ML and Opt Lecture 6

- Cross-entropy loss for fitting multiclass logistic regression
- Train/validation/test splits for model fitting, selection, and generalization reporting
- Linear algebra primer
MCE for Categorical Model

\[y | x \sim \text{Categorical}\left(p_1(x), \ldots, p_K(x) \right) \]

where

\[p_i(x) = \frac{e^{\Theta^T_i x}}{Z_\Theta(x)} \quad \text{where} \quad Z_\Theta(x) = \sum_{i=1}^{K} e^{\Theta^T_i x} \]

recall

\[p_\Theta(x) = \left[\begin{array}{c} p_1(x) \\ \vdots \\ p_K(x) \end{array} \right] = \frac{e^{\Theta x}}{1^T e^{\Theta x}} = \text{softmax}(\Theta x) \]

where \(\Theta = \left[\begin{array}{c} \Theta_1^T \\ \vdots \\ \Theta_K^T \end{array} \right] \)
Given \(\{ (y_i, x_i) \}_{i=1}^n \), where \(y_i \in \mathbb{R}^k \) one-hot encodes the class of the \(i \)th example (e.g. class 1 encodes as \([1, 0, \ldots, 0] \) and class \(k \) as \([0, \ldots, 0, 1] \)), our goal is to learn the model parameters \(\Theta \in \mathbb{R}^{k \times d} \) using HLE:

\[
L(\Theta) = \frac{-1}{n} \sum_{i=1}^{n} \log p_\Theta(y_i | x_i)
\]

Recall

\[
p_\Theta(y_i = e_j | x_i) = e_j^T p_\Theta(x_i) = y_i^T p_\Theta(x_i) = y_i^T \text{softmax}(\Theta x_i)
\]
So

\[L(\theta) = \frac{1}{n} \sum_{i=1}^{n} - \log P(y_i | x_i) \]

\[= \frac{1}{n} \sum_{i=1}^{n} - \log [y_i^T \text{softmax}(\Theta x_i)] \]

\[= \frac{1}{n} \sum_{i=1}^{n} - y_i^T \log \left[\text{softmax}(\Theta x_i) \right] \]

apply log entrywise to its vector argument

\[\Rightarrow \quad \frac{1}{n} \sum_{i=1}^{n} \ell(\text{softmax}(\Theta x_i), y_i) \]

\[\text{what is the correct choice of } \ell \text{ to make the NLL have the form of an empirical risk} \]
Guess: l is the cross-entropy loss

What is cross-entropy? Easiest to first define KL-divergence

$$D_{\text{KL}}(p \| q) = \sum p_i \ln \frac{p_i}{q_i} \quad \text{if } p \text{ and } q \text{ are two probability vectors}$$

$$= \sum p_i \ln p_i - \sum p_i \ln q_i$$

so minimizing $H(p, q)$ w.r.t. q minimizes $D_{\text{KL}}(p \| q)$ w.r.t. q
Recall the negative log-likelihood w.r.t. the ith sample

$$-y_i^T \log \left(\text{softmax} \left(\Theta x_i \right) \right)$$

$$= \sum_k (y_i)_k \log \left(p_\Theta(x_i)_k \right)$$

$$= H(y_i, p_\Theta(x_i))$$

Note that if the ith example is from class j, so $y_i = e_j$, then

$$-y_i^T \log \left(\text{softmax} \left(\Theta x_i \right) \right) = -e_j^T \log (p_\Theta(x_i)_j)$$

$$= -\log (p_\Theta(x_i)_j)$$

is the log of the probability assigned to the true class.
Upshot is that

$$L(\Theta) = \frac{1}{n} \sum_{i=1}^{n} H(y_i, \text{softmax}(\Theta x_i))$$

$$= \frac{1}{n} \sum_{i=1}^{n} -\ln[p_{e(x_i)}y_i]$$

So minimizing the NLL learns model parameters $\hat{\Theta}$ that maximize the probabilities assigned by the model to the true classes of the observation, and the loss function for this ERM is

$$l(u, v) = H(u, v)$$
The optimization problem is

\[\theta^* = \arg\min_{\theta} \mathcal{L}(\theta) \]

\[= \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} -y_i^T \ln \left(\text{softmax}(\theta x_i) \right) \]

\[= \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} -y_i^T \ln \left(\frac{e^{\theta x_i}}{Z_\theta(x_i)} \right) \]

