
A Visual Comparison of Piano Performance
Kevin Mackenzie
Linus Koepfer
mackek4@rpi.edu
koepfl@rpi.edu

Rensselaer Polytechnic Institute

Figure 1: Visualizing the first few phrases of Schubert’s Impromptu in E-Flat major (D.899 No.2) with corresponding note
alignment enabled; imperfect recordings produced by author

ABSTRACT
When performing a piece of piano music, especially those rep-
resentative of the Romantic era, there are elements of the music
beyond the written pitches and rhythms that establish the emo-
tion of the performance. Professional musicians learn to identify
and manipulate these elements in their interpretations, like how
articulation, dynamics, and rubato affect phrasing, and how voic-
ing draws the user attention to certain sequences of pitches. For
non-professionals, it can be difficult to identify and, subsequently,
control these higher-order features of the music. We present the
groundwork for a method of visualizing two performances of a
piece of music comparatively to aid the analysis of such higher-
order features.

1 INTRODUCTION
It is of interest to identify the differences between two performances
of a piece of music to gain better control over the material as a
player. This is true both for comparing one’s own recording to a

textbook or reference recording for "correctness" and for comparing
two equally correct recordings for difference in style.While a skilled
musician can identify these differences by ear, an automated tool for
identifying differences could be useful for learning at a lower level,
especially if consistent professional instruction is not accessible to
the student.

We thus set out to find a way for learning musicians to identify
subtle differences between musical performances that they may
be unable to perceive aurally. We hypothesize that a visualization
of two performances of a piano piece where notes are presented
on the same keyboard, with auxiliary information on tempo and
velocity will allow untrained musicians to perceive more subtle
differences in performance than they could by ear.

Using Musical Instrument Digital Interface (MIDI) recordings of
piano pieces, we propose a tool to create a visual representation of
the difference between two artists’ performances to help novice to
intermediate musicians recognize differences in both correctness
and style that they would not have recognized aurally. In addition



Kevin Mackenzie and Linus Koepfer

to simple user interaction such as moving and scaling the visualiza-
tion, we describe a technique to analyze performance differences
through a modified edit-distance algorithm and visualize the result-
ing discrepancies. Our current tool focuses on a note-by-note pitch
comparison of two performances, but we also discuss comparisons
of tempo and dynamics of a piece.

2 RELATEDWORK
2.1 Music Visualization
Previous forms of music visualization have grouped features of
a musical performance into first-order data, such as dynamics,
note onset and offset, and pedal pressure, from which one can
derive second-order data such as note duration, beat, tempo, and
articulation[4]. First-order data may be captured directly fromMIDI
recordings or through algorithmic analysis of audio recordings[5].
Second order data can then be calculated from these first-order
events as described in the following section.

Many methods exist for visualizing both first- and second-order
data of a single musical performance. The classic score using mu-
sical notation is legible for trained musicians, but discretizes note
timing to rational intervals. A piano-roll with time on the hori-
zontal axis and pitch on the vertical is commonly found in Digital
Audio Workstations (DAWs). Many such programs allow for the
quantization of notes, realigning them to fractional subdivisions of
a musical section, but piano roll visualizations also allow for notes
to be displayed at specific points in time not correlated with musical
subdivisions. While auxiliary markings on a musical score can be
used to indicate tempo and dynamics of a performance, standard
piano rolls lack this capability. This leads to more exotic visual-
izations such as the 3D Piano Roll [4], which displays dynamics,
represented by MIDI note velocity, on the third axis. Other less com-
mon visualizations of musical performances include line graphs of
tempo and velocity over time, and even the performance worm[3],
which tracks tempo on the horizontal axis, and loudness on the
vertical. By animating these performance characteristics over time,
with past points either fading in saturation and/or moving further
into the background, this creates an interesting visualization of the
way a piece rises and falls in both speed and volume.

2.2 Analysis of Second-Order Performance
Data

While it is relatively trivial to calculate second-order musical data
after the completion of a performance, it is desirable to do so in
real-time, to allow the performer live feedback on their interpre-
tation of the piece. One of the more complex tasks is identifying
the location of primary beats in a piece of music without the in-
formation provided by a musical score. An initial attempt at this
task was the use of a single-notion model, which uses a weighted
average of previous perceived tempos and a confidence mechanism
to compute the current perceived tempo. The limitations of this
single required state led also to a beam search model that simulta-
neously considers multiple interpretations of the performance[1]
and prunes the search tree as new information is perceived. Neither
of these methods have been extended to compare the analysis with
a prerecorded performance of the piece.

