
1

Visualizing Autograding and Office Hours Queues in
Submitty

Alexa Orosz, Ryan Waddel
April 30, 2020

1 Introduction
For any student who has taken a Computer Science (CS) course at Rensselaer Polytechnic
Institute (RPI), the Submitty Autograding Homework Submission Server, which will be referred
to as Submitty from here on out, is part of everyday life. Almost every course uses it to share
resources, take homework submissions and grade some of them automatically or allow Teacher’s
Assistants (TAs) or instructors to grade, provide quizzes, and show students their grades. Very
recently, a feature for creating a queue for office hours was implemented, to help with organizing
more difficult classes. Instructors can choose what features they want to use and how they want
to set up their page, possibly allowing for its spread to non-Computer Science classes in the
future. The main goal of Submitty is to create a better, more streamlined, and informational
experience for everyone involved. Being longtime users of Submitty ourselves, we created a
possible addition to the existing Submitty site, visualizations in the form of bar graphs that show
wait times for the Autograding and Office Hours queues.

 The visualizations we are creating show the weekly trends for the Autograding and
Office Hours sections of each course’s Submitty page. Our hope is that for Office Hours
information will be useful to students, TAs, and teachers so they can make decisions about when
to attend office hours, how much time people are waiting for help or how long they are getting
help for. In this way, students can identify days with less waiting and TAs and instructors can see
if they should add more help on busier days. Hopefully, this would help balance out the volume
of students across more days, so students could get maximum help with least wait.

 As for the Autograding page, different days and different homeworks have different
homework loads. Some classes have tests that grade almost instantly, others have tests that can
take a few minutes to do. Thursday nights are also a big night for homework to be turned in, with
an 11:59:59 PM EST deadline. While students should not use the autograding feature for testing,
what usually happens is that the output will not match the sample output correctly or something
executed differently on the Submitty servers than the students’ environments. This can lead to
making tweaks as needed and submitting again. If a student is up against a deadline, is being
helped in office hours, or is just wondering how long this suite of tests will take, the visualization
will be able to provide them with a good estimate with a weekly and hourly average. As such
students and those assisting them would be able to see that perhaps Thursday is not the best day
to submit completed work for the first time or that from Monday’s wait times that the
autograding takes longer on this assignment, and decide to test earlier.

2

 Our hypothesis, building on trends we and other peers have noticed from using Submitty
and taking CS courses, is that when students notice the longer wait times for grading and help
coincide with days that are closer to the deadline, proactive students will change their study
habits or schedule so they can avoid wasted time and stress later on. At the very least, they can
learn about their own, and their course’s, study habits and gain a visual explanation as to why
their submission is taking so long or the TA can only help for a few minutes. Hopefully we will
have the best possible version of our ideas added to the current version of Submitty.

2 Background
2.1 Initial Peer Feedback
The idea we ended up choosing did not get much peer feedback, but we had a decent amount of
instructor advice, which made up for it. One peer did recommend making a scatter plot
correlation matrix with submission time, number of submissions, lines of code, number of
functions, comments, and submission runtime to see the correlation between those things and
grades. While we thought it could be a wonderful extension to this at some point, students
currently have no idea what the submission server is processing or how long it has been taking,
with much the same situation occurring for office hours. This would also be a great deal to parse
and interpret. We knew we wanted it to be as accessible and easily readable as understanding the
meaning of these visualization and making a change could really help some students with
planning.

2.2 Related Works
“VISUALIZATION METHODS FOR TIME-DEPENDENT DATA - AN OVERVIEW”
discussed a variety of techniques for presenting and visualizing time-dependent data. The
authors, Muller and Schumann, define types of time and data and then supply visualizations that
fit best in the intersection of time and data. For our project, we were using interval time to show
the time dependence of static visual elements [1]. We are using intervals, such as hours, days,
and weeks as our data is defined between two points in time [1]. The paper suggests the bar
graph for cumulative data as a conventional method [1]. We gravitated to its simplicity, as we
wanted to present the information in an easily understandable manner. Using a new design or
less easily readable format could cause confusion in the students. Eventually, this would be
affirmed by other papers we read, and we both used bar charts for our visualizations.

