• Related Graphics Research
 – dynamic simulations
 – optimizations & satisfying constraints
 – interactive vs. offline
 – high vs. low resolution models
 – procedural modeling
 – surface vs. volume representations
• Where does our problem fit?
 – Which aspects are most important?
 – Which things can be approximated or eliminated?

Warning…
• Lots of stuff
 – Took many people, many years to do
 – I won’t explain (don’t know) all the details
• Random sampling of SIGGRAPH
 – Not an exhaustive list
 – I may have missed some obviously more relevant citations… sorry!
• Interruptions encouraged!
 – Ask questions, make comments

Rigid Body Dynamics
• Physics
 – Velocity
 – Acceleration
 – Angular Momentum
• Collisions
• Friction

Particle Systems
Based on: Dorsey, Peterson & Hanrahan
Flow and Changes in Appearance
SIGGRAPH 1999
Images from:
Cutler, Dorsey, McMillan, Mueller & Jagnow
A Procedural Approach to Authoring Solid Models
SIGGRAPH 2002

Fracture
James O’Brien & Jessica Hodgins
Graphical Modeling and Animation of Brittle Fracture
SIGGRAPH 1999

• Fracture threshold
• Remeshing
• Material properties
• Parameter tuning
Collisions

- We know how to simulate bouncing really well
- But resting collisions are hard to manage

Guendelman, Bridson & Fedkiw
Nonconvex Rigid Bodies with Stacking
SIGGRAPH 2003

Cloth

- Dynamic motion driven by animation

David Baraff & Andrew Witkin
Large Steps in Cloth Simulation
SIGGRAPH 1998

Collisions

Robert Bridson, Ronald Fedkiw & John Anderson
Robust Treatment of Collisions, Contact and Friction for Cloth Animation
SIGGRAPH 2002

• Approx 1 day to simulate (most time for collisions)

Simulations: Main Idea

- Engine: iterative solver
 - Euler, Runge-Kutta, implicit/explicit, ...
 - particle systems / finite element method
 - collision detection / response
 - fracture / deformation
- Input:
 - initial conditions
 - forces
- Output:
 - animation / dynamics, frame by frame positions
• Related Graphics Research
 – dynamic simulations
 – optimizations & satisfying constraints
 – interactive vs. offline
 – high vs. low resolution models
 – procedural modeling
 – surface vs. volume representations
• Where does our problem fit?
 – Which aspects are most important?
 – Which things can be approximated or eliminated?

Optimization

Bob Sumner & Jovan Popovic
Deformation Transfer for Triangle Meshes
SIGGRAPH 2004

Optimization

Bob Sumner & Jovan Popovic
Deformation Transfer for Triangle Meshes
SIGGRAPH 2004

Optimization

C. Karen Liu & Zoran Popovic
Synthesis of Complex Dynamic Character
Motion from Simple Animations
SIGGRAPH 2002

Optimization

Jeffrey Smith, Jessica Hodgins & Irving Oppenheim
Creating Models of Truss Structures with Optimization
SIGGRAPH 2002

apply local rotation & scale

apply global translation

adjust local deformation to maintain connectivity

• Minimal keyframes from user
• Common patterns of angular momentum (biomechanics data)
Optimization

- Constraints: loads, anchors, empty volumes
 - Intelligent placement of free joints can speed up convergence
- Object Function: minimize total mass

Optimization: Main Idea

- Engine: constraints solver
 - solving is easier if system is in a particular form (e.g., linear constraints)
- Specify constraints
 - floors should be horizontal, ...
- Minimize the objective/cost function
 - material, manufacturing, transportation, installation costs, ...

Related Graphics Research

- dynamic simulations
- optimizations & satisfying constraints
- interactive vs. offline
- high vs. low resolution models
- procedural modeling
- surface vs. volume representations

Where does our problem fit?

- Which aspects are most important?
- Which things can be approximated or eliminated?

Simplification

Hughes Hoppe
Progressive Meshes
SIGGRAPH 1996

tetrahedral models:
Cutler, Dorsey & McMillan 2004

Level of Detail

Gilles Debunne, Mathieu Desbrun, Marie-Paule Cani, & Alan H. Barr
Dynamic Real-Time Deformations using Space & Time Adaptive Sampling
SIGGRAPH 2001

Use high-resolution model only in areas of extreme deformation

Level of Detail

Eitan Grinspun, Petr Krysl, & Peter Schroder
CHARMS: A Simple Framework for Adaptive Simulation
SIGGRAPH 2002

Use high-resolution where needed to get sharp creases
Simplified Physics

Mueller, Dorsey, McMillan, Jagnow, & Cutler

Stable Real-Time Deformations Symposium on Computer Animation 2002

Reduced Deformation

Doug L. James & Dinesh K. Pai
BD-Tree: Output-Sensitive Collision Detection for Reduced Deformable Models

SIGGRAPH 2004

Level of Detail: Main Idea

• Target Application
 – model resolution
 – level of interaction / responsiveness

• Approximation in Representation / Solver
 – acceptable errors / inaccuracies?
 – prototyping / exploration / education vs. final construction documents

By Example

Funkhouser, Kazhdan, Shilane, Min, Kiefer, Tal, Rusinkiewicz & Dobkin

Modeling by Example

SIGGRAPH 2004

L-Systems

Prusinkiewicz & team at University of Calgary

Algorithmic Botany

• Related Graphics Research
 – dynamic simulations
 – optimizations & satisfying constraints
 – interactive vs. offline
 – high vs. low resolution models
 – procedural modeling
 – surface vs. volume representations

• Where does our problem fit?
 – Which aspects are most important?
 – Which things can be approximated or eliminated?

• Describe variations algorithmically
 – color
 – size
 – angle
 – density
 – shape
 – etc.
Procedural Modeling

- Describe variations algorithmically
 - street layout
 - density
 - height
 - texture

Modeling

- Automatically label corners, edges, & faces

Modeling

- Texture by orientation (vertical/horizontal/arch)
- Correctly wrap texture between features

Modeling: Main Idea

- User Interface
 - Modeling by example
- Procedural Modeling
 - Identify patterns / similarities
 - Develop a parameterized model

An aside: what’s “Generative”?

- Procedural Modeling: Capture pattern
 - simple description → lots of complexity
- Optimization: Goal Driven
 - reverse engineer to discover proper inputs
- Related Graphics Research
 - dynamic simulations
 - optimizations & satisfying constraints
 - interactive vs. offline
 - high vs. low resolution models
 - procedural modeling
 - surface vs. volume representations
- Where does our problem fit?
 - Which aspects are most important?
 - Which things can be approximated or eliminated?

Do We Need Dynamics?
- In many cases, we only want the static equilibrium, (which we can find more efficiently for larger models)

When might we want Dynamics?
- (Other than “because it’s fun”)
- Teaching tool: builds intuition about general physics/structural principles
- To understand a particular structure
- To understand our representation, assumptions & simulation (& figure out where it’s incorrect/incomplete)
- ?

Thoughts on a User Interface?
- Discuss SodaPlay?
- Where do the models come from?
 - Created with other applications?
 - How much editing do we want to support?
- What (expensive) tasks can we do offline?
- ?