A stochastic process $\{X_t\}_{t \in T}$ is a collection of random variables indexed by some set T — we usually think of as time or space. These can be used to describe many phenomena, including evolution of a randomized algorithm.

A Markov chain is a particular kind of stochastic process. We will deal exclusively with discrete-time, homogeneous Markov chains over a set S of finite or countably infinite states. Such a chain is described by a transition matrix P whose ijth entry describes the probability of moving from state i to state j in one time step.

Note that for all i, $\sum P_{ij} = 1$, because you will move to some state j in the next time step. Call P a row-stochastic matrix.

Markov chains have the property of memorylessness

$$\Pr(X_t = i_t | X_{t-1} = i_{t-1}, \ldots, X_0 = i_0) = \Pr(X_t = i_t | X_{t-1} = i_{t-1})$$
It is not that \(X_t \) doesn't depend on the states before, it is that once we know \(X_{t-1} \), we have all the relevant history from the past to predict \(X_t \).

Note that \(P(X_t = j \mid X_{t-1} = i) = P_{ij} \).

Markov Chains come up in many applications:
- might know of HMMs from signal processing, NLP, ML, etc
- used in Bayesian statistics & ML to approximately sample from intractable distributions
- used to approximately count sets it is hard to sample from (e.g., perfect matchings in a graph) and approximate volume of complicated (convex) sets
- used to analyze behavior of randomized algorithms

In some of these applications, we use the Markov Chain Monte Carlo technique, which constructs a Markov Chain that has a specific limiting distribution for \(X_t \), called a stationary distribution. Our goal is to reach that distribution as fast
as possible. Accordingly we care about
- when do stationary distributions exist?
- how do we measure convergence of distributions?
- what techniques can we use to show convergence?

These will be the focus of our intro to MCs.

Some examples:
- a random walk on $S = \mathbb{Z}$, where you move left/right w/ prob p or $1-p$

- a random walk on $\mathbb{Z}_m = \{0, \ldots, m-1\}$ where you increase/decrease the state ($\mod m$) w/ prob p or $1-p$

- random walks on a graph $G(V, E)$. Example: $P_{uv} = \frac{1}{d(v)}$ if $(u,v) \in E$ 0 otherwise

- random walk on the lattice \mathbb{Z}^d
 \[P_{x,y} = \begin{cases} \frac{1}{2d} & \text{if } y \text{ differs from } x \text{ by } 1 \text{ in exactly one coordinate} \\ 0 & \text{otherwise} \end{cases} \]
- Lazy versions of Markov chains
 Given P, take $\tilde{P} = \alpha P + (1-\alpha)I$
 i.e. with some probability $(1-\alpha)$ stay in
 the same state.

- Random transposition walk on the symmetric
group S_n
 $P_{\pi_1\pi_2} = \begin{cases}
 1/(2^n) & \text{if } \pi_2 = \sigma \pi_1 \text{ for some}
 \text{transposition } \sigma \\
 0 & \text{otherwise}
\end{cases}$

 This is often used to model card shuffling
 for example (famous Diaconis result on
 the mixing time for card shuffling)

- Ehrenfest urn model used to model particle
diffusion. Have two urns 0 and 1, n balls.
 State is vector in \mathbb{Z}_2^n describing location
 of balls. At each time pick a ball and change
 its location.
 $P_{xy} = \begin{cases}
 1/n & \text{if } y \text{ differs from } x \text{ in one location} \\
 0 & \text{otherwise}
\end{cases}$

- A randomized alg for finding a satisfying
 assignment for the 2-SAT problem in n
 variables, which implicitly defines a Markov
 Chain. At each time pick an unsatisfied
clause and invert one of its literals. Note that the satisfying assignments are absorbing (probability of leaving them = 0). Can show using MC analysis that if a satisfying assignment exists, this alg. will find in $O(n^2)$ time. Same idea works for k-SAT, k-colorability, etc., but convergence time is different (also constructive version of Lovasz Local Lemma).

--- TALK about DP example here ---

Basics

P - one-step transition matrix describes

$$TP(X_{t+1} = j \mid X_t = i)$$

General s-step transition matrix describes

$$TP(X_{t+s} = x_{t+s} \mid X_t = x_t) = \sum TP(X_{t+s} = x_{t+s} \mid X_{t+s-1} = x_{t+s-1} \cdots X_t = x_t)$$

Now recall we have seen before (e.g. in proof of LLL) that

$$TP(e_n, e_{n-1}, \ldots, e_1) = \prod_{l=0}^{n-2} TP(e_{n-l} \mid e_{n-(l+1)})$$
ML-example: Differentially private SVD

Def: An algorithm A provides (ε, δ) differential privacy if

$$P(A(D) \in S) \leq e^\varepsilon P(A(D') \in S) + \delta$$

for all data sets D and D' differing in a single entry.

So you can be sure that $A(D)$ does not inadvertently expose sensitive information on any one individual in D, if for example D computes some statistic on people.

Ex: take A to be max, then if $A(D)$ and $A(D')$ changes when I remove one person, I know their salary.

