Streamgraphs & Gestalt Psychology & Line Arrangements
Holton Rower
“Sometimes I Have to Look in the Mirror to See if I'm Still There”
2011

https://www.youtube.com/watch?v=Gyktr2OIl4v4

http://seaburyschoolnavigators.blogspot.com
Ebru Art @ American Islamic College

https://www.youtube.com/watch?v=llLlFcq3K3U
What is the science behind this art? What physics/fluid would we need to accurately model to build a simulation?
What is the science behind this art? What physics/fluid would we need to accurately model to build a simulation?

- water/oil interaction (chemistry too)
- pen/stick/needle/stylus actions (water depth, speed through & speed in/out, angle, thickness, material, momentum)
- Momentum of water/color
- Surface tension
- Paper step looks hard
- Layered transparency blending? (not sure)
- Use this technique, paint on flat water, apply pattern to curved surface
- Fluid rigid body simulation
 - Surface tension
 - Viscosity
- Paint mixing vs displacement
- How to dye the oil? (not water based)
Today

• HW5: Experimenting with Color
• Final Reading from Friday on Color
• Reading for Today:
 “Stacked Graphs – Geometry & Aesthetics”
• Readings for Friday
• Research Example
 – Gestalt Psychology
 – Computational Geometry: Arrangements
 – User Studies
Homework Assignment 5: Experimenting with Color

• Revisit an earlier assignment/data/toolkit
 – Make a non-color-related improvement to this visualization

• Prepare many versions of the same visualization experimenting with different color palettes, e.g.:
 – Shades of grey
 – Black & white
 – Cool vs. warm tones
 – Bold/saturated vs. pastel
 – Colorblind aware
 – Light vs dark background and/or color negation
 – Etc.

• Analyze the effectiveness of the color scheme for each visualization.
 – How well does it convey the message? Or mislead the viewer?

• Compare the visualizations to each other.
Today

• HW5: Experimenting with Color
• Final Reading from Friday on Color
• Reading for Today:
 “Stacked Graphs – Geometry & Aesthetics”
• Readings for Friday
• Research Example
 – Gestalt Psychology
 – Computational Geometry: Arrangements
 – User Studies
Visual Salience

• … is the perceptual quality that makes some items in the world stand out from their neighbors and grab our attention

 ![Saliency Examples](image1)

• Designers use saliency to create objects (such as this emergency triangle) that appear highly salient in a wide range of viewing conditions

 ![Saliency Examples](image2)

• “when using many colors of different hues, I get a blended hot mess of color that completely washes out and detail of the underlying 3D rendered model”

• The Matlab “jet” color scheme is the default (and it looks so pretty!), but it is misleading!
Fig. 1. This visualization was taken from a Tableau Public workbook [11] to illustrate the value of semantic color encoding. Left: The Tableau default colors are perceptually legible, but conflict with the data semantics (‘Tomatoes’ are pink, ‘Corn’ is green). Center: The Tableau author matched the colors to the data semantics (red for ‘Tomatoes’, yellow for ‘Corn’), which makes it easier to identify the different types of vegetables in the graph. Right: Our algorithm automatically created a similarly effective result.
Stroop Effect
http://faculty.washington.edu/chudler/words.html

Musell Color System
http://www.codeproject.com/Articles/7751/
Use-Direct-D-To-Fly-Through-the-Munsell-Color-So
• Is a word colorable?
 – Use Google n-grams to find # of times it is associated with color (books only? Would this be even better if they had a general human speech corpus?)
 – Are there strong color associations for a word?
• What is the best color value?
 – google images (clipart or natural images?)
• Semantic context
 – apple the fruit or apple the company?
 – NLP (Natural Language Processing)
• K-means clustering to create set of distinct colors (flexibility of different colors for some items)
• “The power of these names is not their accuracy, but their memorability and ease of use.”
• Berlin & Kay’s 11 basic color terms:
 – black, white, red, green, yellow, blue, brown, purple, pink, orange, gray

• Why clipart?

<table>
<thead>
<tr>
<th>Input term</th>
<th>Top clustered images</th>
<th>Canonical color</th>
</tr>
</thead>
<tbody>
<tr>
<td>taxi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lizard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>saffron</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Query expansion, Ontology, Concept tree
Not surprised that it performs poorly for logos
Even if the results are always perfect, this can be a huge timesaver! And expand what colors we should consider.
 – Why limit choices to Tableau 20? Why not pantone? Or Munsell?

