
Exploring Color Choice in Art
Emilee Reichenbach

Rensselaer Polytechnic Institute
reiche2@rpi.edu

Casey Conway
Rensselaer Polytechnic Institute

conwac@rpi.edu

Figure 1. An example image in our database with our automatically computed color palette. Regatta at Argenteuil - Claude
Monet (ID: 19621)

Abstract
Artists use color to breathe life into their works and choose
a palette that best fits the emotion they try to convey. An
artist may have a signature palette they reuse throughout
their lives or they might conform to the color choices of
their particular school or era. Our tool attempts to visualize
the historical color choices of 31,000+ paintings throughout
Western history and present users with an clean interface to
compare and discover the colors used by artists throughout
the ages.

1 Introduction
We present a dual interface system for interacting with a
large database of paintings. Our initial search page allows
users to find paintings based on a variety of metadata with
an intuitive and powerful query technique based on modern
search engines. This search page allows for the filtering and
selection of paintings based on user specified criteria and lets
users pick and choose the paintings they wish to compare
in a more detailed analysis.
Our second screen provides a comparison view of the

images users select for closer study. The primary comparison
mechanism of our approach is a radar chart visualizing the
distribution of colors in an image. Multiple images can be
overlaid on this radar chart to get an idea of how their color
choices compare, and can be interacted with to highlight
each particular painting’s specific details.

In addition to this system, we implemented an automatic
color palette generation program to extract color palettes

from input images. This k-means based approach produces a
color palette of an image to display to the user as inspiration
or helpful additional data. These color palettes are displayed
along with each image in the search and comparison page,
and can be used to get a general sense of the overall colors
used in the painting. We also display the hex codes for these
palette items to let users pick colors they might want to use
in other applications.
This paper will describe the process taken to gather the

database of images (Section 3), the steps taken to extract the
color information (Sections 4 and 5), and the components
of our web tool we developed to make the visualization
interactive (Section 6).

1.1 Motivation
The primary motivation for this project stems from browsing
Pinterest and finding images coupled with their correspond-
ing color palettes, of which one example can be seen in
Figure 2. This pairing is minimal but provides a great deal
of insight into what makes a color image work well or not.
With a more general interest in art and historical paintings,
we developed our research question: are there significant
color palette differences or similarities between paintings,
whether based on artist, time period, type of painting, or
other data? We hypothesize artists will have a similar color
palette across their own work, but these similar palettes will
slightly change based on the type of painting, time period the
work is created in, or art movement the artist associates with
at the time. And when comparing two artists, we believe
there will be a large palette difference between the two if the



artists’ associated art movements, time periods, or schools
of art differ.

Figure 2. An example of a motivating color palette found
on Pinterest [4].

The target audience for this visualization is anyone gen-
erally interested in art or color theory. Our goal is to create
an interface that is intuitive and encourages exploration for
a wide range of users. By providing users with a powerful
toolset to select and compare different paintings, we hope
they can develop their own insights about the palettes and
color choices of artists throughout history.

2 Related Work
2.1 Color Spaces
To generate the color palettes and Radar Chart data for each
painting, we first need to understand how different color
spaces can be useful.

Figure 3. Geometric representation of the RGB color space,
where the black point is diagonally opposite of the white
point [7].

The first and most common color space we come into
contact with is the RGB (red, green, blue) color space. Geo-
metrically, this space can represented by a cube whose axes

are the RGB primary colors, with the point furthest from all
axes being white, and the point closest to all the axes (the
origin) being black. A depiction of this is shown in Figure
3 [9]. This space is common in web development and is the
intermediate space we work with when decompressing the
original images and preparing our output color codes.

Figure 4. Geometric representation of the HSV color space,
where the top base is the maximum saturation for all the
hues [8].

The next color space we need to understand is HSV (hue,
saturation, value). Geometrically, this space can be repre-
sented by a right circular cylinder, whose angular dimension
is the hue, radius is the saturation, and axial component
(height) is the value, as shown in Figure 4. The top base of
the cylinder is a circularized chromaticity diagram, the bot-
tom base of the cylinder is black, and the cylindrical surface
contains the maximum saturation for all the hues [9]. The
primary benefit of using HSV is the ability to sort colors by
hue as it is an effective tool to group various colors together
(e.g. all the “blue” colors and all the “red” colors). We use
this sorting in our radar chart computation (Section 4). Like
RGB, it is still difficult to directly compare two colors in this
space, which leads us to our third and final space, CIELAB.