There is a tension b/w differential privacy and accuracy (e.g. if I add really high noise, trivially ensure DP), so one goal of DP researchers is: given a particular computation, how to achieve (ε, δ) privacy while ensuring as much accuracy as possible.
Consider case where want to DP compute
\[\arg\min_{x \in S} f(x) \]

One way to achieve this is to sample from a distribution that is peaked around the minimum instead of exactly solving for the minimum, e.g. sample from dist
\[P(x \in A) \propto \int_A \exp(-\gamma f(x)) \, dx \quad (A \subseteq S) \]

It's clear that adjusting \(\gamma \) trades off b/w DP and accuracy.

Ex: DP EVD (has optimal sample complexity)
given \(A \rightarrow \) DP compute a basis for col span of \(A \)
so \(A \approx UEU^T \) where \(U \in \mathbb{R}^{n \times k} \)
satisfies \(U^TU = I \)

\[\arg\min_{U \in \mathbb{R}^{n \times k}, \quad \text{subject to} \quad U^TU = I} \text{Tr} \left(U^T A U \right) \]
so DP solve by sampling from

\[P(U|\lambda) \propto \int_{\Lambda} e^{-\text{Tr}(U^T A U)} dU \]

This is called the matrix Bingham distribution and has density

\[f(U) = \frac{1}{\text{F}_1(\frac{1}{2}k, \frac{1}{2}n, A) \exp(\text{Tr}(U^T A U))} \]

\[\text{F}_1(\cdot) \text{ confluent hypergeometric fun} \]

but we know no alg for directly sampling from soln: use MCMC (in particular, Gibbs sampling)
so \(P(x_{t+5} | x_t) = \sum P(x_{t+5} | x_{t+4-1}) \cdots P(x_{t+1} | x_t) \)

\[= \sum_{x_{t+5-1}, \ldots, x_{t+1}} P_{x_{t+5}} \cdots P_{x_{t+1}, x_{t+1}} \]

\[= (P^s)_{x_t, x_{t+5}} \]

So the \(s \)-step transition matrix is the \(s \)-th power of the 1-step transition matrix.

Denote our distribution over the states \(S \) by a row vector \(\Pi^t \) at time \(t \), then the distribution over the states at time \(t+1 \) are given by

\[(\Pi^{t+1})_j = P(X_{t+1} = j) = \sum_k P(X_{t+1} = j | X_t = k)P(X_t = k) \]

\[= \sum_k \Pi_k P_{kj} = (\Pi P)_j \]

so \(\Pi^{t+1} = \Pi^t P \)

In particular, if \(\Pi^0 \) describes the initial state distribution, then

\[\Pi^t = \Pi^0 P^t \]
Stationary distributions

We call π a stationary distribution for the MC described by P if

$$\pi = \pi P$$

This means if we start the MC w/state following π, the resulting chain always has its states distributed as π.

Note that a stationary distribution always exists:
- P is a row-stochastic matrix, so $P 1 = 1$
 means 1 is a right-eigenvalue of P,
 i.e.
 $$\det (P - \lambda I) \text{ has a zero at } \lambda = 1$$
 $$\implies \det (P^T - \lambda I) \text{ has a zero at } \lambda = 1$$
 $$\implies P^T \pi^T = \pi^T$$ for some row-vector π
Claim \(\pi \) has constant sign on the irreducible components of \(P \)

\begin{proof}

Let \(P = P_1 \oplus \ldots \oplus P_m \) be the irreducible components of \(F \). Note that \(P^n = P_1^n \oplus \ldots \oplus P_m^n \) and \(\pi P^n = \pi_1 P_1^n \oplus \ldots \oplus \pi_m P_m^n \) where \(\pi_i \) indicates the portion of \(\pi \) restricted to component \(i \)

\[\pi P^n = \pi \Rightarrow \pi_i P_i^n = \pi_i \]

Since \(P_i \) is irreducible, there is an \(n_i \) such that \(P_i^{n_i} > 0 \) everywhere. Note that if \(\pi_i \) does not have constant sign,

\[|\pi_i P_i^{n_i}| < \pi_i \]

a contradiction.

Consequently \(\pi P^n = \pi \) means \(\pi \) has constant sign on irreducible components. WLOG, can take \(\pi \) to have positive sign on all components, showing \(\pi \) is a prob vector (after scaling) s.t.

\[\pi P = \pi \]
If the stationary distribution is unique, and we can handle the task, we can find it by solving the \(n+1 \) equations

\[
\begin{align*}
\pi P &= \pi \\
\pi 1 &= 1
\end{align*}
\]

Ex of Markov Chains w/ multiple stationary distributions:
- \(P = I \)
- more generally \(P = \begin{bmatrix}
\begin{array}{c}
\text{each block}
\end{array}
\end{bmatrix} \)

such chains are called reducible. Once your state reaches one of those blocks, you never leave it. So here we have e.g. three stationary distributions

Note that even if a Markov chain has a unique stationary distribution, it is not always the case that

\[
\pi = \lim_{t \to \infty} \pi_0 P^t
\]

for all initial distributions \(\pi_0 \).
Example: random walk on a bipartite graph
stationary dist is unif dist,
but π_0 is supported only on L,
then π_1 is supported only on R,
and so on, so π_t has no limit as $t \to \infty$

In general call a MC periodic if the gcd of the
set $\{n : (P^n)_{ii} > 0\}$ is not 1.
E.g. for the bipartite graph

\[
P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \Rightarrow P^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow P^3 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
\]
\[
P^4 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\]

so is periodic with period 1.