2.3 Comparison of Musical Performances
Trivial comparison of two versions of a musical performance in-
volve simply displaying visualizations of the two pieces side-by-side,
or perhaps plotting relevant line graphs or performance worms on
the same axes. Such visualizations generally do not display specific
note information, due to the vast area required to display a score
or piano roll. Our tool thus aims to provide note-by-note informa-
tion so that a user may analyze not only the overall differences
in interpretation of a piece, but also the correctness of individual
performances and the liberties taken in improvisations. We do so
by taking advantage of the interactivity provided by a digital envi-
ronment to allow us to display the full set of notes for nontrivial
pieces without overwhelming the user.

Treviño and Sapp[6] provide a music-staff based visualization
method for multiple historical performances, but it is limited in that
it assumes all recordings contain exactly the same musical events
as the reference score. Additionally, a score based visualization
requires knowledge of musical notation, creates visual distance be-
tween two performances making it harder to compare note onsets,
and discretizes note durations to standard musical durations rather
than exact times. They recognize that their use of similar notation
elements to standard sheet music in non-standard ways can also be
confusing. Our aim is thus to create a tool for comparison of per-
formance styles that takes advantage of an alternate visualization
to enable more clear and direct comparison.

The work done by Dannenberg [2] for real-time accompani-
ment is based on a similar dynamic programming as the one we
chose and considers time of note onset in addition to pitch. For
this application, they consider various heuristics based on timing
information and the assumption of coherence in the matching be-
tween the performance and the score. It is designed for monophonic
performances, so they assume that the events are in a set order
and make no attempt to reorder events in the matching. Because of
this, their method is not suitable for matching piano performances
specifically.

3 VISUALIZATION TECHNIQUE
3.1 Performance Visualization
As discussed above, the quantization to rational subdivisions of
musical measures provided by a musical score does not allow us to
effectively visualize the slight differences in note timing between
two musicians’ rubatos, ritardandos, or accelerandos. We therefore
use a piano-roll based visualization, with pitch displayed aligned
with a piano keyboard on one axis, and time in seconds on the other.
Following the layout of most DAWs and time-based visualizations,
we place time on the x-axis and pitch on the y. We propose small
changes to this common visualization to indicate additional met-
rics, such as the use of glyphs or different note shapes to indicate
articulation. We additionally suggest displaying current tempo in-
formation as a line graph on the same time axis, and indicating
pedal data either with another overlaid graph, or with a special
pitch value at the top or bottom of the keyboard. Due to the narrow
time frame for this project, we chose to eschew the development
of these additional features to focus on the primary comparative
visualization.



A Visual Comparison of Piano Performance

Figure 2: Viewing detail and overview length time scales

3.2 Interactivity
3.2.1 Navigation. To allow the display of note data for a full per-
formance without overwhelming the user, we allow for standard
pan and zoom interactions with the piano roll visualization. Users
may use the toolbar at the bottom of the visualization to zoom
either the entire visualization or one axis at a time. Zooming on
the pitch axis rescales the displayed keyboard along the pitch axis,
but keeps the length of the keys consistent to avoid the keyboard
disappearing at overview levels and taking up too much of the
screen at detail levels. Zooming on the time axis adds or removes
axis ticks at additional time subdivisions, ensuring that the axis is
not cluttered at overview levels, and that enough marks exist at
detail levels to allow for analysis, as seen in Figure 2.

Users may use the scroll bars at the bottom and left of the vi-
sualization and the corresponding scroll wheel(s) on their mouse
to move around the piano roll when zoomed in. The scroll bar for
an axis disappears when the visualization is zoomed out to a level
where the full range of that axis is in view. For additional inter-
action, we propose a feature like the "hand" tool in many image
manipulation programs, that allows the user to select the tool in or-
der to click and drag to move the canvas, and then deselect the tool
to return to standard interaction. Once again, there was insufficient
time to implement this feature.

3.2.2 Note Information. In order to allow the user to further an-
alyze the performance, we provide for the highlighting of notes
that are moused over. When the user hovers the mouse over a note,
the note changes color as seen in Figure 3, and note information
is displayed in a toolbar window. This window can be opened and
closed from the view menu, and moved to different areas of the
screen. The window currently displays only the pitch of the note,
but could easily be modified to display note velocity, onset and
offset time, and duration.