Figure 5. Top view of the CIELAB color space [5].

The CIELAB (or CIE L*a*b*) color space is themost difficult
of the three color spaces to understand, but is useful because
it defines a Euclidean distance metric upon colors to serve
as a mathematical description of how close two colors are

2



Figure 6. Front view of the CIELAB color space [6].

perceptually. The space is composed of three coordinates, the
color’s lightness, its position between red and green, and its
position between yellow and blue [1]. A top and front view
of the CIELAB color space are shown in Figures 5 and 6. We
use this space extensively in our K-means palette algorithm
(Section 5), as we require the ability to assign each pixel to
its closest perceptual cluster.

2.2 Color Palette Generation
There have been many papers written and extensive study of
automated color palette generation. One of the more useful
resources (which also took a k-means approach, although
we developed the details of our technique independently) is
from Chang et al. [3] which primarily focuses on recoloring
photos by altering their primary palette. They include a
detailed description of their technique to produce the initial
palette automatically, which includes some useful insights
into fixing some of the problems with our technique.

3 Data Acquisition
Our project requires a number of extensive preprocessing
steps to generate all the data required by our front-end visu-
alization and search engine components. The computation
of color palettes in particular is a moderately expensive op-
eration, especially given the large collection of images we
handle. In our particular execution, we followed three main
phases of data collection: a scraping phase to generate a
database of painting metadata and download links, a down-
loading phase to acquire local copies of all the images, and a
parsing phase to extract useful color information from our
entire collection.

3.1 Scraping
Our collection of paintings comes from the Web Gallery of
Art (WGA), an online collection of Western art in the public
domain from the medieval period to the late nineteenth cen-
tury. Their database contains more than 50,000 JPG digitized
photographs of artwork, complete with information on the
artist, technique, and other necessary information pertaining
to the particular piece.

Of the 50,000 images, roughly 31,740 of them are paintings
(although we noticed a few are mistakenly labeled, with

Figure 7. The Web Gallery of Art – our primary data source
for acquiring the metadata and image files – and an inspira-
tion for our final interface design.

our local collection containing a number of marble statues
and photographs of architectural achievements). The WGA
includes a downloadable CSV file containing the entirety
of this metadata, but no direct links to the JPG images they
host.
Our first step after obtaining this large CSV file was to

write a number of SQL queries to filter the data into a man-
ageable form to process later. We removed some of the more
superfluous metadata which we decided not to expose in our
application and retained only the records marked as paint-
ings. Of these remaining records, we decided to split the
remaining database into smaller groups (with a maximum
size of about 3,500) based on the first letter of the artist’s last
name.

This gave us 26 simplified CSV files (although we note that
there were no artists with X as the first letter of their last
name in this particular collection) containing links directly to
an informational page on the WGA along with the metadata
we needed for each image. We also added in a unique ID to
each record to make it easy to refer to specific paintings.

The final step was to convert the links to the informational
pages into direct links to the hosted JPG images. This was
accomplished using a simple regular expression thanks to
the consistency of their website organization.

3.2 Downloading
With the CSV files we produced, we were able to write a rel-
atively simple Rust script to download this entire collection
to local storage. We attempted to be ethical with our use of
bandwidth as to not overload their system. This was accom-
plished by running the entire download process serially with
a five second delay between each image. Overall, each image

3



took about six seconds to complete with the whole process
taking roughly 60 hours total.
The download script parsed through the processed CSV

files and piped the direct JPG links into WGET. We stored
each download image on disk organized by artist last name
and image ID. After completion of the download, we up-
loaded the full set to RPI’s Box to exchange the files directly
between the two of us to avoid doubling up on the exploita-
tion of their bandwidth (since we both needed local copies).
Our local collection takes up roughly five gigabytes of

space, with each image being a compressed JPG file taking
up only about 250 kb. These images are not extremely high
definition, with the average width being less than 1000 pixels
wide, but they are suitable for display in a browser setting
and for the extraction of color information.

