
 1

Elijah Wennberg Smith

Interactive Visualization

Final Project Report

4/30/20

Apple Music Library Analyzer

Introduction:

 For my final project, I wanted to visualize the genre distribution across my Apple Music

library and listening history. Although genre distribution was my main goal, there are also a

number of other metrics that are visualized or listed. As an avid music listener and curator, I

have always been interested in visualizing how my library changes and evolves over time. For a

long time, Spotify has provided its users with a yearly update of what they listened to that year.

This is something that I have always wanted out of Apple Music. The target audience for this

application is anyone who is interested in how their Apple Music library and listening habits

evolve over time. Unfortunately, for reasons that will soon be explained, this application is only

compatible with Apple Music and no other streaming services.

 Throughout the time that I have been working on this project, I have been under

quarantine. The 2020 coronavirus pandemic in the United States has made a tremendous impact

on the daily lives of just about everyone in the world. The main research topic of this project

serves to examine how this change to my daily life is shown through my music library and

listening habits. I Hypothesized that I would see an increase in overall listening and library

growth.

 I chose to examine two main aspects of my library: the songs added to it over time, and

the songs listened to over time. To achieve this, I created a few time-based graphs to document

 2

over changes in both. Although my quarantine began in March 2020, I chose to start the time

scale for these graphs in January. The reason for this was to give some reference to my “normal”

data before my social isolation.

 There are also a number of other visualizations that this application produces that do not

test this hypothesis, but merely serve to give the user more information about their library and

listening habits. These graphs include stream graphs to show genre distribution over time, tree

maps to show overall genre distribution, and more.

Backend Production:

 The back-end application is built in Python and MySQL. This is the part of the

application that acquires the data from the XML file. There were a number of different hurdles

that had to be overcome in this process. First, the XML file provided by Apple is formatted

differently than a standard XML document. Data in the Apple XML document is stored in key

value pairs rather than standard XML tags. This required a specialized parser to read the file and

extract the data that I needed. Luckily, this type of project has been created before and I was able

to find an algorithm posted in a blog that handles this exact situation. This work is cited below

(Jeff, 2019).

 However, the solution provided in this blog does not handle time-based data. This is an

issue because the majority of the data I want to explore with this project is time-based. This is

not a problem with the parsing algorithm, but rather the data that is available in the XML file.

The file is essentially a list of songs and their attributes. These attributes include name, artist,

genre, play count, last play date and more. Although the file provides play count, it only provides

last play date. This was the second hurdle I needed to overcome. To solve this, I decided to store

 3

my data in a MySQL database and track the changes over time. My SQL database consists of

two tables. One is for the overall library that stores all the information about each song from the

XML file. The second table is a listening history table. The schema is as follows:

 library(id, name, artist, album, album_artist, genre, total_time, year, date_added, play_count, skip_count)

 listening_history(record_id, track_id, listen_date, listen_count)

The algorithm for insertion into the database is as follows:

1 For each song in XML:

2 Select song from library database

3 If song exists:

4 If play count changed:

5 Update values in library table

6 Insert play difference and last listen date into listening history table

7 If song does not exist:

8 Insert song into library

9 If play count > 0:

10 Insert play count and last listen date into listening history table

One flaw with this algorithm is that any songs that are new to the database and have a

play count greater than 1, lack important listening history data. Only the most recent play date is

available. For example, if there is a song that I have listened to 5 times, but has not been added to

the library table, upon insertion, all 5 plays will be recorded with the same date, as only the last

play has temporal data. There is a similar problem if a song that already exists in the library table

is listened to more than once between XML uploads. If I had more time to work on this or a

group member, I would have uniformly distributed the new plays between the old listen date and

new listen date. This would ‘fake’ the data that is missing. Luckily, most of the time I do not

listen to a song more than once between XML uploads, so the data for my experiment is not too

badly affected.

 4

Chart Production:

 After completion of the backend code, I was shifted my focus to the analysis and

visualization. In the prototyping phase I used mostly matplotlib for the charts. I initially chose

matplotlib because I am familiar with it and it is very easy to use. The graphs that test my

hypothesis as well as a few others remained in matplotlib because they are straightforward and

simple. However, I found that the

streamgraphs produced by matplotlib

were limited and boring (pictured left).

Instead, I transitioned to Altair which is a

python library for creating visualizations

using the Vega visualization grammar.

The streamgraphs created with Altair were far superior as they offer a symmetrical layout and

the option to change line interpolations. I created two stream graphs, one of the monthly genre

distribution of library growth (Fig. 1a) and monthly genre distribution across my listening history

(Fig. 1b). The stream graphs are produced in the form of an HTML file that is automatically

opened in a browser by my app. This way, the charts can have a level of interactivity. Users can

zoom in and out of the chart to examine small elements, as well as use a tooltip box to provide

accurate information about the region they are hovering over. (Fig. 1c)

 5

Figure 1a) library growth stream graph Figure 1b) listening stream graph

Figure 1c) zoom and tool tip

 6

Other graphs from my application include treemap graphs. Treemap graphs are good at

showing distribution of sub-elements within a dataset. I used treemaps to show the relative sizes

of my top 20 genres, as well as the relative sizes of my top 20 Artists. These are shown in

Figures 2a and 2b.