Using lazy versions of random walks ensures
a periodicity e.g.

\[
P = \begin{bmatrix} 0.9 & 0.1 \\ 0 & 1 \end{bmatrix}
\]

Important question: when are stationary
distributions both unique & reachable
from any starting distribution? Relevant
for the design of MCMC methods.
Theorem. An irreducible MC on a finite state space has a unique stationary distribution. If it is additionally aperiodic, then

$$
\pi = \lim_{t \to \infty} \nu P^t
$$

for any starting distribution \(\nu \).

One useful tool for proving stationarity and/or constructing MCs with given stationary distributions is the concept of reversibility.

We say a MC is reversible if there is a distribution \(\pi \) s.t.

$$
\pi_i \pi_{ij} = \pi_j \pi_{ji}
$$

This is called the detailed balance equation. This means if the chain is started w/ initial distribution \(\pi \), then

$$
\mathbb{P}(X_0 = i, X_1 = j) = \mathbb{P}(X_0 = j, X_1 = i)
$$

so there is no “time’s arrow.”

Note: if detailed balance holds then

$$
(\pi P)_i = \sum_j \pi_i \pi_{ij} = \pi_j = \pi_j \pi^T
$$

and \(\pi \) is a stationary distribution.
Ex. of a reversible MC:
random walk on a graph w/ \(\pi_j = \frac{d(u,j)}{\sum_k d(u,k)} := D \)

\[
\pi_i \pi_{ij} = \begin{cases}
0 & \text{if } (u_i, u_j) \notin E \\
\frac{d(u_i)}{D} \frac{1}{d(u_j)} & \text{otherwise}
\end{cases}
\]

\[
\pi_{ji} = \begin{cases}
0 & \text{if } (u_j, u_i) \notin E \\
\frac{1}{D} & \text{otherwise}
\end{cases}
\]

so detailed balance holds

Now we can consider the question of convergence to stationarity.

How to measure convergence? KL-divergence, Hellinger, S-J divergence, ... many choices, some equivalent.

Well what do we care about? Imagine we know an algorithm A succeeds if randomness comes from an expensive to sample dist P. Instead we can sample from a dist Q that is close to P in the sense that

\[\sup_{\varepsilon \in \mathcal{E}} |P(\varepsilon) - Q(\varepsilon)| < \varepsilon\]
Why ergodicity is useful? It implies that if X_t is ergodic MC with limit dist π, then

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} f(X_t) \to E_{\pi} f(x)$$

where $X \sim \pi$ (and f is sufficiently regular, e.g. continuous).

This allows us to do many things, e.g. estimate intractable integrals. Ex: assume $f \geq 0$, then can use Gibbs sampling or Metropolis-Hastings algorithm to approx

$$\int_{\mathbb{R}^n} f(x_1, \ldots, x_n) \, dx$$

by sampling from an appropriate MC.
Important algorithmic application of reversibility: Gibbs sampling

Imagine we want to sample from function
\[f(x_1, \ldots, x_n) \geq 0 \]
e.g. to approximate an intractable integral
\[\int_{R^n} f(x_1, \ldots, x_n) \approx \frac{1}{m} \sum_{i=1}^{m} f(x^{(i)}_1, \ldots, x^{(i)}_n) \]
where \((x^{(i)}_1, \ldots, x^{(i)}_n)\) i.i.d. samples from prob dist w/ density \(f\).

Don't know how to do this in general, so construct a MC w/ prob density given by \(f\) as its stationary dist (note this is not a finite-state MC)

\[
P(C_1^{(i+1)}, \ldots, C_n^{(i+1)} | C_1^{(i)}, \ldots, C_n^{(i)}) = \\
\left\{ \\
0 \quad \text{if the states differ in more than one position} \\
\frac{1}{N} \frac{f(x_1^{(i)}, \ldots, x_j^{(i)}, \ldots, x_{j-1}^{(i)}, z, x_{j+1}^{(i)}, \ldots, x_n^{(i)})}{\sum_{\omega} f(x_1^{(i)}, \ldots, x_j^{(i)}, \omega, x_{j+1}^{(i)}, \ldots, x_n^{(i)})} \quad \text{if } x_j^{(i+1)} = z \\
\right.
\]

so think of this as RW on an infinite weighted graph w/ stat. dist \(f\).
Proof that \(f \) is stoc. dist uses reversibility

\[
f(x) P_{\bar{x}\bar{y}} = f(y) P_{\bar{y}\bar{x}} \quad \text{if } \bar{x}, \bar{y} \text{ differ in more than one spot}
\]

\[
f(x) P_{\bar{x}\bar{y}} = f(x) \sum_{\begin{array}{c}
n \geq 1 \\
\bar{z} = \bar{x} \text{ except at pos. } j
\end{array}} \frac{f(\bar{y})}{f(\bar{z})} \quad \text{if } \bar{x}, \bar{y} \text{ differ in at most pos. } j
\]

\[
= \frac{1}{n} \sum_{\begin{array}{c}
n \geq 1 \\
\bar{z} = \bar{y} \text{ except at pos. } j
\end{array}} f(x) f(\bar{y}) = f(y) \frac{1}{n} \sum_{\begin{array}{c}
n \geq 1 \\
\bar{z} = \bar{y}
\end{array}} f(x)
\]

\[
= f(y) P_{\bar{y}\bar{x}}
\]