Figure 8. An example of one of the downloaded paintings
in our collection. Outing in Spring - Bela Ivanyi Grunwald
(ID: 14624)

3.3 Parsing / Extraction
With local copies of our 31,740 images, we were able to pro-
ceed to our main processing step: the extraction of color
information from each image. Although our program to ex-
tract this information was written to be single threaded, we
were able to leverage the split of our CSVs into 26 different
files to process them in parallel, cutting the total processing
time down to about a quarter of the total.

The palette algorithm in particular has an “embarrassingly
parallel” piece of computation, which if properly leveraged,
could speed up the palette computation to be essentially real
time for an image. However, we chose to not implement this
image level parallelization and instead focused on the much
simpler method of just running multiple sets at the same
time. This ended up working very well for our particular
needs and required no extra effort writing multi-threaded
code.
This extraction program takes in the CSV files as input,

uses the unique ID to find our local copies of the images,

and performs two separate computations on each image.
The first piece computes the necessary data for our radar
chart, while the second and more expensive piece extracts
the color palette. These processes are described in detail in
the following sections.

The program produces a JSON file with the original meta-
data and the additional color information for use by our
front-end site. According to our log files, the computation
of these color details required 27 hours and 18 minutes of
computation time. With our approach to parallelization, we
were able to run multiple copies of this program at a time,
shortening the overall color processing time to about 8 hours
of heavy CPU use.

When combined with the original querying and download-
ing stages, acquiring all the data we display in the front-end
piece required about 70 hours of computation in total. Writ-
ing the code necessary to automate this effort and achieve
these results took an additional 20-25 hours. Because of the
large amount of effort required to bring these pieces together,
we started with a small set (40 images from artists with the
last name starting with ‘Q’) to design the front-end piece,
and were able to add the additional data points as we finished
processing.

4 Radar Chart Computation
Our front-end comparison page (described in detail in Section
6) displays a summary of the colors used in a painting in
radar chart form. This is achieved by computing a histogram
of the HSV colors into a few specially selected bins. These
values are normalized into percentages of the overall image
and output in an array of floating point values corresponding
to each color on our chart.

4.1 Histograms
Computing the histogram requires first converting the RGB
pixels of the image into their corresponding HSV values. We
then loop through all pixels and assign them to a bin based on
specific hue breakpoints. We include a special bin for black
(gray), which we assign colors to if their saturation or value
components are beneath a certain threshold. Experimentally,
we found a decent breakpoint to be 20 (out of 255) for both
to filter out the grayish tones of an image into their own
category. The hue information is very difficult to determine
perceptually with such a low saturation and brightness.
In hindsight, we likely should have performed similar

checks for the lighter pieces of an image (closer to white), but
we were mostly focused on making sure the darker shades
common in a large percentage of our collection were grouped
together in our chart.

The remaining non gray colors were placed into six other
bins: Red, Orange, Yellow, Green, Blue, and Purple. These
bins were chosen semi-arbitrarily to reflect a large portion
of the HSV hue spectrum without over cluttering the final

4



radar chart. The actual breakpoints between each of these
groups we arbitrarily chose based on our own perception
of the colors. The library we used to convert between RGB
and HSV colors returns a hue in the range of [0, 180) so the
cutoffs we chose were Red (0-8) and (171-180), Orange (9-
20), Yellow (21-32), Green (33-81), Blue (82-127), and Purple
(128-170).

Using these values we were able to construct a histogram
with the total number of pixels in each group.

4.2 Normalization
As constructed, this histogram cannot be compared between
images due to the variations in the dimensions of our col-
lection. Thus, a simple normalization step was required to
make the data points all on the same scale, regardless of the
number of pixels in the image.
This was accomplished simply by dividing the count of

each bin by the total number of pixels in the image, resulting
in percentage information about how much of an image
portrays a certain type of color. These floating point values
were stored in our output JSON for use in our front-end.

4.3 Limitations
There are a number of problems with this approach. Our
original goal was to show a smoother shape in the radar
chart, but due to the way our discretization having only
seven categories, we end up with sharp spikes. While these
spikes can work well for identifying the colors in a single
image, it can be difficult to compare spikes between multiple
images.