Good scientific organization to paper
Larger datasets & statistics always(?) better than surveys
 – Presented algorithms are entirely dependent on these datasets

Impressive result for 2 different fields (could alternatively be a paper in an NLP conference)
Lots of detail in the paper (good for reproducibility)… but also feels like lots of padding/redundancy in the paper? (same example used multiple times)
Discussion could be stronger/more complete
 – Competitor’s results often (always?) seemed better…

Xkcd is awesome
Sentiment analysis (sorta creepy)
Why include poem?
Fig. 12. Top row: A Tableau Public visualization [11] semantically color encoded with our algorithm before clustering is applied. One can observe several brands colored with shades of red. Bottom row: Once clustering is applied to the set of colors, some of the reds are replaced by alternate canonical colors obtained from the corresponding logo images.
Today

- HW5: Experimenting with Color
- Final Reading from Friday on Color
- Reading for Today:
 “Stacked Graphs – Geometry & Aesthetics”
- Readings for Friday
- Research Example
 – Gestalt Psychology
 – Computational Geometry: Arrangements
 – User Studies
Readings for Today

• “Stacked Graphs – Geometry & Aesthetics”
 Lee Byron & Martin Wattenberg, IEEE TVCG 2008
• Internet feedback was a large part of paper
 – Unnecessary?
 – started off as a story or documentary rather than an academic paper, strange
 – vulgar language :, seemed unprofessional (?)
 – Cannot measure “organic and emotionally pleasing”,
 proper analysis of comments beyond ‘some people liked it/
 some did not’ was not attempted/difficult/impossible
• Like other art… it is controversial, and that’s ok!
 – Eye magnets
• Layout
 – Tufte’s macro/micro: show both the sum and the individual values
 – Minimize “wiggle” of extremes & middle curves, thicker layers weighted more
 highly (but does not display data as accurately?)
 – Keep graph centered (don’t drift up or down)
 – Border/space between layers? If required by media
 – Labels are important
 – Interaction is good
 – Looks like mountains, foreground/background, perceived overlap implies some
 data is bigger than just the visible area
• **Colors**
 – Natural & pleasing, not too loud or distracting, *(boring?)*
 – For a particular dataset is it necessary to match disjoint regions by color?
 – Choose color from relevant 2D axes mapped to color & saturation
 – Don’t all need to be unique, aren’t limited by # of distinguishable colors

• **Local contrast**
 – Display data, e.g., time of onset, popularity,
 – Bias color selection to keep image balanced

• **Order**
 – Lack of prescribed ordering is unsettling
 – Sort by time of offset or “measure of volatility”
 – Generally alternating top & bottom seems to be best
 – Entrance position discussion interesting

• **This is not a black box one-size-fits-all visualization technique. It requires thought to choose colors & tweak layout. It won’t work for all data.** *Could be done badly…*
 – Difficult for newbies - no clear, straightforward solution/guidance for layout or color
 – Waviness of output appropriate for music data
 – Handles massive amount of data
 – This should be a graph option in Excel!
• Legend mandatory to understand and interpret a particular streamgraph (no conventions)
 – The plots are so interesting you are motivated to figure it out
• Abstract was awkward talking about an image that wasn’t right there
• Insufficient comparison images within the paper (copyright thing? page limit? assumed to be “common knowledge”?)
• Didn’t explain improvements streamgraph vs. theme river
• Personalized visualizations are cool
• Purpose of this visual: to look cool & be engaging & draw interest or to scientifically measure & conclude things?
• Some sloppy figure callouts/captions/labels. Some captions too short. Why was this image included? Need to do more than just describe the source of the data
• Vertical vs horizontal: horizontal most appropriate for time data.
Today

- HW5: Experimenting with Color
- Final Reading from Friday on Color
- Reading for Today:
 “Stacked Graphs – Geometry & Aesthetics”
- Readings for Friday
- Research Example
 – Gestalt Psychology
 – Computational Geometry: Arrangements
 – User Studies
Reading for Next Time (pick one)

- "Error Bars Considered Harmful: Exploring Alternate Encodings for Mean and Error", Correll & Gleicher, TVCG 2014

(a) **Bar chart** with error bars: the height of the bars encodes the sample mean, and the whiskers encode a 95% t-confidence interval.