Shows stationarity, but what about irreducibility and aperiodicity? Must establish for specific case being looked at. E.g.,

Gibbs would give reducible MC

General condition: if \(f > 0 \) everywhere, then

\[
P_{\bar{x}\bar{x}} > 0 \Rightarrow \text{inreducible}
\]

\[
P_{\bar{x}\bar{y}} > 0 \text{ for some } n \Rightarrow \text{aperiodic}
\]

so have ergodicity
In physics in particular, often have $f = \exp \left(H(x_1, \ldots, x_n) \right)$ so $f > 0$ and Gibbs sampling works \(\text{(example from last lecture)} \).

Drawback: Gibbs sampling assumes can sample from the marginals $f(x_j | x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_n)$. This is not always do-able.

Another approach: **Metropolis-Hastings** \(w/ \text{stat. dist.} \)

Assume we have a MCMC \(P \) on our state space \(M \) and we want samples from a stationary distribution \(\pi \). All we have is that \(\pi \) is proportional to \(f \), that is,

$$\pi_j = \frac{f_j}{Z}$$

for all \(j \), for an unknown \(Z \).

We construct a chain \(Q \) \(w/ \) transition probabilities

$$Q_{ij} = P_{ij} \min \left(1, \frac{\mu_i \pi_j}{\mu_j \pi_i} \right)$$

$$= P_{ij} \min \left(1, \frac{\pi_j f_i}{\pi_i f_j} \right) \text{ for } i \neq j$$

and

$$Q_{ii} = 1 - \sum_{j \neq i} Q_{ij}$$
Then we can show that this chain is reversible:

\[Q_{ij} = P_{ij}, \quad \infty \]

\[\pi_i Q_{ij} = \pi_i P_{ij} = \pi_i \frac{P_{ij} \pi_i}{\mu_i} \]

\[= \pi_i \frac{P_{ij} \pi_j}{\mu_i} \quad \text{by reversibility of } P \]

\[= \frac{P_{ji} \mu_i \pi_j}{\mu_i} \frac{\pi_i}{\mu_i} \]

\[= \pi_j \frac{P_{ji} \mu_i \pi_j}{\mu_i \pi_j} \]

\[= \pi_j Q_{ji} \]

and \(Q \) is reversible and has \(\pi \) as its stationary distribution. We call \(P \) the proposal distribution and

\[A = \min\left(1, \frac{\mu_i \pi_j}{\mu_j \pi_i}\right) \quad \text{is the acceptance function.} \]

In practice, sample \(j \) from the proposal dist, then decide to accept by sampling a unit \((0,1)\) var \(U \), then checking \(U \leq A \).
Then we can be sure that the alg using Q is cheaper and succeeds w/ prob at least $1 - (\delta + \varepsilon)$.

We call this notion of distance total variation distance (TV distance):

Fix $(\mathcal{F}, \mathbb{P})$ a sigma algebra and let P, Q be prob measures over this space, then

$$d_{TV}(P, Q) = \sup_{A \in \mathcal{F}} |P(A) - Q(A)|$$

By symmetry arguments it isn't hard to see that

$$d_{TV}(P, Q) = \sup_{A \in \mathcal{F}} P(A) - Q(A)$$

Proof

Let S achieve $d_{TV}(P, Q) = \sup_{A \in \mathcal{F}} |P(A) - Q(A)|$

either $P(S) > Q(S)$ in which case nothing to show, or $P(S) \leq Q(S)$. In this case, note that

$$P(S^c) \geq Q(S^c)$$

and

$$P(S^c) - Q(S^c) = [1 - P(S)] - [1 - Q(S)] = Q(S) - P(S)$$
so \[|P(S) - Q(S)| = Q(S) - P(S) = P(S^c) - Q(S^c) \]

thus \(S^c \) is a witness that

\[
\sup_A P(A) - Q(A) \geq \sup_A |P(A) - Q(A)|
\]

the other inequality is obvious, so

\[
\sup_A P(A) - Q(A) = \sup_A |P(A) - Q(A)|
\]

For finite-state space MCs, distributions can be written as vectors, and have

\[
d_{TV}(P, Q) = \max \sum_{S \subseteq [n]} |P(S) - Q(S)|
\]

\[
= \max \sum_{S \subseteq [n]} \sum_{i \in S} (P_i - Q_i)
\]

\[
= \max \sum_{S \subseteq [n]} \sum_{i \in S} (P_i - Q_i)
\]
Pop Quiz

1) Argue if a MC w/ n states (n > 1) has an absorbing state, then it is not ergodic

(a state \(i \) is absorbing if \(P_{ii} = 1 \))

but give an example of an MC w/ an absorbing state that has a unique stat dist. (and prove)

\[
(P^n)_{ij} = \sum_k P_{ik} (P^{n-1})_{kj} = \begin{cases} 0 & \text{if } j \neq i \\ P_{ii} (P^{n-1})_{ki} & \text{if } j = i \end{cases}
\]

\[
P^n \leq \text{by induction}
\]

\(\Rightarrow P \text{ is not irreducible since cannot reach any other state from } i \)

\[
P = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}
\]

clear \(\pi = [1 \ 0] \) is the unique stat dist
\[(x_1, x_2) \quad P = [x_1 + x_2 \quad 0] = [1 \quad 0]\]

so just one step from any init dist reaches stat dist.

\[\Rightarrow\] stat dist is unique & you converge to it regardless of starting pt.