3.2.3 The Scrubber. We also implemented a scrubber, as found in
many DAWs, which is a secondary cursor movable along the time
axis. The scrubber spans the width of the pitch axis, and highlights
all notes currently beneath it, as seen in Figure 3. It can be dragged
to a different location by the user, and jumps to the location of
the mouse when the mouse is clicked on the visualization. Other
than these interactions, it remains in a fixed position and can be
scrolled or zoomed off the visible screen. The scrubber is a useful
interaction for allowing the highlighting of multiple notes played
at the same time, allowing the analysis of musical chords (groups

Figure 3: Note relationships can be highlighted with the
scrubber or with the mouse

of simultaneous notes with a harmonic relationship). Additionally,
while we focused on the visual component of the tool, if audio
playback were implemented, the scrubber would be used to indicate
the corresponding location in the visualization of the current audio
when playing and to set the playback point of the audio when
paused.

3.2.4 Menu Interactions. We also implemented a small form of the
standard menu found in most applications. The file menu allows
the user to load their own MIDI performances into the visualiza-
tion, making it a tool rather than a single visualization. The view
menu allows toggling the visibility of the note information pane
(discussed above), and the alignment of notes for comparison (dis-
cussed below).

3.3 Performance Comparison
To enable the comparison of two performances of a piece, we dis-
play the MIDI data of both performances on the same piano roll.
Each performance’s note takes up half the space on the pitch axis
for that note, with notes of one performance always above those
of the other. This would visualize two identical performances as a
standard single-performance piano rolls with split-color notes, and
shows discrepancies in note timing or pitch through non-aligned
note boxes. We also differentiate the performances through note



Kevin Mackenzie and Linus Koepfer

Figure 4: The stroke color of the note rectangles indicate
player "mistakes" (red) and failures to make one-to-one
matchings (orange)

colors, using a paired qualitative brewer color scheme. Each per-
formance has its own qualitative pair, with the lighter color in the
pair indicating currently highlighted notes. Since the black keys on
a piano are narrower than the white keys the MIDI data on black
keys appears narrower. Some software, such as Ableton Live 10,
use uniformly sized keys instead. We speculate that the different
key size would make more sense to piano players, but we have not
collected data to verify this.

3.3.1 Mistakes and Imperfect Matching. Keeping with the theme of
supporting imperfect data, we must visualize when we detect that
notes are incorrect and indicate when perfect matchings cannot be
found. One otherwise unused visual dimension is the stroke color
of the notes. We define mistakes as a one-to-one match of notes
where the pitches of the two notes differ. We use red to indicate
this since red is commonly used for indicating error in software.

If a connected component of a given note has more than two
notes in it, which means it is not a one-to-one relationship, we
consider this a matching failure. Matching failures could be caused
by a error by the performer or the algorithm. We want to indicate
this as an error that is less severe than a mistake, but also want to
maintain good contrast with the two other colors we chose. The
light-orange we use strikes a reasonable balance of contrast with
both the two note colors and the white background, but is not
optimal. Other colors with better contrast may be less intuitive, so
perhaps other visual dimensions could be employed with better
results.

3.3.2 Note Alignment. In addition to highlighting related notes on
mouse and scrubber hover, we allow the user to align matching
notes on the time axis. This option can be toggled via the View
menu. In its current state, it can be used to see how time is stretched
throughout a piece through the variation in onsets of corresponding
events. One method we did not implement that would help the user
explore specific parts of a piece would be to let them choose a
custom focus note that is always aligned instead of aligning at time
zero. This would allow them to see the expansion of time around
any point.

Figure 5: The aligned on and aligned off views can show the
variance of onset times and slight changes in tempo

3.4 Real-Time Comparison
Given more time for the project, our aim was to implement a real-
time component, in which the user could play the piece on a MIDI-
enabled keyboard with played notes animating onto the visualiza-
tion below a pre-loaded reference performance. This would require
dynamic recomputation of the analysis algorithm (discussed below),
and eventually real-time analysis of second-order characteristics to
display volume and tempo information. Ultimately, we determined
that such analysis is computationally complex, and that the only
required real-time components would be MIDI playback and record-
ing. Analysis could be performed either with a delay (as for note
alignment), or in a single pass at the conclusion of the recording
(as for tempo and volume information).

Allowing the user to record themselves in-program is a valuable
convenience since they may want to iteratively record and analyze
themselves against a reference to emulate others’ techniques, verify
evenness, or evaluate any other metric they choose. Allowing them
to play-back both recordings separately in-program could help
reinforce the aural recognition of such elements.