(b) **Modified box plot**: The whiskers are the 95% t-confidence interval, the box is a 50% t-confidence interval.

(c) **Gradient plot**: the transparency of the colored region corresponds to the cumulative density function of a t-distribution.

(d) **Violin plot**: the width of the colored region corresponds to the probability density function of a t-distribution.
Reading for Next Time *(pick one)*

![Diagram](image)

Fig. 1: Six different visual encodings of start/end uncertainty of temporal intervals used in the user study: (a) gradient plot, (b) violin plot, (c) accumulated probability plot, (d) error bars, (e) centered error bars, and (f) ambiguity. We designed encodings (a)–(c) to encode statistical uncertainty and encodings (d)–(f) to encode bounded uncertainty. All encodings were used to estimate earliest start, latest start, earliest end, and latest end, as well as minimum, maximum, and average interval duration. Moreover, encodings (a)–(c) were used to estimate the probability that the interval has already started/ended at a marked position in time.
Today

• HW5: Experimenting with Color
• Final Reading from Friday on Color
• Reading for Today:
 “Stacked Graphs – Geometry & Aesthetics”
• Readings for Friday
• Research Example
 – Gestalt Psychology
 – Computational Geometry: Arrangements
 – User Studies
Interpreting Physical Sketches as Architectural Models

Barbara Cutler and Joshua Nasman

Department of Computer Science
Rensselaer Polytechnic Institute
“Virtual Heliodon” for Daylighting Analysis

camera to detect geometry

4 projectors to display solution

design sketched with foam-core walls
Tangible Interface for Architectural Design

Exterior & interior walls

Tokens for:
- Windows
- Wall/floor colors
- North arrow

Overhead camera Projection geometry Inferred design
Our Contributions

• Algorithm for automatic interpretation of interior space vs. exterior space
• Construction of a watertight 3D mesh
• User study collected >300 example designs
• Validation of algorithm
 – Compare to annotations by the original designer
• Quantify design ambiguity
 – Compare annotations of a design by other users
Related Work

• Tangible User Interfaces [e.g., Ben-Joseph et al. 2001]
• Sketch-based Modeling User Interfaces
 [Zeleznik et al. 1996; Igarashi et al. 1999; Dorsey et al. 2007]
• Pen-based Sketch Recognition [e.g., Wacom 2010]
• Automated Recognition of CAD Drawings
 [Aoki et al. 1996; Llados et al. 1997; Ah-Soon and Tombre 2001; Kulikov 2004; Lu et al. 2005]
• Human Vision, Perception, & Gestalt Psychology
 – Seek the simplest explanation for an incomplete diagram
 – Closure, proximity, symmetry, continuity, collinearity, & parallelism
Gestalt Principles: Reification

• Constructive or generative aspect of perception

Pragnanz: Gestalt Laws of Grouping

- Proximity
- Similarity
- Closure
- Symmetry
- Common fate
- Continuity
- “Good” gestalt (regular, simple & orderly, eliminate complexity & unfamiliarity)
- Past experience

http://en.wikipedia.org/wiki/Gestalt_psychology
Gestalt Principles

• Figure/Ground
Overview of Algorithm

• Image Processing (our earlier publications)
• Lack of precision in sketch: Should elements be parallel? collinear? perpendicular? tangent?
• Link tangent walls to form continuous chains that divide space into zones
• Determine interior vs. exterior
• Generate floor plan diagram & watertight mesh geometry (more details in our paper)
Tolerance Example: Collinearity

Detected Geometry

Designer’s Intention

Favor Collinearity

Favor Skew Lines

Other Users’ Interpretations
Connecting segments together

- End points near each other (what epsilon/tolerance?)
- Approximately parallel (what epsilon/tolerance?)
- Snap to perfect line? Or preserve original shape?
- What if we have multiple matches?
Linking Elements to Form Chains

- If $A \rightarrow B$ and $B \rightarrow A$ are best matches for tangent, then the walls are joined into a chain.

Detected Geometry

Wall Chains, Extended to Infinity
Halfspace Zones & Enclosure

- Further subdivided using GraphCuts (if needed)
Complexity Analysis?

Input: n physical walls or sketched pen strokes

Consider connecting into chains

- How many endpoint-endpoint connections?
- How to reduce # of comparisons?

After joining into m “wall chains” ($m \leq n$)

- How many point intersections (between wall chains)?
 - What if the wall chains are perfect lines?
 - What if they wall chains are general curves?
- How many zones/cells/faces (assume lines)?
- How to uniquely label faces?