Moral: irreducibility is sufficient for uniqueness & conv, not necessary.
Pop Quiz

Let X be a Markov chain on $\mathbb{Z}_m = \{0, \ldots, m-1\}$ with transition matrix P given by

\[
P_{ij} = \begin{cases}
0 & \text{if }\ l(i-j) \mod m \mid > 1 \\
\frac{1}{2} & \text{if }\ l(i-j) \mod m \mid = 1
\end{cases}
\]

Let

\[T_k = \min \{ t \mid X_t = 0 \} \text{ given that } X_0 = k\]

be the hitting time for state 0 starting at state k.

Note that T_k is a random variable since it depends on the particular realization of the Markov Chain. E.g. if the chain looks like

\[
(1, 2, 3, 2, 1, 0, \ldots) \text{ then } T_1 = 5
\]

\[
(1, 2, 3, 4, \ldots, m-1, 0, \ldots) \text{ then } T_1 = m-1
\]

Question: find a relationship b/w

\[
E[T_k] > E[T_{k-1}] > E[T_{k+1}]
\]
Note that by total expectation,

\[E[Z_k] = E[Z_k | X_1 = k-1] \cdot P(X_1 = k-1) + E[Z_k | X_1 = k+1] \cdot P(X_1 = k+1) \]
(all addition is mod 1)

and

\[E[Z_k | X_1 = k-1] = 1 + E[Z_{k-1}] \]
\[E[Z_k | X_1 = k+1] = 1 + E[Z_{k+1}] \]

\[P(X_1 = k-1) = P(X_1 = k+1) = \frac{1}{2} \]

\[\Rightarrow E[Z_k] = \frac{1}{2} (1 + E[Z_{k-1}]) + \frac{1}{2} (1 + E[Z_{k+1}]) \]

\[= 1 + \frac{1}{2} E[Z_{k-1}] + \frac{1}{2} E[Z_{k+1}] \]
Claim
\[d_{TV}(x,y) = \frac{1}{2} \|x - y\|_1 \]
(recall \(\|x\|_1 = \sum_{i=1}^{n} |x_i| \))

Proof
Let \(A = \{ i : x_i > y_i \} \)

then \[d_{TV}(x,y) = \max_{S \subseteq [n]} \sum_{i \in S} (x_i - y_i) \]
\[\leq \sum_{i \in A} (x_i - y_i) \Rightarrow d_{TV}(x,y) = \sum_{i \in A} (x_i - y_i) \]
and likewise if \(B = \{ i : y_i > x_i \} \),

\[d_{TV}(x,y) = \sum_{i \in B} (x_i - y_i) \]

Thus \[2d_{TV}(x,y) = \sum_{i \in A} (x_i - y_i) + \sum_{i \in B} (x_i - y_i) \]
\[= \sum_{i \in [n]} |x_i - y_i| \]
\[= \| x - y \|_1 \]
\[\square \]
Note that as a consequence, d_{TV} is a true metric on the probability measures on a given state space:

\[
d_{TV}(P, Q) = \frac{1}{2} \|\pi_P - \pi_Q\|_1
\]

\[
\leq \frac{1}{2} (\|\pi_P - \pi_Z\|_1 + \|\pi_Z - \pi_Q\|_1)
\]

\[
= d_{TV}(P, Z) + d_{TV}(Z, Q)
\]

\[
d_{TV}(P, Q) \geq 0
\]

\[
d_{TV}(P, Q) = 0 \iff \frac{1}{2} \|\pi_P - \pi_Q\|_1 = 0 \iff \pi_P = \pi_Q
\]

\[
\iff P = Q
\]

Of course can show all of these properties directly from defn of d_{TV} for arbitrary state spaces (not just finite)
If P, Q close in TV, can expect $\mathbb{E}_P f(x)$ to be close to $\mathbb{E}_Q f(x)$ if f is well-behaved.

Thm Let $|f(x)| \leq M$ for all $x \in \mathbb{R}$, then

$$|\mathbb{E}_P f(x) - \mathbb{E}_Q f(x)| \leq 2M d_{TV}(P, Q)$$

Prof

$$|\mathbb{E}_P f(x) - \mathbb{E}_Q f(x)| = \left| \sum_x f(x) [P(x) - Q(x)] \right|$$

$$\leq M \sum_x |P(x) - Q(x)|$$

$$= M \| \pi_P - \pi_Q \|_1$$

$$= 2M d_{TV}(P, Q)$$

In particular, this implies a convergence rate for MCMC methods.

Now we can start talking about how long it takes for a HC to converge to its stationary distribution — call this mixing time.

Given a HC and a stationary distribution π_S we say $t_{mix}(\epsilon) = s$ if
for any initial distribution x,
\[d_{TV}(xP^t, \pi) \leq \varepsilon \]
when $t > s$.

