Convolutional Neural Networks (CNNs)
- convolutional filters
- CNN architecture
- LeNet 5
Why CNNs

- Appropriate for computer vision tasks:
 - Bounding boxes for objects
 - Background subtraction
 - Image classification

(Also used for problems from other domains)

- Key to good performance: Choice of feature map

\[\phi : \mathbb{R}^{k \times k} \rightarrow \mathbb{R}^D \] (implemented as a NN)

These feature maps can be learned on one dataset and used on others.

- So far in this class, to do image classification:
 - \(\phi \) from flattening image into a vector
 - \(\phi \) from autoencoder (use encoder as feature map)
 - \(\phi \) from MLP

Then use logistic regression.
CNNs: another, biologically inspired, approach to learning good feature maps for vision problems.

Use convolutional filters

\[
\begin{array}{cccc}
1 & 2 & 1 & 0 \\
2 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 \\
2 & 1 & 1 & 1 \\
0 & 1 & 2 & 0 \\
\end{array}
\] \times
\begin{array}{cccccc}
-1 & 0 & -1 \\
0 & 4 & 0 \\
-1 & 0 & -1 \\
\end{array}
= \begin{array}{cccc}
1 & 0 & 5 \\
-6 & -1 & 6 \\
1 & 1 & -2 \\
\end{array}
\]

\(I \ast K \)
- range may be different
- \(I \ast K \) is smaller than \(I \)

Our basic CNN layer takes as input an image \(I \), convolves it with filter \(K \), and returns \(\sigma(I \ast K) \)
Note that the filters always have size $k_1 \times k_2$ where k_1 & k_2 are odd

If the input image is size $d_1 \times d_2$, the output image is size $d_1 - (k_1 - 1) \times d_2 - (k_2 - 1)$

Formula for Convolutions

$$(I * K)_{i,j} = \sum_{m=-\frac{(k_1-1)}{2}}^{\frac{(k_1-1)}{2}} \sum_{n=-\frac{(k_2-1)}{2}}^{\frac{(k_2-1)}{2}} I_{i+m, j+n} K_{mn}$$

indices into K
Idea of CNNs: use convolutional filters to build our nonlinear feature map

Q: Why? A: it has very desirable inductive biases
 - we expect that vision is translational invariant
 - intuition that image features should be local
 low-level!
 - cheap compared to MLP layer
 $\left(k_1 \cdot k_2 \text{ parameters} \right.$ vs $\left. (d_1-k_1+1)(d_2-k_2+1) \times d_1d_2 \right)$
 - easier to optimize b/c parameter sharing
Convolutional layers

Input: $d_1 \times d_2$
Filter: $k_1 \times k_2$
Output: $(d_1-k_1+1) \times (d_2-k_2+1)$
(Stride: 1)

(assuming $k_1 = k_2 = 3$)

$o(I*K)$ - learn K with backprop

Stride: 2 in each direction.

In general, with a stride of $s_1 \times s_2$, we evaluate the filter at x-intervals of s_1 and y-intervals of s_2.

- Equivalent to computing $I*K$ and then throwing away the unused outputs.
Multichannel Images
-arise as RGB images or if we use multiple convolutional filters in the previous layer

Given an m channel image \([I_1, \ldots, I_m]\), one convolutional layer takes the form

\(\sigma(I_1 * K_1 + I_2 * K_2 + \ldots + I_m * K_m)\)
CNNs:
- combine convolutional layers with fully-connected layers

Image (RGB) → conv → t₁ conv features → t₂ conv features → t₃ conv feature

→ flatten → FCLayer 1 → FCLayer 2 → Softmax
Pooling

Pooling reduces the dimensionality of a convolutional layer by aggregating locally.

Typical pooling types:
- max pooling
- average pooling

Pooling’s advantages:
- decreases computation downstream
- makes model more robust to shifts in location of features
Example of a CNN: LeNet-5 (1997)

5-layer CNN for 10 class classification

<table>
<thead>
<tr>
<th>Layer</th>
<th>Features</th>
<th>Filler Size</th>
<th>Stride</th>
<th>Activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conv2D</td>
<td>6</td>
<td>5x5</td>
<td>1</td>
<td>tanh</td>
</tr>
<tr>
<td>Aug Pooling</td>
<td>6</td>
<td>2x2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Conv2D</td>
<td>16</td>
<td>5x5</td>
<td>1</td>
<td>tanh</td>
</tr>
<tr>
<td>Aug Pooling</td>
<td>16</td>
<td>2x2</td>
<td>2</td>
<td>tanh</td>
</tr>
<tr>
<td>Conv2D</td>
<td>120</td>
<td>5x5</td>
<td>1</td>
<td>tanh</td>
</tr>
<tr>
<td>FC</td>
<td>84</td>
<td></td>
<td></td>
<td>softmax</td>
</tr>
<tr>
<td>FC</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>