1. Let X be a Binomial(n, p) random variable.

 (i) Determine the MGF of X.

 (ii) Use the MGF of X to determine a subgaussian tail bound for X.

2. Let X be a Poisson(λ) random variable and $\varepsilon > 0$.

 (i) Compute the MGF of X.

 (ii) Compute the mean, μ, and variance, $\text{Var}(X)$, of X.

 (iii) Use Chebyshev’s inequality to derive a bound on the probability that $X > (1 + \varepsilon)\mathbb{E}X$.

 (iv) Use the Chernoff technique to argue that
 \[P(X \geq (1 + \varepsilon)\mathbb{E}X) \leq e^{-h(\varepsilon)\text{Var}(X)}, \]
 where $h(\varepsilon) = (1 + \varepsilon) \ln(1 + \varepsilon) - \varepsilon$.

 (v) Compare the usefulness of the two bounds.

3. Consider a collection X_1, \ldots, X_n of n independent geometrically distributed random variables with mean 2. Let $X = \sum_{i=1}^{n} X_i$ and $\delta > 0$.

 (i) Derive a bound on $P(X \geq (1 + \delta)(2n))$ by relating this probability to the behavior of a sum of $(1 + \delta)2n$ Bernoulli random variables and applying a Chernoff bound.

 (ii) Directly derive a Chernoff bound on $P(X \geq (1 + \delta)(2n))$ using the moment generating function for geometric random variables. The form of the bound should be simple.

 (iii) Which bound is better in your opinion, and why?

4. [required only for CSCI6220] Consider n balls thrown randomly into n bins. Let $X_i = 1$ if the ith bin is empty and 0 otherwise. Let $X = \sum_{i=1}^{n} X_i$. Note that X is not the sum of independent random variables, so we cannot use a Chernoff bound directly.

 Instead, we will show that the MGF of X is smaller than the MGF of a sum of independent r.v.s and obtain a Chernoff bound in terms of the latter. To do so, let Y_i for $i = 1, \ldots, n$ be independent Bernoulli random variables that are 1 with probability $p = (1 - 1/n)^n$. Let $Y = \sum_{i=1}^{n} Y_i$.

 (i) What is the probability that $X_i = 1$?

 (ii) Give an intuitive argument for why we should expect Y to be greater than X.

 (iii) Show that $\mathbb{E}[X_1 X_2 \cdots X_k] \leq \mathbb{E}[Y_1 Y_2 \cdots Y_k]$ for any $k \geq 1$.

 (iv) Show that $M_X(\lambda) = \mathbb{E}[e^{\lambda X}] \leq \mathbb{E}[e^{\lambda Y}] = M_Y(\lambda)$ for all $\lambda \geq 0$. (Hint: use the expansion for e^x and compare $\mathbb{E}[X^k]$ to $\mathbb{E}[Y^k]$.)

 (v) Derive a Chernoff bound for $P(X \geq (1 + \delta)\mathbb{E}[X])$.