Q: why does a mixing time exist. I.e., why is there any s s.t.
\[d_{TV}(xP^s, \pi) \leq \varepsilon \]
implies
\[d_{TV}(xP^t, \pi) \leq \varepsilon \]
for any $t \geq s$?

A: Because by our HMM on convergence of an ergodic MC to its stationary dist, we know that $xP^t \rightarrow \pi$. In particular, $xP^t \rightarrow \pi$
in TV distance.

(proof is based on fact that if P is irreducible and aperiodic, it is eventually a contraction in $\|\cdot\|_2$ norm)
To prove results on mixing times, we use couplings. Given two distributions P and Q on state space \mathcal{X}, we say a distribution Z on the state space $\mathcal{X} \times \mathcal{X}$ is a coupling of P and Q if the first marginal of Z is distributed according to P and the second marginal of Z is distributed according to Q. That is:

- First marginal: $Z(x \in A) = Z(x \in A, y \in \mathcal{X}) = P(A)$
- Second marginal: $Z(y \in A) = Z(x \in \mathcal{X}, y \in A) = Q(A)$

Example: Consider $P = Q$ is the uniform distribution over $\{0, 1, \ldots, n-1\}$, then one possible coupling is the independent coupling where

$$Z(x = i, y = j) = P(i)Q(j) = \frac{1}{n^2}$$

Visually,

$$Z = \begin{pmatrix}
\frac{1}{n^2} & & \\
& \ddots & \\
& & \frac{1}{n^2}
\end{pmatrix}$$
An example non-independent coupling is given by (visually)

\[Z = \begin{array}{c|c}
\hline
\vdots & \vdots \\
\hline
\end{array} \]

where each row and column of \(Z \) has exactly two nonzero entries, both equal to \(\frac{1}{an} \).

It is then clear that

\[Z(x=i) = \sum_j Z(x=i, y=j) = 2 \cdot \frac{1}{an} = \frac{1}{n} = P(i) \]

\[Z(y=j) = \sum_i Z(x=i, y=j) = 2 \cdot \frac{1}{an} = \frac{1}{n} = Q(j) \]

so \(Z \) is a coupling of \(P \) & \(Q \).

The coupling lemma is the key tool in applying coupling to determine the convergence of a MC.

Thm Given a coupling \(Z \) of distributions \(P \) & \(Q \), and a r.v. \((X, Y)\) distributed according to \(Z \),

\[d_{TV}(P, Q) \leq Z(X \neq Y) \]
We saw earlier that

\[d_{TV}(P, Q) = \sup_{A \in \mathcal{F}} P(A) - Q(A) \]

so it suffices to show that, given an arbitrary \(A \in \mathcal{F} \),

\[P(A) - Q(A) \leq Z(x \neq y). \]

To do so, note that

\[P(A) = Z(x \in A) = Z(x \in A \land y \in \mathcal{F}) = Z(x \in A \land y \in A) + Z(x \in A \land y \in A^c) \]

and likewise

\[Q(A) = Z(x \in A \land y \in \mathcal{F}) + Z(x \in A^c \land y \in A) \]

so

\[P(A) - Q(A) = Z(x \in A \land y \in A^c) - Z(x \in A^c \land y \in A) \leq Z(x \in A \land y \in A^c) + Z(x \in A^c \land y \in A) \leq Z(x \neq y) \]
To use this result to prove convergence for a Markov chain starting in an arbitrary distribution Π_0 to its stationary distribution Π, given its transition matrix P, we will construct a series of couplings Z_t between the distributions $\Pi_0 P^t$ and Π such that if $(X_t, Y_t) \sim Z_t$ then:

1) $\{X_t\}$ is a Markov Chain with initial distribution Π_0 and transition matrix P.

2) $\{Y_t\}$ is a MC with initial distribution Π and transition matrix P.

3) If $X_{t_0} = Y_{t_0}$ at any time step t_0, then the two chains $\{X_t\}$ and $\{Y_t\}$ have coalesced:
 for any $t \geq t_0$, $X_t = Y_t$.

The first two properties & the coupling lemma imply

$$d_{TV}(\Pi_0 P^t, \Pi) \leq Z_t(X_t \neq Y_t)$$
and the last property implies that
\[
Z_t (X_t = \psi_t \mid X_{t_0} = \psi_{t_0}) = 1 \quad \text{if } t \geq t_0
\]
so
\[
Z_t (X_t \neq \psi_t) = 1 - Z_t (X_t = \psi_t) \\
\leq 1 - \left[Z_t (X_t = \psi_t \mid X_{t_0} = \psi_{t_0}) Z_{t_0} (X_{t_0} = \psi_{t_0}) \right] \\
= 1 - Z_{t_0} (X_{t_0} = \psi_{t_0}) \\
= Z_{t_0} (X_{t_0} \neq \psi_{t_0}) \quad \text{for } t \geq t_0
\]

and by applying the coupling lemma, we have
that
\[
d_{TV} (\pi_0 P^t, \pi) \leq Z_t (X_t \neq \psi_t) \\
\leq Z_{t_0} (X_{t_0} \neq \psi_{t_0}) \quad \text{for } t \geq t_0.
\]