 Donaldson, Ashley, et al. 2015 wrote in “DizViz: Visualizing Disneyland Wait Time
Data With a Focus on User Experience” about their design for a new app to show current wait
times for rides in Disneyland. Their background was human based design and engineering, so
they focused on the best design based on human behavior [2]. Large elements of their final
designs involved color-coded bar graphs, citing these as easily readable for people on the go and

3

that length is an easily readable metric for comparisons [2]. They reference color for
distinguishing different rides and also helping to encode quantitative data, which we also had.

As a side note, when we were looking to include visualizing the traffic on the servers as well, we
looked into “Visualization of Urban Mobility Data from Intelligent Transportation
Systems” by Sobral, Thiago et al. which attempted to visualize the movements of people over
time in a visual environment. Our reasoning was that something that could accurately visualize
the complex movements of people over time would also be good inspiration for how to visualize
traffic on the servers. However, we never got past the initial idea and the concept of using
heatmaps and clustering during this project before decided to shift it into a stretch goal [3].
 Submitty already used Plotly, which is built over D3.js and WebGL to create a charting
library to more easily create various charts and graphs from existing data [4]. This was
convenient for us to use, as all the necessary features were being called and loaded in. The
various features of the types of graphs and charts they offer, with bar graphs being one of them,
are easily combinable and customizable. They have a version for JavaScript which loads quickly
on the Submitty pages. We were able to quickly plug the data into the graphs of choice and get a
good result.

3 Visualization Design Evolution
3.1 Beginning Stages
Initially, we had envisioned a much simpler design where only the user’s place in the queues
(autograding or office hours) was shown. It was a horizontal bar graph and would change
dynamically based on real time data. However, we did not think this would solve the problem of
helping students do better on their assignments over all. We wanted to create something that
would allow students to make more proactive decisions about when they got help or submitted
work as well as showing them the data that they could not see so they could understand the
process better. Since the structure of the CS department here at RPI, especially in early classes, is
very homework based, where the homeworks are small projects, and the homework is due every
week on Thursday, we decided the visualizations would be centered on that week structure. The
data had to be anonymized, with personalized data only appearing to the relevant user or only
averages or totals with no specifics shown.

4

Fig. 1 Our initial design for how the user would be visualized in the wait for grading. This was
revised in favor of a more readable graph to help change behavior.

5

6

Fig. 2 There are more concepts here, with the top being an early version of the bar chart format
we ended up doing, the center being the scrapped design for server traffic, and the final was

another iteration of the stacked bar concept

3.2 Work In Progress
 As explained in section 2, we decided on bar graphs for our visualization, and after
deciding that showing the individual student moving through each queue was not practical to
represent for our purposes, we eventually switched to a regular vertical bar chart. Since Submitty
has an established color scheme that signals “Good”, “Bad”, and “Medium” using green, red, and
yellow respectively. We would encode our bars to show the severity of wait time using a
combination of color and scale. Our base visuals were just colored graphs with high times in red
and low in green. During the beginning of our project, we only focused on weekly averages, but
had the idea to show students their custom averages based on their information, which we
believed was a natural extension.

Fig. 3 The student (left) and instructor (right) views of the weekly average queue times in their
first iteration.

7

Fig. 4 Early log file parsing results for autograding before we totally switched to bar charts

Fig. 5 This was the initial autograding graph before color was added

8

 We were unfortunately not able to set up a user study or have a day for peer feedback
within the course as they had in past years. We had to rely on ourselves and some minor familial
input, which amounted to it looking nice, so we had no real chance to show anyone with the
knowledge that our target audience would have until our presentation. At this point, we were
able to self-refine the graphs. Our main changes were to the way we used color. For autograding,
the longer the wait for grading to start or for how long the grading took, the longer the bar, with a
gradient from green to red on the bar with the more red corresponding to the longest times and
more green corresponding to shortest times. For the queue, longer bars also signified longer wait
or help averages, but red was set to the waiting for help average and green was set to the being
helped average. This way the two could be distinguished at a glance. They also had the average
wait time for each bar written at the top to avoid confusion and to provide precise and accurate
information. At this point it was discovered that it was fairly easy to make another database
request to only get personalized information for the student in the Office Hours Queue page,
even though the parsing took a bit of effort, so we implemented a weekly personal graph as well
that was the same design as the general average graph.