A Visual Comparison of Piano Performance

4 IMPLEMENTATION
4.1 Note-by-Note Performance Comparison
As the back-end of the comparative elements of the visualization
is an algorithm for matching MIDI events between two streams
of note-on/note-off events. We do a short pre-processing step that
reduces the event stream into only note-on events and encode the
duration of the note in each note-on event. Each of these consolidate
events is treated as a character in a string and the pair of strings
are run through a variant of edit-distance we devised.

4.1.1 Algorithm Formulation. The classic edit-distance problem
between string 𝐴 = 𝐴1𝐴2 ..𝐴𝑖 and string 𝐵 = 𝐵1𝐵2 ..𝐵 𝑗 is defined as

𝑤𝑒𝑖𝑔ℎ𝑡 (𝑖, 0) = 𝑖 ∗𝑤𝑖𝑛𝑠𝑒𝑟𝑡

𝑤𝑒𝑖𝑔ℎ𝑡 (0, 𝑗) = 𝑗 ∗𝑤𝑑𝑒𝑙𝑒𝑡𝑒

𝑤𝑒𝑖𝑔ℎ𝑡 (𝑖, 𝑗) =𝑚𝑖𝑛


𝑤𝑒𝑖𝑔ℎ𝑡 (𝑖 − 1, 𝑗) +𝑤𝑑𝑒𝑙𝑒𝑡𝑒

𝑤𝑒𝑖𝑔ℎ𝑡 (𝑖, 𝑗 − 1) +𝑤𝑖𝑛𝑠𝑒𝑟𝑡

𝑤𝑒𝑖𝑔ℎ𝑡 (𝑖 − 1, 𝑗 − 1) +𝑤𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚 (𝐴𝑖 , 𝐵 𝑗 )

If one considers each note to be a character in the string, then one
can apply the edit-distance algorithm literally. However, one key
feature of the piano, and of non-monophonic music in general, is
that multiple pitches may be played at nearly the same time (i.e.
chords), so the order they occur cannot be predicted. Since our
method is designed to work on imperfect reference files, we cannot
assume the order of corresponding notes.

To achieve reordering of pitches, we accumulate a bipartite graph
at each tile. For each the (𝑖, 𝑗 − 1) (insertion), (𝑖 − 1, 𝑗) (deletion),
and (𝑖 − 1, 𝑗 − 1) (match/transform) case, we add corresponding
edges to the graphs. For the (𝑖, 𝑗 − 1) case, instead of attaching an
edge from 𝐴𝑖 to 𝐵 𝑗−1, we instead search backwards within a small
time window of 𝐵 𝑗−1 to find the pitch that most closely matches
the pitch of 𝐴𝑖 . For closely matching inputs, this will find the most
recent note of the same pitch in the other string. The (𝑖 − 1, 𝑗) case
is analogous to the (𝑖, 𝑗 − 1) case and the (𝑖 − 1, 𝑗 − 1) case performs
this edge insertion method both from 𝐴𝑖 to 𝐵 𝑗 and from 𝐵 𝑗 to 𝐴𝑖 .
Note that these graphs are not multigraphs and duplicate edges
are ignored. While this edge insertion logic does help to ensure an
optimal solution is found at every step, the meaning inherited from
edit distance of matching or transforming characters is lost.

To assign a weight to a given graph to determine which case is
optimal, we considered several different metrics. The most obvious
metric is pitch, but additional metrics like note velocity, and timing-
related features were also of interest. Since the variance of dynamics
is more closely tied to the use of second-order methods, we found
it not suitable for matching. For timing, we did consider a metric
that would use the onset frequency in the neighborhood of the
two notes to project the position of the two notes in each other’s
time-space, but this was largely unreliable, and, similar to dynamics,
highly dependent on the use of second-order methods that require
higher-level analysis. Relative timing does not necessarily predict
matching well.

Due to the unreliable nature of these other metrics, we decided
to use pitch as the sole metric for weight on the edges of the graph.
However, another metric for the quality of a matching is the number
of orphan nodes. Since our edge insertion method allows reordering

Figure 6: Graphviz render from Chopin B.150 matching

within a time window, any nodes of degree zero within the reorder
window are not considered orphans, but all notes before are. We
found a good total weight to be the sum of the squared pitch-
difference of edges and the number orphan nodes times a constant.
Further tuning will be required to handle cases with non-trivial
missing or added sections in a way that makes sense musically,
however.