Hence if we find \(\zeta \) such that \(Z_{\zeta} (X_\zeta \neq \psi_\zeta) \leq \varepsilon \), then
\[
d_{TV} (\pi_0 P^t, \pi) \leq \varepsilon \quad \text{for } t \geq \zeta
\]
i.e. \(t_{mix} (\varepsilon) \leq \zeta \)
So the coupling method is:

1) construct a coupling b/w the MC started in the arb state & the MC started at its stat dist, \((x_t, y_t) \sim Z_t\), s.t. once \(x_{t_0} = y_{t_0}\), \(x_t = y_t\) for \(t \geq t_0\)

2) Find a \(c\) s.t. \(Z_c(x_z \neq y_z) < \epsilon\), then we have \(d_{TV}(\pi_0 P^t, \pi) \leq \epsilon\) for \(t \geq c\), so \(t_{\text{mix}}(\epsilon) \leq c\)

Ex:

- Lazy Random Walk on the Ring \(\mathbb{Z}_m\)

- Random Sampling from the Hypercube
Example of coupling method: lazy: stay w/ $\frac{T}{2}$

Consider MC on the ring Z_m with stationary dist given by unif dist. What is an upper bound on $\tau_{\text{mix}}(E)$? e.g. find T s.t. $t > T$ implies

$$\max_A \left| \mathbb{P}(X_t \in A) - \sum_{i \in A} \pi_i \right| < \epsilon$$

Idea: construct a coupling (X_t, Y_t) where X_t started at whatever initial dist and Y_t started at stationary distribution and evolve the coupling in a way s.t. its marginals are as described and

$$\mathbb{P}(X_t \neq Y_t)$$

Idea: at time t, pick either X_t or Y_t w/ equal prob, and increase or decrease by 1 w/ prob $\frac{1}{2}$. If $X_t = Y_t$, then move processes together.

Clear that marginals are as described, e.g.

$$\mathbb{P}(X_{t+1} = j | X_t = i) = \begin{cases} \frac{1}{2} & \text{if } j = i \\ \frac{1}{4} & \text{if } j = i \pm 1 \end{cases}$$
Note that $\Delta_t = X_t - Y_t$ is by construction a random walk on \mathbb{Z}_m and

$$\Delta_{t+1} | \Delta_t = \begin{cases} \Delta_t - 1 & \text{w.p. } \frac{1}{2} \text{ if } \Delta_t \neq 0 \\ \Delta_t + 1 & \text{w.p. } \frac{1}{2} \end{cases}$$

with absorbing barrier at 0:

$$\mathbb{P}(\Delta_{t+1} = 0 | \Delta_t = 0) = 1$$

Key point is that this random walk on the ring converges to 0 in expected time less than $m^2/4$ from any starting state X_0.

Thus let $\Delta_{t+1} = \begin{cases} \Delta_t + 1 & \text{w.p. } \frac{1}{2}, \Delta_t \neq 0 \\ 0 & \text{if } \Delta_t = 0 \end{cases}$

a random walk on \mathbb{Z}_m with an absorbing barrier at 0, and

$$\tau = \min \left\{ t : \Delta_t = 0 \right\},$$

then for any starting distribution π,

$$\mathbb{E}[\tau] \leq \frac{m^2}{4}$$
Proof

By total expectation,
\[
E(z) = \sum_{k=0}^{m-1} E(z|X_0 = k) P(X_0 = k)
\leq \max_{k=0, \ldots, m-1} E(z|X_0 = k)
\]

Write \(f_k = E(z|\Delta_0 = k) \) and note

\[
E(z|\Delta_0 = k) = \frac{1}{d} \left(1 + E(z|\Delta_0 = k-1) \right)
\]

\[
+ \frac{1}{d} \left(1 + E(z|\Delta_0 = k+1) \right)
\]

when \(k \neq 0 \)

so \(f_k = 1 + \frac{1}{d} (f_{k-1} + f_{k+1}) \)

and \(f_0 = 0 \)

\(
\Rightarrow f_k = 2(f_{k-1} - 1) - f_{k-2}
\)

\(
\Rightarrow f_k - f_{k-1} = f_{k-2} - 2 - f_{k-2}
\)

let \(d_k = f_k - f_{k-1} \)

\(d_k = d_{k-1} - 2 \)

\(d_1 = f_1 - f_0 = f_1 \)
\[f_k = d_k + f_{k-1} = d_k + d_{k-1} + f_{k-2} \]
\[= \ldots = \sum_{t=1}^{k} d_t = \sum_{t=1}^{k} (f_1 - 2(t-1)) \]
\[= kf_1 - 2 \sum_{t=1}^{k} (t-1) = kf_1 - 2 \sum_{t=0}^{k-1} t \]
\[= kf_1 - k(k-1) \]

Note \(f_1 = f_{m-1} \) by symmetry

\[f_1 = (m-1)f_1 - (m-1)(m-2) \]
\[(m-1)(m-2) = (m-2)f_1 \]
\[m-1 = f_1 \]

\[f_k = k(m-1) - k(k-1) = km - k^2 \]

