
1. Gaussian Tail Inequalities

Theorem 1. Let g ∼ N (0, 1). Then for any t > 0,
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From the symmetry of Gaussian r.v.s, viz., the fact that −g and g have the same
distribution (check this),
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Proof of Theorem 1. Write the upper tail as the integral of the gaussian pdf, and
use the fact that s

t ≥ 1 when s ≥ t:
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2. CLT implications

The classic CLT says that if Xn is the sum of n i.i.d. random variables with
finite mean and bounded variance, then Zn := Xn−EXn√

Var(Xn)
→ N (0, 1) in distribution.

This means that the CDF of Zn converges pointwise to that of a N (0, 1) random
variable : for all t ∈ R

P[Zn ≤ t] = P

[
Xn − EXn√

Var(Xn)
≤ t

]
→ P[g ≤ t],

as n→∞, where g ∼ N (0, 1).
Some straight-forward implications:

• By considering the probability of the complements of the events {Zn ≤ t}
and {g ≤ t}, we see that P[Zn > t]→ P[g > t] for all t.
• Using the fact that P[Zn = t] = P[Zn ≥ t]−P[Zn > t] and the fact that the

two tails on the right converge to the analogous tails for a N (0, 1) variable,
we see that P[Zn = t]→ P[g = t] = 0.

• It follows that P[Zn ≥ t] = P[Zn > t] + P[Zn = t]→ P[g > t].
• Similar arguments show P[Zn < t]→ P[g < t].
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The takeaway is that all the tails of Zn — with and without equality, upper and
lower— converge to those of a N (0, 1) random variable. As an example relevant to
question 3(i) on Homework 3, this implies that

(1) P[|Zn| ≥ t] = P[Zn ≥ t] + P[Zn ≤ −t]→ P[g ≥ t] + P[g ≤ −t] = P[|g| ≥ t].
You should be able to argue up to (1) using what we learned in class (and your

knowledge of limits). In fact, the asymptotic CLT has MUCH stronger implications:
it implies that any reasonable statistic of Zn converges to the corresponding statistic
of a N (0, 1) random variable. Formally, one way to state this is that when f is a
bounded, continuous function,

E[f(Zn)]→ E[f(g)]

as n→∞. This result is part of a famous result known as the Portmanteau Theorem
that characterizes convergence in distribution. The dominated convergence theorem
then implies that such convergence holds for a very large class of functions f ,
including many that are not continuous. As an example, we can use this result to
obtain (1) with much less bean-counting: let f(z) = 1|z|≥t(z), and observe1 that

P[|Zn| ≥ t] = E1|z|≥t(Zn)→ E1|z|≥t(g) = P[|g| ≥ t].
Just as Berry–Esseen theorems quantify the rate of convergence of the CDFs, there
are versions of the CLT that quantify the rate of convergence of statistics.

1As someone pointed out, this isn’t quite kosher in the application to Problem 3(i), because
the t there is changing with n. In fact, for this value of t, the tail bounds still converge to each

other, in the trivial sense that both go to zero.