Our color bins were also chosen relatively arbitrarily. We
did not want to over saturate the radar chart with too many
categories, but it may have been better to test additional
configurations to see if we could produce something more
effective. Our palette algorithm constructs a more detailed
histogram in the initialization phase, and it may have been
worthwhile to attempt to store and display that data instead.

5 Palette K-Means
We used a k-means based approach to automatically extract
color palettes from the input images. The technique is based
on finding five different colors that reflect the majority of
the image. In L*A*B* space, the Euclidean distance between
two colors corresponds to the perceptual similarity between
them. Colors that are closer together (e.g. Red and Orange)
will have a smaller distance estimate than colors that are
more perceptually distinct (e.g. Red and Green).
The mathematical property of this color space enables

us to cluster our data points (in this case, colors) into five
distinct groups. The mean colors of each of the five groups
corresponds to our final palette. The goal of k-means clus-
tering is to construct a segmentation such that the groups
contain roughly the same number of pixels, which means

that all colors in an image will be evenly represented by
some component of the final palette.

This technique produces adequate results for the vast ma-
jority of our input set. There are some more complicated
techniques described in our related works section which fix
several of the issues (detailed further in Section 5.4), but
for something we designed and implemented on our own it
works satisfyingly well.

The code to extract the palette information is written in
Rust with the assistance of OpenCV for color space conver-
sion and image manipulation. We uniformly scale down the
input image to a maximum width (or height, whichever is
larger) of 500 pixels to make processing a bit faster but with
virtually the same results. Our non-parallelized implemen-
tation takes no more than 6 seconds to run per image, with
the cost contingent on the number of k-means iterations
required to converge. We limit the maximum number of
iterations to 100, but most images require no more than 20.

5.1 Initialization
K-means based algorithms require a set of seed points to
initialize the iteration. We originally attempted to randomly
select pixels in the image, but received poor and radically
inconsistent results based on which values were selected.
Our current attempt uses a histogram based approach to try
and select colors of different hues to start the algorithm.
Similar to the radar chart computations, we construct a

histogram and assign each pixel in the image to a bin. In
this version, we have 20 different bins uniformly distributed
across hues in HSV space, with an extra bin for gray val-
ues with the same parameters as we used previously. Pixels
are assigned to bins based on the degree of their hue, with
no regard to their saturation or value outside of the gray
test. Ignoring the saturation and value parameters may be a
mistake and requires more analysis.

Once the histogram is filled with the actual color contents
(not just raw counts as before), we take the five most popu-
lated bins and use them to compute our starting parameters.
We convert all colors in these bins from HSV to L*A*B* space,
and then compute a mean color for each bin. These values
determine our starting palette.
Picking the most populated bins instead of attempting

to find the actual peaks is another mistake, and one of our
sources describes in more detail the improvements these
changes are able to achieve. More details are contained in
section 5.4.

5.2 Iteration
K-means iterations takes a set of input “cluster centers” and
returns a more accurate set as output. At each step, we at-
tempt to discover better center locations (palette colors) that
more closely align to the goal of uniformly describing the
overall image.

5



This is accomplished by taking every pixel in the image
and assigning it to the cluster center it is closest to in L*A*B*
space. This segments the image into five different sets of
pixels. Each set then computes its mean color in this space,
and returns that center as the new output value.

K-means has been studied extensively in the past and has
nice properties that work well for this particular use case.
Over time, the cluster centers tend to space out and evenly
reflect the final image. The iteration shifts the centers around
so that every pixel in the image is close to at least one cluster
center.

5.3 Termination
As K-means is an iterative algorithm, it needs some sort
of termination criteria to prevent infinite loops. As palette
colors are output as integer RGB values, it was very easy
to determine when the algorithm makes no progress, as the
palette after iterating can be compared to the input palette
and checked to see if anything changes.
For additional safety, we set a maximum number of iter-

ations to 100 to try and prevent poorly behaved iterations
from never converging. No painting in our dataset reached
this upper limit as most images converge before 30 iterations.
The worst performed image took 73 iterations, but still only
7 seconds to compute single threaded (Fig. 9). More analysis
is required to understand why different images may perform
worse than others.