Fig. 6 Here is the final Queue page wait and help averages with sample data, note that it still is
in seconds but every bar has the labeled value with a legible key beside it. The stark contrast

allows for students to discern at a glance what bar means what.

9

Fig. 7 is exactly the same as the one above in design but is showing the student’s personal graph

Fig. 8 shows the Wait Time graph for the Autograding page, showing an hour by hour
breakdown of the highest and lowest volume times and using a gradient to show the longest and

shortest times at a glance

10

Fig. 9 shows the time it took to grade each submission on average. Please note the same
gradient color scheme as above

4 Feedback
4.1 Peer and Self Review
As aforementioned, due to current social events, we were unable to meet other students and get
their opinions in person. We also did not have contact information for other students in the class.
Therefore, the reveal of our designs took place during our final presentations where feedback
was mostly focused on the presentation itself or the idea as a whole. Most responses saw this as a
useful addition to the site, if a bit limited at the moment. They also thought it may help students
who procrastinate work see why this would not be the best idea, but that the visualization in itself
may not be enough to inspire change. Luckily for us, those in our peer group accurately represent
the type of user we would want to use our visualization. None of the complaints were about the
design itself, more on the volume of visualizations we could show from the data.

 As far as self-reflection goes, we were pleased that our visualization accomplished our
main goal of being easily understood for students. For the graphs, we believe that time in
minutes will be the most easily understandable format to use for the measure of minutes waited
or helped. Currently it was in seconds as that was how it was stored in the database or the most
easy time increment to average, but that is extremely unhelpful. The office hours typically held
do not exceed two hours in total so it is not unreasonable that the average wait time should not
exceed that, and probably not exceed an hour. Currently, the office hours wait/help bar graph
does not have the day of the week, only the date on it, which would also help students more
easily associate peak or low average times with a certain day of the week, as from experience,
the homework cycle seems to be quite cyclical. We have considered also doing a gradient for the
office hours bar graphs, but think because of the large contrast in color between the two (wait
and help) it is more useful to understand which is which as it stands.

4.2 Future Work
This visualization will hopefully become part of Submitty and move onto the production build so
more students can use it and give feedback on it. In order to do so, we will have to finish
squashing some bugs and the Office Hours Queue page will have to be fixed up. Currently it
does not use the tab system to represent multiple graphs and does not show as much data as it
could. In the future, we want to show the averages by office hour as well, so less popular times
of day and more popular times of day can also be discerned. We could also show the averages
accumulating over the whole semester a well, both for the course as a whole and for each
individual student.

11

 In addition to the existing and extended visualizations we could show either text statistics
for each particular student as the semester progresses or use some kind of stacked chart to show
how much time was spend doing what in the Autograding and Office Hours Queue pages. In the
autogading it could be the average and/or total amount of time waiting for homework
submissions to grade against the average and/or total amount of time spend actually grading the
homework. Similarly there could be an average and/or total time spent waiting to be helped in
office hours and the average and/or total amount of time spent being helped. It could also show
total amount of time spent in office hours for them. There might even be an anonymized scatter
plot showing the correlation, if any, of hours spent in office hours vs grade in the course.

 Of course, this all can be implemented after we put in a pull request for both of these
initial changes to be approved and migrated into the source code. We are both hopeful that this
will be able to help students understand about how to structure their time so they can get the help
they need.