\[= \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \left[\ln(e^{\theta x_i}) - (\ln Z_\theta(x_i))^1 \right] \]

\[= \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \left[-y_i^T \theta x_i + y_i^T 1 \ln Z_\theta(x_i) \right] \]
\[
\begin{align*}
= \arg\min_{\Theta} & \frac{1}{n} \sum_{i=1}^{n} \left[-y_{i}^{T} \Theta x_{i} + \ln Z_{\Theta}(x_{i})\right] \\
= \arg\min_{\Theta} & \frac{1}{n} \sum_{i=1}^{n} -y_{i}^{T} \Theta x_{i} + \frac{1}{n} \sum_{i=1}^{n} \ln Z_{\Theta}(x_{i}) \\
= \arg\min_{\Theta} & \frac{1}{n} \sum_{i=1}^{n} -y_{i}^{T} \Theta x_{i} + \frac{1}{n} \sum_{i=1}^{n} \ln \left(\sum_{j=1}^{K} e^{\Theta_{j}^{T} x_{i}} \right)
\end{align*}
\]

This is the optimization problem we solve in practice to learn Θ using MLE for multiclass classification.
Practical Considerations

Train vs Test vs Validation Splits

\[\hat{f} = \arg \min_{f \in \mathcal{F}} \sum_{i=1}^{n_{\text{train}}} l(f(x_i), y_i) \]

\[R_n(f) \]

\[R(f) = \mathbb{E}_D l(f(x), y) \]

\[\frac{1}{n_{\text{test}}} \sum_{i=1}^{n_{\text{test}}} l(f(x_i), y_i) \]

\[\frac{1}{n_{\text{train}}} \sum_{i=1}^{n_{\text{train}}} l(f(x_i), y_i) \]

We use the test set to estimate the "generalization error"
What if we want to choose between different model classes, e.g. F_1 and F_2?

- Use training set to find best (empirically) models $\hat{f}_1 \in F_1$ and $\hat{f}_2 \in F_2$

- Use validation dataset to select best of \hat{f}_1 and \hat{f}_2 on a fresh independent set of samples

- Estimate the generalization gap of this selected model on a fresh independent test set
General flow for supervised ML

- Fix our problem domain > risk (loss) measure
- Collect appropriate data \(\{ (x_i, y_i) \}^n_{i=1} \)
- Split our data into train/validation/test (60/20/20)
- Determine ahead of time a set of models and hyperparameters to try
- Fit each of these using the same training data
- Measure their performance using the validation data and select the best \(f_{opt} \)
- Report an estimate of the gap gap/pop risk of \(f_{opt} \) using the test data
Lin Alg

vectors in \mathbb{R}^d, \mathbb{R}^n — column vectors

Linear (in)dependence

\mathbb{R}^2: v and u are linearly dependent, because $v = \alpha u$

\mathbb{R}^3: v and z are linearly independent, because $v \neq \alpha z$ for any α

In general, vectors $v_1, \ldots, v_k \in \mathbb{R}^n$ are linearly dependent if there exist α_i (not all zero) so that

$$\alpha_1 v_1 + \cdots + \alpha_k v_k = 0$$

If on the other hand

$$\alpha_1 v_1 + \cdots + \alpha_k v_k = 0$$

iff $\alpha_i = 0$ for all i, then the vectors are linearly independent.
Write \(V = \begin{bmatrix} v_1 & \ldots & v_k \end{bmatrix} \in \mathbb{R}^{n \times k} \)

the vectors are independent iff

\[V\alpha = 0 \iff \alpha = 0 \]

i.e. \(V \) has full column rank (rank \(k \))

\[\text{span} \left\{ v_1, \ldots, v_k \right\} = \mathbb{R}^n : \quad x = \alpha_1 v_1 + \ldots + \alpha_k v_k \text{ for some } \alpha_1, \ldots, \alpha_k \in \mathbb{R} \]

\[= \mathbb{R}^n : \quad x = V\alpha \text{ for } \alpha \in \mathbb{R}^k \]

this is a linear subspace, with dimension given by column rank of \(V \)
bases
Given a subspace \(\Pi \subseteq \mathbb{R}^d \), the vectors \(\frac{\mathbf{v}}{2}, \frac{\mathbf{v}_2}{2}, \ldots, \frac{\mathbf{v}_k}{2} \) is a basis for \(\Pi \) if:
1) \(\Pi = \text{span} \left\{ \frac{\mathbf{v}}{2}, \frac{\mathbf{v}_2}{2}, \ldots, \frac{\mathbf{v}_k}{2} \right\} \)
2) \(\frac{\mathbf{v}}{2}, \frac{\mathbf{v}_2}{2}, \ldots, \frac{\mathbf{v}_k}{2} \) are linearly independent

