be invaluable for future development of ViruSim as it is
crucial that we produce simulation results that are at the
very least comparable to these older models.

A custom scenario design tool would also be intriguing to
have for promoting increased interactivity and subsequently
user retention. This tool would allow users to paint bound-
aries or walls in the simulation space. These boundaries
would block infections from passing between two agents
on both sides of the boundary, leading to an overall change
in the spread of an epidemic. What’s interesting about this
tool is that it could be implemented with the current cellular
automata model of the simulation.
Finally, the free-roaming implementation we wanted for

our original simulation is of key importance for future work.

Not only does it more closely mimic the movements of hu-
mans, but it allows for the development of the previously
mentioned future work. Having free-roaming agents could
also contribute to the overall user experience as seeing agents
bounce around is a muchmore interesting display when com-
pared to a grid of position-bound agents.

9 PROJECT ROLES
The following section describes what each member of the
group contributed to the project.

9.1 Alexander D. Christoforides
Alexander was primarily responsible for developing the user
interface and extracting relevant data from user interactions
in order to setup the simulation with the appropriate param-
eters which have been selected. Additionally, Alex worked
on modularizing the user interface code to allow for easy
creation of UI panels with header text. Moreover, he was
tasked with integrating ThorPy into the application so that
the various sliders, text boxes, and buttons were functional
and synced with the locally-stored parameters for the simu-
lation. Lastly, Alex primarily merged both halves of the code
(from Alex and Chris) and put the finishing touches on the
application so that the debug color scheme used for the UI
was no longer present and a new, attractive color scheme
was instead employed.

9.2 Chris Dicovskiy
Chris was responsible for the simulation side of program-
ming, the overall implementation of the simulation model
using PyGame. To this extent, he was tasked with learning
enough PyGame to get a working simulation up and running.
When working on the original free-roaming model, he wrote
a significant amount of code that dictated the movement
patterns of agents, only to have such work wasted when
he was faced with difficulties regarding PyGame collision
detection. After this hiccup, he promptly set out to build the
humbler cellular automata model, that ViruSim currently
has. This includes all data structures and simulation logic
that are relevant to the running of the model.

9.3 Both
Both Alex and Chris were responsible for coming up with
the initial design for the application, creating the in-class
presentation, and writing this paper. Additionally, they both
worked together to debug frustrating bugs and helped each
other develop easily maintainable and extendable code so
that if future work were to happen on the project, it would
not be too difficult to make the model more complex or
update the UI to include more views and interactive features.



ViruSim: An Interactive Epidemic Simulator Interactive Visualization, Spring 2020, RPI

ACKNOWLEDGMENTS
To Barb Cutler and everyone else who provided invaluable
feedback and critiques to help make our project more focused
and be the success that it is. Also to Yann Thorimbert for
creating the ThorPy (http://thorpy.org) GUI library with easy
integration with PyGame.

REFERENCES
[1] 3Blue1Brown. 2020. Simulating an Epidemic. https://www.youtube.

com/watch?v=gxAaO2rsdIs
[2] Julie Bosman, Sabrina Tavernise, and Mike Baker. 2020. Most People

Back Stay-at-Home Orders. Here’s Why Some Are Protesting Them.
https://www.nytimes.com/2020/04/23/us/coronavirus-protesters.html

[3] Stephen Eubank, Hasan Guclu, V. S. Anil Kumar, Madhav V. Marathe,
Aravind Srinivasan, Zoltán Toroczkai, and Nan Wang. 2004. Modelling

disease outbreaks in realistic urban social networks. Nature 429, 6988
(2004), 180–184. https://doi.org/10.1038/nature02541

[4] Herbert W. Hethcote. 1989. Three Basic Epidemiological Models. Springer
Berlin Heidelberg, Berlin, Heidelberg, 119–144. https://doi.org/10.1007/
978-3-642-61317-3_5

[5] Nathaniel Lash and Gus Wezerek. 2020. Why Georgia Isn’t Ready to
Reopen, in Charts. https://www.nytimes.com/interactive/2020/04/24/
opinion/coronavirus-covid-19-georgia-reopen.html

[6] Padmavathi Patlolla, Vandana Gunupudi, Armin R. Mikler, and Roy T.
Jacob. 2006. Agent-Based Simulation Tools in Computational Epidemi-
ology. In Innovative Internet Community Systems, Thomas Böhme, Vic-
tor M. Larios Rosillo, Helena Unger, and Herwig Unger (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 212–223.

[7] Harry Stephens. 2020. These simulations show how to flatten the
coronavirus growth curve. https://www.washingtonpost.com/graphics/
2020/world/corona-simulator/

http://thorpy.org
https://www.youtube.com/watch?v=gxAaO2rsdIs
https://www.youtube.com/watch?v=gxAaO2rsdIs
https://www.nytimes.com/2020/04/23/us/coronavirus-protesters.html
https://doi.org/10.1038/nature02541
https://doi.org/10.1007/978-3-642-61317-3_5
https://doi.org/10.1007/978-3-642-61317-3_5
https://www.nytimes.com/interactive/2020/04/24/opinion/coronavirus-covid-19-georgia-reopen.html
https://www.nytimes.com/interactive/2020/04/24/opinion/coronavirus-covid-19-georgia-reopen.html
https://www.washingtonpost.com/graphics/2020/world/corona-simulator/
https://www.washingtonpost.com/graphics/2020/world/corona-simulator/

	Abstract
	1 Introduction 
	2 Project Motivations and Goals
	2.1 Motivations 
	2.2 Miscellaneous Project Inspirations 
	2.3 Goals

	3 Audience, Research Question, and Hypothesis
	3.1 Audience
	3.2 Research Question
	3.3 Hypothesis

	4 Prior Work 
	4.1 Three Basic Epidemiological Models, Hethcote, 1989
	4.2 Agent-Based Simulation Tools in Computational Epidemiology, Patlolla et al., 2004
	4.3 Modelling disease outbreaks in realistic urban social networks, Eubank et al., 2004

	5 Visualization Design Evolution
	5.1 Initial Vision and Storyboard
	5.2 Design Revisions 

	6 Visualization Design Feedback and Critiques
	7 Implementation Details and Core Features
	7.1 Usage of Existing Libraries 
	7.2 Core Features 
	7.3 Data Structures 
	7.4 Simulation Algorithm Discussion 
	7.5 General Challenges 

	8 Future Work 
	9 Project Roles
	9.1 Alexander D. Christoforides
	9.2 Chris Dicovskiy
	9.3 Both

	Acknowledgments
	References