Labeling Interior vs. Exterior

- How many ways to label entire diagram interior vs. exterior?
 Assume f faces, and each face should be labeled interior or exterior.
4 lines (wall chains)

with this configuration, limited to this circle, we have 9 faces/zones
Interior/Exterior Enclosure Threshold

- Unfortunately, there is no universal threshold
- Varies design-to-design, and *within-a-design*

Automatic Interior/Exterior Determination & Final Floorplan

Compare to Designer’s Intention
Complexity Analysis?

Input: n physical walls or sketched pen strokes

Consider connecting into chains

- How many endpoint-endpoint connections? $(2n \times 2(n-1)) / 2 = O(n^2)$
- How to reduce # of comparisons? Spatial data structure, like a quadtree

After joining into m “wall chains” ($m \leq n$)

- How many point intersections (between wall chains)?
 - What if the wall chains are perfect lines? $O(m^2)$
 - What if they wall chains are general curves? $O(\infty)$
- How many zones/cells/faces (assume lines)? $O(2^m)$
- How to uniquely label faces? Binary code, each bit represents which “side” of each wall chain it lies on.

Labeling Interior vs. Exterior

- How many ways to label entire diagram interior vs. exterior? $O(2^f) = O(2^m)$

Assume f faces, and each face should be labeled interior or exterior.
Interior/Exterior Optimization

- Analyze histogram of point-sampled enclosure values
- Maximize usage of lengths of real wall elements
- Minimize length of inferred (added) walls
- Minimize area assigned in opposition of simple threshold metric

Complex Boundaries & Varying Gaps
Interior/Exterior Optimization

- Analyze histogram of point-sampled enclosure values
- Maximize usage of lengths of real wall elements
- Minimize length of inferred (added) walls
- Minimize area assigned in opposition of simple threshold metric
- (Courtyard option) Minimize total enclosed area

Open Courtyards & Multiple Buildings
Our Goals in Conducting User Studies

• Understand range of designs possible
• Improve physical sketching user interface
• Improve algorithm for sketch recognition of interior/exterior space
 – Learn common human interpretation “rules”
 – Quantify design ambiguity
• Measure effectiveness of Virtual Heliodon as an architectural daylighting design tool
User Study 1: Open-Ended Design

- 30 participants (15 architects)
- 20 mins of sketching
- 329 unique designs (154 by architects)
- After design session:
 - Designer annotates each design
 - Then, we reveal our automatic interpretation
Identify/Quantify Ambiguous Designs

Designer’s Annotation

Re-Interpretation by Other Users

Automatic Interpretation
User Study 2: Re-Interpretation

- 114 designs from Study 1
 - All ambiguous designs included
 - Some clear designs (as controls)
- 15 participants
- Re-interpreted by another user
 - 3-6 new annotations for each
 - 346 total (124 by architects)
- Then compare to original designer’s annotation
- And finally, to our automatic interpretation
Re-Interpretation Results

<table>
<thead>
<tr>
<th></th>
<th>correct</th>
<th>mostly correct</th>
<th>incorrect</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear</td>
<td>155</td>
<td>17</td>
<td>26</td>
<td>198</td>
</tr>
<tr>
<td>ambiguous</td>
<td>74</td>
<td>35</td>
<td>22</td>
<td>131</td>
</tr>
<tr>
<td>total</td>
<td>229</td>
<td>52</td>
<td>48</td>
<td>329</td>
</tr>
</tbody>
</table>

- No correlation found between background (architecture/arts/none) & interpretation accuracy
- We will continue to improve the robustness of our software
Domain-Specific Knowledge Required

• Standard vocabulary of architectural forms (e.g., cruciform, portico, etc.)

Designer’s Annotation Re-Interpretation by Other Participants Automatic Interpretation
Future Work

• Improve/robustify interpretation algorithm
 – Detect symmetry & repetition
 – Multi-zone interiors & circulation paths
• Incorporate domain-specific knowledge
• Enhance user interface
 – Additional tokens, more complex element shapes
 – Alternative to sketching in plan: sketch (double height, multi-floor) vertical sections
• Apply to pen-based sketch interpretation
Thanks!

- Yu Sheng, Ted Yapco, & Andrew Dolce
- Our user study volunteer participants
- Funding from NSF & IBM