Figure 9. The painting with the largest iteration count in our
collection – Francesco d’Este by Rogier van der Weyden (ID:
31160) – which took 73 iterations to compute a converged
palette.

Figure 10. One of the shortest iterations in our collection
– Portrait of a Gentleman by Jacopino del Conte (ID: 6077) –
which took only 3 iterations to compute a converged palette.

5.4 Limitations
There are a number of drawbacks to this approach. The
primary issue stems from our palettes ending up being a
mean value of different groups of pixels. This results in a
muddy, pastel color that is on average close to many different
shades of color. This causes us to lose the highly saturated
regions of a painting unless they exist in abundance.
Part of this issue may be mitigated by selecting better

initial seed colors. Our histogram selects the most populated
bins, but this is not exactly what we want as the different
peak locations are much more interesting and important to
the overall image. It is often the case that one section of the
color histogram is extremely tall such that nearby hues are
all picked. This leads to the loss of other colors in the image,
which may have smaller but just as important peaks. Chang
et al. [3] describes a much better technique for computing
peaks of a histogram as a means of initializing their seed
locations.
There are also some failures to our algorithm. Although

we attempted to filter out our database to just paintings,
several marble sculptures made it through based on their
mislabeling in the original data set. These sculptures (and
other pure black and white images) fail to segment the image
into five different colors. The breakdown of the technique
when there are not five colors in the overall image is expected,
but it can be jarring to end users to see a black and white
image produce a single gray and four bright blue values for
a palette.

Most, if not all, of these drawbacks can be improved with
more effort beyond the scope of this project. Improving the
palette extraction technique would result in a more useful
interface than our current results, but whatwe have currently
is still impressive.

6



Figure 11. Our k-means algorithm fails to work on pure
black and white images.

6 Design Choices
When beginning to turn our idea of color palette compar-
ison into a visualization, we landed on the idea of using a
radar chart to present these comparisons. This choice influ-
enced us to lay out our program into two separate pages, one
for searching/exploring and one for the actual comparison
between paintings.

6.1 Initial Design
We decided from the beginning it would be most effective
to allow users to search for paintings separately from the
actual comparison, as seen in our two initial storyboards,
Figures 12 and 13. From here we created two layouts made
from HTML, CSS, and JavaScript, shown in Figures 14 and
16. These screenshots are our intermediate step between our
initial design and the final design. After implementing the
original design, wemade a few design changes based onwhat
we could and could not achieve due to the technologies we
decided to use. An example of this is seen in our radar chart
design. We were not able to achieve the “grayed out” look in
the implementation of our original design, so we decided to
do the inverse of this. Although we ended up straying away
from our initial design, the final result matched quite closely
to the original.

Figure 12. Initial storyboard of the Search page, created
in Figma. The final design reflected this closely with some
minor changes.

Figure 13. Initial storyboard for the Compare page, created
in Figma. The final design reflected this closely with some
changes to the radar chart and element placement.

6.2 Search Page
The layout of the final Search page consists of the main title,
home button, search bar, help button, paginated search re-
sults, and a sidebar containing all the paintings a user selects
to compare, as seen in Figure 15. In the search results, the
user is shown the total number of results from their search
or by default, all of the paintings. We have implemented a
pagination system to ensure we do not take too many im-
ages at once from our data source’s website and to keep
the page length to a minimum. For each painting displayed
in the search results, there is a thumbnail of the painting,
its title, artist, date, technique, and size of the painting in
the Overview section. In the Palette Preview section, users
can see the generated palette for the painting. And in the

7



last column, the Compare column, users are able to check a
painting to add it to the Compare Paintings sidebar.
In the Compare Paintings sidebar, a user can decide to

compare the selected paintings by clicking on the ‘Compare’
button. This will take users to the Compare page.

Figure 14. Intermediate design layout of the Search page,
between our original storyboard design and our final layout.

Figure 15. Final layout of Search page.

