FINAL: 180 Minutes

Last Name:	
First Name:	
RIN:	
Section:	

Answer **ALL** questions.

NO COLLABORATION or electronic devices. Any violations result in an F. NO questions allowed during the test. Interpret and do the best you can.

GOOD LUCK!

You **MUST** show **CORRECT** work to get full credit.

When in doubt, TINKER.

1-12	Total
10 each	120

1 Determine the type of proof and prove: a right triangle with integer sides cannot be isoceles.

2 Prove that the product of any 5 consecutive natural numbers is divisible by 5!.

3 Let $G_0 = 0$, $G_1 = 1$, and $G_n = 7G_{n-1} - 12G_{n-2}$ for n > 1. Compute G_5 . Show $G_n = 4^n - 3^n$ for $n \ge 0$.

4 Determine and prove the order-relationships between $\ln n$, $\ln(n^2+1)$, and $\ln(2n)$.

5 Prove that

$$xk \equiv yk \mod d$$

implies that

$$x \equiv y \mod(d/\gcd(k,d)).$$

6 Adam, Barb, Charlie, and Doris each independently choose a random number uniformly distributed in $\{1, 2, 3, 4, 5\}$. What is the probability that some pair chooses the same number? What if there are k people and n numbers?

Let V be a set of n vertices, and let the edge set \mathcal{E} be initially empty. For each pair of vertices $i \neq j$, add the edge (i,j) to \mathcal{E} with probability p. Give the pdf for the degrees of the nodes of this graph.

8 Voltage in the US has a mean of 120V and a standard deviation of 5V. A device's operating voltage is 112–128. Use Chebyshev's inequality to bound the probability that the device will not be damaged when turned on.

9 Give a DFA for strings whose even digits alternate between 0 and 1.

10 For CFG $S \rightarrow 0S|S1|0|1$, prove that no string has 10 as a substring.

11 Consider the language of palindromes $\mathcal{L} = \{\omega \,|\, \omega \in \{0,1\}^*, \omega = \omega^R\}$. Give well-written high-level pseudocode for a decider for this language.

Given an ultimate-debugger $\mathcal D$ that takes $\langle M \rangle \# \omega$ and decides if TM M halts on input ω , show that every recognizer of a language $\mathcal L$ can be converted into a decider for the language.