So \(\max_{k \in [m]} \mathbb{E}[\tau | \Delta_0 = k] = \max_{k \in [m]} km - k^2 \)

occurs at \(k = \frac{m}{2} \) (if \(m \) is even, otherwise this is an upper bound)

\[\mathbb{E}[\tau] \leq m \left(\frac{m}{2} \right)^2 - \left(\frac{m}{2} \right)^2 = \frac{m^2}{4} \]
Now since $Z_t = X_t - Y_t$ is a random walk on Z_∞ w/ absorbing state at 0,

$$Z_t \neq 0 \Rightarrow t > 0$$

Let $T = \frac{m^2}{4}$, then if $t > 2T$,

$$\text{P}(Z_t \neq 0) \leq \text{P}(Z > 2T) \leq \frac{E_Z}{(\frac{m^2}{4})} \leq 2 \frac{m^2}{m^2 - 4}$$

so the chain is likely to have coupled after

$$Z = \frac{m^2}{2}$$

steps w/ prob greater than $\frac{1}{2}$

Now consider $t > 2cT$

$$\text{P}(Z_t \neq 0) \leq \text{P}(Z > 2cT)$$

$$= \prod_{i=0}^{c-1} \text{P}(Z_{2(c-i)T} \neq 0 | Z_{2(c-i-1)T} \neq 0) \text{P}(Z \neq 0)$$

$$\leq \left(\frac{1}{2}\right)^c$$

so the chain has coupled after $2cT$ steps w/ prob at least $1 - \frac{1}{2^c}$
consequently

$$d_{TV}(X_t, Y_t) \leq P(X_t \neq Y_t) \leq \varepsilon$$

if

$$t \geq \log_2 \left(\frac{1}{\varepsilon} \right) \frac{m^2}{2}$$

or

$$\| \pi_0 P^t - \pi \|_1 \leq 2\varepsilon \quad \text{when} \quad t \geq \log_2 \left(\frac{1}{\varepsilon} \right) \frac{m^2}{2}$$

Note: if $X_0 \sim \text{unif on the ring}$, can get

$$t \geq \log_2 \left(\frac{1}{\varepsilon} \right) \frac{m^2}{3}, \quad \varepsilon \leq \frac{m^2}{3}$$

(use total probability)

Another example of coupling: random walk on hypercube

Start w/ a bit vector of length n and at each time step, flip a random bit w.p. $\frac{1}{2}$

$$X_t \in \{0,1\}^n$$

$$Y_t \in \{0,1\}^n$$

$$P(i_1, \ldots, i_n), (j_1, \ldots, j_n) = \begin{cases} 0 & \text{if different in more than 1 position} \\ \frac{1}{2^n} & \text{otherwise} \end{cases}$$
Coupling, take \(Z_t = (X_t, Y_t) \) where
\(X_t \) has arb init pos and \(Y_t \) has empty dist, and we evolve \(Z_t \) by picking
exactly the same random coordinate
in \(X_t \), \(Y_t \) at each time step and flipping
to exactly the same value.

Clearly that marginal probs are both MCs
given by \(P \), and
\[
X_t = Y_t
\]
as soon as we have touched all \(n \) bits.

Recall from coupon collector that if
\(t = \text{time to draw all } n \text{ unique coupons} \)
then
\[
\mathbb{E}[t] = n H_n
\]
so
\[
\Pr(X_t \neq Y_t) \leq \Pr(X_{\lfloor 2n H_n \rfloor} \neq Y_{\lfloor 2n H_n \rfloor}) \leq \frac{1}{2}
\]
for \(t \geq 2n H_n \).

\[\implies \text{as before, } d_{TV}(X_t, \pi) \leq \varepsilon \text{ when } t \geq O\left(\log_2 \left(\frac{1}{\varepsilon}\right)\right) \cdot n H_n\]

Note that there are \(2^n \) states, so have fast mixing:
\(t_{\text{mix}}(\varepsilon) = O(n \log n) \) is logarithmic in \# states!
Final Markov Material
Ex. 2-SAT on n literals (analyze as MC)

Consider alg: 0. randomly assign vals to literals
 1. randomly pick an unsatisfied clause
 2. pick one of its literals, randomly set to T/F
 3. repeat until all clauses satisfied

Q: how long does this run?

on $\mathbb{E}[T]$?

Think of as MC w/ absorbing states corresponding to satisfying assignments.

Fix a satisfying assignment A and ask how long we expect alg to run before we reach this satisfying state.

Let $X = \#$ correct literals at time t

$$X_{t+1} = \begin{cases}
X_t - 1 & \text{w.p. } \frac{1}{2} \quad \text{if } X_t \neq n \\
X_t + 1 & \text{w.p. } \frac{1}{2} \\
n & \text{w.p. } \frac{1}{2}
\end{cases}$$
and letting \(z = \min_t \{ t : X_t = n \delta \} \),

\[
\mathbb{E} [z | X_0 = k] = \frac{1}{2} \left(1 + \mathbb{E} [z | X_0 = k-1] \right) + \frac{1}{2} \left(1 + \mathbb{E} [z | X_0 = k+1] \right)
\]

\[f_k := 1 + \frac{1}{a} (f_{k-1} + f_{k+1})\]

\[z \leq \frac{m^2}{4}\] as argued before for r.w. on the ring

\(\Rightarrow \) this alg returns a satisfying assignment in \(O(m^2) \) steps.