6.3 Compare Page
On the Compare page, all the paintings that were selected
from the Search page will appear in the Selected Paintings
sidebar on the right. This is done by using HTML5’s ‘local-
Storage’ to store the paintings selected on the Search page
and access the data on the Compare page. The layout of
the Compare page, as seen in Figure 17, consists of the title,
home and help buttons, the radar chart, the focus painting
and the Selected Paintings sidebar. The radar chart is the
page’s main focus, while the larger image of the “focus paint-
ing”, the painting highlighted in light gray in the Selected
Paintings sidebar, is the page’s secondary focus. We decided
to define a “focus painting” to allow users to create a refer-
ence painting they wish to compare specific details about to

the other paintings. This “focus painting”, in theory, could be
changed by clicking on a different painting from the sidebar,
but it is currently not implemented.
In addition to the “focus painting”, the Compare page

offers users the ability to interact with the radar chart by
hovering over different portions of it. The specifics of that
interaction are described in the Visualization section.

Figure 16. Intermediate design layout of the Compare page,
between our original design and our final layout.

Figure 17. Final layout of the Compare page.

7 Search Engine
To allow our users to effectively search for paintings they
are interested in comparing, we had to make sure our search
engine provided enough search specificity to users.

7.1 Keywords
We decided to mimic Google’s keyword search engine ca-
pability by giving users keywords to narrow the results of
their search with. These keywords include: ‘title:’, ‘artist:’,
‘timeline:’, ‘technique:’, ‘type:’, ‘date:’, ‘id:’, and ‘iter:’. To use
one of these keywords, the user types the keyword and the
word or numbers they want to specify their search with
immediately after the colon. Currently, we do not support
multi-word keyword searches, e.g. ‘title:“Vincent van Gogh”’,

8



however this would be a future improvement to make. To
achieve the same functionality, users can type ‘title:vincent
title:van title:gogh’ but it is a bit unwieldy. Some keywords
are more intuitive than others, such as title, artist, date, and
technique, while others require more explanation. The “time-
line” keyword is used because not all the paintings have
a date, but all paintings have a timeline. This is a 50-year
period of time for when the painting was created and can
be useful for finding paintings from a general time period
or specific art movement. The “type” of a painting refers
to whether it is a portrait, landscape, religious painting or
some other kind of painting, which our dataset defines the
painting to be. The “id” of a painting is a unique id we de-
fined to help identify each painting, and its reason for being
used as a keyword is mainly for debugging purposes. The
last keyword, “iter” represents the number of iterations our
k-means color palette extraction took to generate the paint-
ing’s palette, another tool for debugging. All these keywords
should provide our users with enough control to find what
they are looking for, while still having the freedom of not
using the keywords.

7.2 AND or OR
In addition to giving users keywords to search with, we
decided to use AND logic to help cut down the number of
results a user may receive when using multiple words or
keywords while searching. In our initial design, we thought
using OR logic would be best, so for example, a user could
search “Claude Monet” and the results would show both
results from the individual searching of “Claude” and of
“Monet”. After we implemented the logic and tested it using
our large dataset, we realized this would likely confuse users
and load more results than they expect. This is when we
implemented the AND logic to our search bar, which in the
end works best with our keywords functionality, so a search
can be extremely specific.

8 Visualization
Our program uses a radar chart as its primary visualization
alongside a simple palette visualization to provide the user
with a large amount of information in a digestible form.

8.1 Radar Chart
We utilized a template radar chart created in D3.js by Nadieh
Bremer [2]. The radar chart has 8 axes, each representing
a different color category (red, orange, yellow, green, blue,
purple, and black/grayscale). The chart’s background is an
image of a custom color wheel created to align with our axes.
This was done to help provide a visual cue to users what each
axis means without them having to read the labels. For each
painting a user selects to compare color palettes between,
there is a blob corresponding to that painting on the chart.
By default the “focus painting” has a darker color blob than

the other selected paintings. Because it is easy or sometimes
possible to determine which blob belongs to which painting,
we added tooltips to the radar chart. If a user hovers over
any blob, the tooltip will provide the painting’s name and
artist. If a user hovers over any of the blob’s vertices, the
tooltip will provide the same information as before, but also
includes the exact percentage of the corresponding color the
painting contains. An example of this interaction can be seen
in Figure 18.
Although the radar chart provides an interesting and in-