Figure 2a) Artist treemap Figure 2b) Genre treemap

Figure 3) Strip Plot

 7

In addition to the treemaps, I also created a visualization called a strip plot. This graph

shows each song as a point grouped into columns or ‘Strips’ by my top ten genres (Fig. 3) The y-

axis encodes the number of listens each song has. The x-axis within the columns are determined

by a Box-Muller transform jitter. This uniformly distributed jitter gives the user a better idea of

the number of songs that exist on the same line. Otherwise, they would all overlap into one point.

The jitter is defined as follows:

√−2 log ∗ 𝑟𝑎𝑛𝑑𝑜𝑚() ∗ cos(2𝜋 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚())

This graph also shows whether or not I ‘loved’ a song. If I ‘loved’ the song while

listening to it, the graph encodes the point as an orange triangle. Otherwise it is a blue dot. This

graph is useful for looking at what genres I really listen to and like a lot. Darker, longer

horizontal lines on the graph mean that genre has a large number of songs with that number of

listens. Strips that reach higher up vertically on the graph show that that genre is listened to

more. This graph is also interactive. The user can zoom into each chart and examine the denser

areas. There is also a tool tip that gives you the title, artist, and accurate play count for each song.

Finally, I created a number of simple line graphs to display general information. These

include an overall daily listen chart, a library growth chart, and versions of both of these showing

results from just 2020 for testing my hypothesis (Figures 4a-d).

 8

Figure 4a) Monthly library growth Figure 4b) Overall daily listen count

 Figure 4c) 2020 Library growth (hypothesis) Figure 4d) 2020 daily listen count (hypothesis)

 9

Observations:

Stream Graphs

 There was some interesting information I was able to obtain from the Stream Graphs.

These were by far the best visualizations for showing how my library and music tastes change

over time. There is a clear point in the library stream graph (Fig. 1a) when I first purchased an

Apple Music subscription. After this point, my library increased rapidly in size and diversity.

Initially I downloaded mostly rock music. However, over time the beige region that shows rock

music becomes thinner and thinner as other genres grow. For example, my interest in hip-hop

music has grown greatly in the past few years. The grey region that represents hip hop increased

greatly in the later years of the chart.

 I like the listening history stream graph (Fig. 1b) also because you can clearly see some

links to the library chart. At points where one genre grows greatly in the library chart, there is

usually an increase in listening of that genre in the same point in the listening chart. This makes

sense, as usually when I download a new album, I listen to it through once or twice. This is seen

in early 2020 with the large increase in hip hop music into my library. There is a similar increase

in hip hop listens at the same time in the other chart.

 Strip Plot

 The purpose of the strip plot was really to show what genres were liked the most. It is

evident that my most liked genre is Rock. That is the genre with the greatest number of listens

and songs. It stretches the highest out of any of the strips and has the greatest number of

triangles. Another cool thing about this graph is it shows you which songs you have liked but

haven’t listened to many times. This could be useful for curating playlists.

 10

 Hypothesis

 My hypothesis that I would see an increase in listening turned out to be mostly false. I

started social distancing around March 7th, 2020. As seen in figure 4d, there was a very slight

increase in overall listening when compared to January. However, it eventually shrunk to sub-

normal levels.

Likewise, my hypothesis that I would also see an increase in library growth, has shown

not to be true either. There was no noticeable increase in library growth during my time in social

isolation shown in figure 4c. However, both charts have spikes in listening and library additions

that do not represent the normal. For instance, there was a large increase of songs in early march

that had a resulting increase in listens. These appeared to be out of the ordinary. I believe these

random increases in listening are attributed to study days or days spent travelling over spring

break.

Conclusion and Feedback

 Professor Cutler as well as the rest of the class provided me with very useful feedback

such as ‘faking’ the missing data by distributing the new plays. I do plan to continue working on

this project in the future so these are definitely things that I will end up implementing. If I were

given unlimited time on this project, I would have performed a formal user study to assess how

well my graphs convey the information. I also would have liked to give this application a

graphical user interface, but with the limited time and coders (just me), I was forced to stick with

a command-line interface.

Overall, I really enjoyed this project, it allowed me to practice my software engineering skills

and visualization skills, while working on a subject I really enjoy. Although my hypotheses did

 11

not all turn out correct, I was still able to get useful information from the graphs produced. For

instance, I will continue to use the strip plot to curate playlists of songs that I like but have not

heard very many times. I also really enjoy looking through the streamgraphs and seeing how my

taste in music has evolved over time. Up to date code can be found here:

https://github.com/wennbergsmithe/LibraryAnalyzer

Bibliography

Jeff. “ITunes Library Analysis Using Python.” Medium, Medium, 6 July 2019, medium.com/@leojosefm/python-

analyzing-itunes-library-97bec60e13cb.

https://github.com/wennbergsmithe/LibraryAnalyzer