One artifact of this method, since we don’t penalize edge count,
is that it produces connected components of notes of the same
pitch when the distance between any connected pair is less than
the reorder window. For the case that the connected component
has the same number of notes on each side, we can simply remove
edges that aren’t between notes of the same index in time-order.
For the case that the connected components do not have the same
number of notes on each side, we leave it be. It should be noted
that in the latter case, cutting some of the edges would make sense
improve the results, but we did not investigate such improvements.

To validate results for small inputs prior to a sufficient visual-
ization, we use Graphviz. Fig 6 shows a small excerpt from Chopin
B.150, which was a piece we chose for testing since its pitch content
is relatively simple and can be played very expressively. The edge
crossings on this snippet shows the same second-inversion D chord
played twice in sequence and, in both recordings, the three notes
appear in different order the second time.

4.1.2 MemoryOptimizations. There are two primary optimizations
to make this algorithm run with satisfactory memory usage.

First, edit-distance only relies on two diagonal lines at a time
while writing to a third. This means that we only need to keep
track of three diagonal lines worth of memory at a time (which is
the length of the smaller string at most). This insight brings the
number of tiles in memory from 𝑂 (𝑛2) to 𝑂 (𝑛).

Second, if one assumes an upper-bound on the connectivity of the
graph, since single notes should rarely be connected to very many
other notes, the size of the graph can be reduced from 𝑂 (𝑉 + 𝐸) ≈
𝑂 (𝑛2) to just 𝑂 (𝑉 ) = 𝑂 (𝑛). Additionally, this optimization lets us
define the graph edges as a pair of contiguous arrays (left-to-right
and right-to-left), which yields constant-time lookup, insertion, and
deletion and fast copying. This reduces per-tile memory usage from
𝑂 (𝑛2) to 𝑂 (𝑛).

With these two optimizations, we reduce memory usage from
𝑂 (𝑛4) to 𝑂 (𝑛2), which, in practical terms, reduces memory usage
from petabytes to single gigabytes for 2-minute long pieces of high
complexity (𝑛 ≈ 2500).

4.1.3 Parallelism. We use the diagonal-line method for paralleliz-
ing the edit-distance algorithm. This method takes advantage of
the fact that tiles along diagonal lines running from the bottom-left
to the top-right are independent of each other. Each of these can be
run in parallel and synchronize when the diagonal line is complete.



Kevin Mackenzie and Linus Koepfer

A GPU-based method we did not have time to implement would
be to design a kernel program that processes all tiles along a diag-
onal line running from top-left to bottom-right and synchronizes
with all of the other running kernels after each step. Although there
is some overhead with synchronization, we suspect this would be
faster than re-launching the kernels from the CPU for each diago-
nal line. Large numbers of tiles would be idle in the beginning and
towards the end as the length of the diagonal lines are small, but
most clusters of threads would either all be running, or all be idle.
Only two clusters of threads should suffer from a shared instruction
pointer, where some of the threads are idle and some are doing
work, which means overall utilization scales well with the string
size. Since each tile only accesses tiles in its neighborhood, we can
get good memory locality with this method.

4.2 Tools and Technology
Due to the computational complexity of the analysis algorithm, we
chose to implement our tool using the C++ programming language
due to its overall low overhead, low-level memory operations, and
first-class support for parallel libraries like OpenMP. We chose
the Qt User Interface framework for our user interface due to its
extensive documentation and cross platform support. By choosing
a C++ user interface framework, we attempt to avoid the difficulties
with language interop. We used Qt’s QWidgets to assemble the
primary interface, including file loading, window management,
and toolbars. We used Qt’s QGraphics framework as the canvas
element for our piano roll visualization. While this canvas is lower
level and less convenient than web-based user interface, it offers
an acceptably high level of control without too much complexity.
As the authors were using different operating systems, we used
CMake to ease cross-platform development, but did not add linking
declarations required for Windows platforms.

4.3 Division of Labor
The first author (Mackenzie) focused mainly on the note matching
algorithm and the visualization of the calculated note relationships
(or lack thereof). The second author (Koepfer) focused primarily on
interactivity, including navigation, the axes and the scrubber, and
note highlighting. Both authors contributed evenly to overall devel-
opment and refactoring of the code, to the creation of the project
proposal, presentation, and this paper, and to the presentation of
the project.

5 EVALUATION
During the development and presentation of this work, we received
feedback about the visualization in the form of questions and cri-
tiques from students and the professor, but did not reach a point in
completeness to work directly with out target audience for feed-
back.