teractive way of exploring paintings’ color palettes, it has its
limitations. Depending on the selected number of paintings
or the paintings themselves, the chart can become confusing
when many blobs are overlaid on top of one another. As
shown in Figure 19, it can be difficult to differentiate blobs
from each other if there are a large number of paintings
selected. Another issue we have had with the radar chart
is the difficulty contrasting our blobs’ background colors
against the chart’s background image. Because we use a
wide range of colors in the chart’s background, finding col-
ors that contrast well from it becomes difficult and limiting.
We have found that using dark and light grays work best
overall, because even though black and white would provide
the highest contrast, the grays overlap better than pure black
or white.
In the future, in addition to the radar chart, we would

like to add a histogram either representing only the “focus
painting” data or possibly all the selected paintings’ data.

Figure 18. Shown is a screenshot of the Compare page while
a user hovers over the “focus painting’s” vertex which lies
on the orange axis. A tooltip pops up, containing the title of
the painting, the artist, and the exact percentage of the color
found in the painting.

8.2 Palettes
To visualize the palettes we generated, we decided to use
them as a “preview” palette for the radar chart. When users
search through all the paintings on the Search page, they
are presented with the five squares whose backgrounds are

9



Figure 19. In this screenshot, there are 6 paintings selected
and it is clear that it is becoming confusing to differentiate
between each of the light-colored blobs.

each a color from the generated painting palette. If a user
hovers over the squares, a tooltip with the color’s hexadeci-
mal value appears, as shown in Figure 20. Although most of
our computation power goes into generating these 5-color
palettes, we use them more as a tool to guide users to a final
radar chart visualization. However, it may be interesting to
further incorporate these palettes into a different kind of
visualization.

Figure 20. Shown is an example of the palette tooltip which
shows the hexadecimal value of the hovered color, in this
case it is the far left, red color being hovered over.

9 Future Work
Along with some minor improvements, there are many di-
rections we could take this project in the future. As far as
improvements, we want to complete the color extraction
on the remaining images, improve our initial seeds for the
k-means palette extraction, get our ‘focus painting’ feature
working correctly, and add a histogram representation of
our radar chart to the Compare page to reduce possible con-
fusion caused by the radar chart. A larger improvement that
could reduce the likelihood of bugs would be to improve the
whole UI by using React.js instead of Vanilla JavaScript.

A potential direction we can take this project is add a
“Similar Paintings” feature which could find paintings with
a nearby color palette using the CIELAB color space for
the computation. We could also use this data to create a
force-directed graph, cluster graph, or some other type of
visualization to show the nearby palette relationships of
paintings. To aid the usefulness of this extension, we would
add functionality to allow users to search for paintings that

contain a certain color. Because this project is open-ended,
there are many other routes we could take to expand upon
this project which is exciting.

10 Conclusion
10.1 Feedback
Based on the feedback received from the project presenta-
tions, it seems that we have succeeded in creating a useful
and interesting tool which focuses on our goals and answers
our research question. The main addition to the project users
wanted to see was an extension of our search bar to allow
users to search by color or by similar palettes. In addition to
searching by color or similar palettes, the audience wanted
to see another visualization based around how similar paint-
ing palettes are to each other. This was also mentioned in
the Future Work section above. Overall, we believe we have
achieved our goal to create an interface that is intuitive and
encourages exploration of the program for a wide range of
users.

10.2 Who Did What
The division of labor was split between front-end and back-
end work on the project. Both Casey and Emilee developed
the initial storyboard for the project. Casey implemented the
web scraping, radar chart computation, and palette extrac-
tion in addition to any other minor back-end work. Emilee
turned the initial designs into functional web pages and im-
plemented the search functionality and visualizations. We
divided up the final report in half to each focus on our par-
ticular aspects of the project.

10.3 Summary
With this tool, we present an interface for exploring his-
torical paintings and their color palette choices. We have
developed an intuitive and powerful search feature to filter
our database of 31,000 paintings and narrow down to the
images of interest. We present users with an interactive radar
chart to visualize the images they choose to analyze in closer
detail, and allow users to make judgments about the color
choices of artists, eras, and schools of art.