5 Technical Details
This project created visualizations in two areas of the Submitty site. Both are a variation on the
theme of time spent waiting for a process to happen and the time spent executing the process. For
the Autograding page, there is a graph showing the average wait time to start grading for that
particular assignment and then another graph showing how long the actual grading takes.
Depending on the day/time, class, and assignment, this can vary greatly and even affect a
student’s ability to perform a final debug of the system and make the final submission on time.
With this showing what the average times for those are, students should be able to see that
certain days and times are poor choices to try and turn homework in quickly. In a similar vein,
office hours tend to get crowded on certain days and times. Showing exactly what days have
historically the lowest and highest wait and/or help times, students should be able to discover
when the best times for them to go are.

For the autograding, there are log files that have been generated with the wait times and grading
times for each submission. This can be parsed and using JavaScript and Plotly, was shown as a
bar graph. Because of the formatting anf information density of the file, there was some
difficulty in getting the correct information out and organized.

As aforementioned in 2.2 and in the previous paragraph, Plotly was the visualization package of
choice based on its ease of use and compatibility with the web-based environment we worked in.
The Office Hours portion of Submitty was not created by us, and many of the database requests
created were based off of existing ones. Some of this data was parsed with existing functions as
well. However, some new data had to be retrieved with new requests, which was a bit of a trial
and error process. The transfer of the data from the Twig portion of the file to JavaScript was
also a bit of a trial as sometimes things would fail silently or have vague errors. There was a bug
that ended up being because a PHP date/time variable would not convert. Some of the parsing
done was a bit convoluted to try and keep the order of dates without having to make any

12

complicated sorting happen. The data was pulled with a query and brought into the file and then
the pertinent data was called out using existing functions. The Twig arrays were brought into
JavaScript so we could use Plotly. Then three corresponding arrays hold the day, the help
average, and wait average. There was a bug where null entries were not being counted as zeros,
and caused some confusion.

The most frustrating challenge was that for one of us, Alexa, the reinstall to apply changes took
approximately 7-11 minutes per run, whereas Ryan’s took approximately 30 seconds, which is
about the average time the install takes for most people. While it did not inhibit progress, it
certainly did make debugging and testing a bit more difficult.

6 Conclusion
Driven by our own experiences with Submitty, we tried to develop visualizations that would help
struggling students. The first few CS classes can be a struggle, and having to wait unknown
amounts of time or not knowing the best times to receive help can inhibit a student’s ability to
succeed. Knowing this, we created a suite of visualizations attacking the two most time-
consuming areas of debugging and problem solving relating to Submitty. Our visualizations can
show past course and personal trends to allow students to take that data and make more proactive
decisions for themselves if they are struggling getting help or doing their final debugs with
Submitty in a timely manner. While there is still much expansion and improvement, we feel that
the more information students are armed with the better they are able to make their own
decisions and those who apply this knowledge will have a quality of grade and life improvement.

7 Who Did What
Ryan worked on the Autograding section. He parsed the log files containing all submission and
grading data. He then also organized this data and transferred it into a format that could be put
into Plotly and generated a multitude of graphs from that. Alexa created some queries to pull
data from the database and used a combination of existing functions and new processes to
organize and average out the times. She then also put the data in a format that worked with Plotly
and created the visualizations for the Office Hours Queue page.

References
[1] Muller, Wolfgang and Schumann, Heidrun, editors Chick, S., et al. "Visualization methods

for Time-Dependent Data-An Overview." Proceedings of the 2003 Winter Simulation
Conference. 2003.

[2] Donaldson, Ashley, et al. 2015, “DizViz: Visualizing Disneyland Wait Time Data With a
Focus on User Experience”
https://userexperiencedesign2015.files.wordpress.com/2015/09/411final-2.pdf.

[3] Sobral, Thiago et al. “Visualization of Urban Mobility Data from Intelligent Transportation

https://userexperiencedesign2015.files.wordpress.com/2015/09/411final-2.pdf

13

Systems.” Sensors (Basel, Switzerland) vol. 19,2 332. 15 Jan. 2019,
doi:10.3390/s19020332

[4] Plotly.js (n.d.). Retrieved April 29, 2020, from https://plotly.com

https://plotly.com/