One question was about the placement of the piano axis on the
vertical axis versus the horizontal. While it is unnatural to see a
piano vertically as we have it, it is common to use the horizontal
axis as the time-axis in audio and video editing software. The hori-
zontal piano orientation may be more natural for players who are
unfamiliar with software, especially if recording in-program, so we
would like to support both layouts.

Another question was the use of outlining on notes instead of
shading to indicate mistakes or mismatches. While it is possible
to encode several more note states in the shaded color of the two
parts, we decided that the we wanted to preserve the information
notated by the two states (normal and highlighted) without needing
to consider combinations (e.g. highlighted + mistake). However, we
recognize that other visual variables may be more appropriate for
indicating such relationships.

One critique is the inconsistent, clumsy, and primitive appear-
ance of the notes on the canvas. Since the canvas is not anti-aliased
and since we do not maintain a constant stroke-width when scaling,
the notes appear to be very pixelated when zoomed in. Either by
scaling the stroke width when zooming in, or using a different
method to facilitate zoom we could mitigate this issue. Maintaining
a consistent stroke would also improve the appearance of mistake
and mismatch notes’ outlines as described above.

We received several questions about non-piano instruments.
While this method is not confined to the piano, it becomes more
complex since other instruments have a wider range of controllable
timbre. For non-western music and continuous-pitch instruments,
we would need to develop a more general concept of musical events
and analyses specific to those musics and instruments.

6 CONCLUSION
The method we developed in this work seems to be a good proof-
of-concept for a visualization of two piano performances with note
relationship information based on the feedback we received from
our peers. We believe this representation can be refined to be more
visually appealing and can be extended to show more data in the
same visual space for faster and more precise visual analysis of the
differences between two performances.

6.1 Future Work
Due to time constraints, there were several comparison features
we did not get to implement. In the future, we would like to make
visualizations for higher-order data, such as relative time contrac-
tion and expansion, voicing, and phrasing. For first order data, we
would like visualize dynamics to increase visual salience of louder
notes and adjust note durations to transform between time-spaces
of the input when viewing aligned data.

In addition to the previously discussed additional navigation
interactions and note information, it may be beneficial to implement
an optional pane similar to the note information pane that displays
comparisons of overall performance metrics, such as bar graphs
comparing average tempo and average volume.

REFERENCES
[1] Paul E Allen and Roger B Dannenberg. [n.d.]. Tracking Musical Beats in Real

Time. https://www.cs.cmu.edu/~rbd/papers/beattrack.pdf
[2] Roger B Dannenberg. 1984. An on-line algorithm for real-time accompaniment.

In ICMC, Vol. 84. 193–198.
[3] Simon Dixon, Werner Goebl, and Gerhard Widmer. 2002. The Performance Worm:

Real Time Visualisation of Expression based on Langner’s Tempo-Loudness Ani-
mation. (04 2002).

[4] Martin Gasser. 2005. Interactive visualization of expressive piano performance. na.
http://www.ofai.at/~martin.gasser/archive/thesis.pdf

[5] Lucas Maia and Luiz Biscainho. 2014. On the extraction of parameters from
expressive musical performances. http://www02.smt.ufrj.br/~lucas.maia/papers/
MaiaLS_AESBR2014.pdf

https://www.cs.cmu.edu/~rbd/papers/beattrack.pdf
http://www.ofai.at/~martin.gasser/archive/thesis.pdf
http://www02.smt.ufrj.br/~lucas.maia/papers/MaiaLS_AESBR2014.pdf
http://www02.smt.ufrj.br/~lucas.maia/papers/MaiaLS_AESBR2014.pdf


A Visual Comparison of Piano Performance

[6] Jeffrey Treviño and Craig Sapp. 2014. Automated Notation of Piano Recordings
for Historic Performance Practice Study. J. Comput. Cult. Herit. 7, 3, Article Article

17 (Aug. 2014), 7 pages. https://doi.org/10.1145/2597179

https://doi.org/10.1145/2597179

	Abstract
	1 Introduction
	2 Related Work
	2.1 Music Visualization
	2.2 Analysis of Second-Order Performance Data
	2.3 Comparison of Musical Performances

	3 Visualization Technique
	3.1 Performance Visualization
	3.2 Interactivity
	3.3 Performance Comparison
	3.4 Real-Time Comparison

	4 Implementation
	4.1 Note-by-Note Performance Comparison
	4.2 Tools and Technology
	4.3 Division of Labor

	5 Evaluation
	6 Conclusion
	6.1 Future Work

	References