Our final project can be found at https://github.com/emileerei/
IntVisFinal. This Github contains our interface and JSON
files with the extracted color data. The 5GB collection of
paintings is not included, but our JSON files also include
direct hotlinks to the JPG files hosted by the Web Gallery of
Art, and can be swapped in to allow downloading the images
on the fly with some minor changes to our Javascript code.

References
[1] [n.d.]. Wikipedia. Wikipedia. https://en.wikipedia.org/wiki/CIELAB_

color_space
[2] Nadieh Bremer. 2015. Radar Chart Redesign. http://bl.ocks.org/

nbremer/21746a9668ffdf6d8242

10

https://github.com/emileerei/IntVisFinal
https://github.com/emileerei/IntVisFinal
https://en.wikipedia.org/wiki/CIELAB_color_space
https://en.wikipedia.org/wiki/CIELAB_color_space
http://bl.ocks.org/nbremer/21746a9668ffdf6d8242
http://bl.ocks.org/nbremer/21746a9668ffdf6d8242


[3] Huiwen Chang, Ohad Fried, Yiming Liu, Stephen DiVerdi, and Adam
Finkelstein. 2015. Palette-based Photo Recoloring. ACM Transactions
on Graphics (July 2015).

[4] Jessica Colaluca. 2016. Design Seeds. https://www.design-seeds.com/in-
nature/succulents/cacti-color-2/

[5] Holger Everding. 2015. Wikipedia. Wikipedia. https:
//en.wikipedia.org/wiki/CIELAB_color_space#/media/File:
CIELAB_color_space_top_view.png

[6] Holger Everding. 2015. Wikipedia Commons. Wikipedia.
https://en.wikipedia.org/wiki/CIELAB_color_space#/media/File:

CIELAB_color_space_front_view.png
[7] Michael Horvath. 2008. Wikipedia Commons. Wikipedia. https://

commons.wikimedia.org/wiki/File:RGB_color_solid_cube.png
[8] Michael Horvath. 2010. Wikipedia Commons. Wikipedia.

https://commons.wikimedia.org/wiki/File:HSV_color_solid_cylinder_
saturation_gray.png

[9] George Joblove and Donald P. Greenberg. 1978. Color spaces for com-
puter graphics. In SIGGRAPH ’78.

11

https://www.design-seeds.com/in-nature/succulents/cacti-color-2/
https://www.design-seeds.com/in-nature/succulents/cacti-color-2/
https://en.wikipedia.org/wiki/CIELAB_color_space#/media/File:CIELAB_color_space_top_view.png
https://en.wikipedia.org/wiki/CIELAB_color_space#/media/File:CIELAB_color_space_top_view.png
https://en.wikipedia.org/wiki/CIELAB_color_space#/media/File:CIELAB_color_space_top_view.png
https://en.wikipedia.org/wiki/CIELAB_color_space#/media/File:CIELAB_color_space_front_view.png
https://en.wikipedia.org/wiki/CIELAB_color_space#/media/File:CIELAB_color_space_front_view.png
https://commons.wikimedia.org/wiki/File:RGB_color_solid_cube.png
https://commons.wikimedia.org/wiki/File:RGB_color_solid_cube.png
https://commons.wikimedia.org/wiki/File:HSV_color_solid_cylinder_saturation_gray.png
https://commons.wikimedia.org/wiki/File:HSV_color_solid_cylinder_saturation_gray.png

	Abstract
	1 Introduction
	1.1 Motivation

	2 Related Work
	2.1 Color Spaces
	2.2 Color Palette Generation

	3 Data Acquisition
	3.1 Scraping
	3.2 Downloading
	3.3 Parsing / Extraction

	4 Radar Chart Computation
	4.1 Histograms
	4.2 Normalization
	4.3 Limitations

	5 Palette K-Means
	5.1 Initialization
	5.2 Iteration
	5.3 Termination
	5.4 Limitations

	6 Design Choices
	6.1 Initial Design
	6.2 Search Page
	6.3 Compare Page

	7 Search Engine
	7.1 Keywords
	7.2 AND or OR

	8 Visualization
	8.1 Radar Chart
	8.2 Palettes

	9 Future Work
	10 Conclusion
	10.1 Feedback
	10.2 Who Did What
	10.3 Summary

	References