dot product / inner product
\(\mathbf{u}, \mathbf{v} \in \mathbb{R}^d \):
\[
\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^T \mathbf{v} = \sum_{i=1}^{d} u_i v_i
\]
Euclidean / \(L_2 / \| \cdot \|_2 \) norm
\[
\| \mathbf{u} \|_2^2 = \langle \mathbf{u}, \mathbf{u} \rangle = \sum_{i=1}^{d} u_i^2
\]
Cauchy-Schwarz Inequality

Fact

\[|\langle u, v \rangle| \leq \|u\|_2 \|v\|_2 \quad \text{and equality occurs iff} \quad u = \alpha v \]

\[\cos \theta = \frac{\langle u, v \rangle}{\|u\|_2 \|v\|_2} \in [-1, 1] \] by Cauchy-Schwarz, so we use this to define the angle between vectors in high-dimensional spaces.

\[u \perp v \iff \langle u, v \rangle = 0 \iff \cos \theta = 0 \]
\[\|u + v\|_a^2 = \langle u + v, u + v \rangle \]
\[= \langle u, u + v \rangle + \langle v, u + v \rangle \]
\[= \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle \]
\[= \|u\|_a^2 + \|v\|_a^2 + 2 \langle u, v \rangle \]
\[= \|u\|_a^2 + \|v\|_a^2 + 2 \cos \theta \|u\|_a \|v\|_a \]

high-dimensional law of cosines

If \(\langle u, v \rangle = 0 \), then
\[\|u + v\|_a^2 = \|u\|_a^2 + \|v\|_a^2 \]
Pythagorean theorem
Outer Product

For \(v \in \mathbb{R}^n \) and \(U \in \mathbb{R}^{n \times k} \) then outer product

\[
Uv^T = \sum_{i=1}^{k} u_i v_i^T \in \mathbb{R}^{n \times d}
\]

\[
(uv^T)_{ij} = u_i v_j
\]
symmetric matrices

A square matrix M is symmetric if $M = M^T$

$\iff M_{ij} = M_{ji}$ for all i,j

eigenpairs

(λ, v) is an eigenpair ($\lambda \in \mathbb{R}$ is an eigenvalue of $M \in \mathbb{R}^{n \times n}$ and $v \in \mathbb{R}^d$ is an eigenvector) iff

$$Mv = \lambda v$$

Fact:

1) all eigenvectors of symmetric matrices are perpendicular to each other

2) all eigenvalues of symmetric matrices are real

3) we can write $M = \sum_{i=1}^{n} \lambda_i v_i v_i^T$ where (λ_i, v_i) are eigenpairs
Note: if we write

\[V = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} \in \mathbb{R}^{m \times n} \] collection of

\[\Lambda = \begin{bmatrix} \lambda_1 & \cdots & \lambda_n \end{bmatrix} \in \mathbb{R}^{n \times n} \] (length 1) eigenvectors

\[M = V \Sigma V^T \] of \(M \)

a diagonal matrix \(\omega \) with

corresponding eigenvalues
Geometric Interpretation

Associate each symmetric matrix M with a quadratic form $M : x \mapsto x^T M x = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j M_{ij}$

$x^T \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} x = x_1^2 - x_2^2$

$v_0 = x^T \begin{bmatrix} 1 & 1 \end{bmatrix} x = x_1^2 + x_2^2$

Geometrically, $M = \sum_{i=1}^{n} \lambda_i v_i v_i^T$, the quadratic form curves upwards in the directions in the span of v_i for which the λ_i are positive, and downward in directions for which λ_i are negative.
Positive Semidefiniteness

We say a symmetric matrix $A = \sum \lambda_i v_i v_i^T$ is positive semidefinite (PSD) or positive, written $A \succeq 0$, if $\lambda_i \geq 0$ for all i.

Positive definite, written $A \succ 0$ if $\lambda_i > 0$ for all i.

Facts

1) A is pd iff the corresponding quadratic form $x^T A x \geq 0$ for all x.
2) If A is pd then $C A C^T \succeq 0$.
3) For any matrix A, $AA^T \succeq 0$ and $A^T A \succeq 0$.