CSCI 6962/4962: Homework 2

Assigned Tuesday, October 3, 2023. Due by 11:59pm Tuesday October 17, 2023.

Create a Jupyter notebook for this assignment, and use Python 3. Write documented, readable and clear code (e.g. use reasonable variable names). Submit this notebook interspersing any textual answers in Markdown cells (using LaTeX), clearly labeled, along with your code.

1. **[10 pts]** Argue that the soft-shrinkage operator on vectors, defined by the solution to a convex optimization problem,

\[S_\alpha(x_0) = \arg\min_{x \in \mathbb{R}^d} \frac{1}{2\alpha} \|x - x_0\|_2^2 + \|x\|_1, \]

is well-defined (there is a unique minimizer), and that

\[S_\alpha(x_0)_i = s_\alpha((x_0)_i), \]

where \(s_\alpha \) is the soft-shrinkage operator from Participation 4.

Write a function `softShrink(x0, alpha)` that implements the soft-shrinkage operator (efficiently, so no for loops).

2. **[10 pts]** Proximal gradient descent (aka composite gradient descent, generalized gradient descent, or the prox-linear algorithm) is used to solve problems of the form

\[\min_x f(x) + g(x) \quad \text{(Comp)} \]

where \(f \) is a differentiable convex function and \(g \) is a convex function. To move from iterate \(x_t \) to \(x_{t+1} \), the method takes a gradient descent step of \(f \), then chooses \(x_{t+1} \) to balance between minimizing \(g(x) \) and staying close to the intermediate iterate:

\[x_{t+1} = \arg\min_x \frac{1}{2\alpha_t} \|x - (x_t - \alpha_t \nabla f(x_t))\|_2^2 + g(x). \quad \text{(Prox)} \]

Note that \([\text{Prox}]\) is always strictly convex, so \(x_{t+1} \) is always a well-defined single point.

Argue that if \(x^* \) is a fixed point of \([\text{Prox}]\) then it is a minimizer of \([\text{Comp}]\).

The proximal gradient algorithm is frequently employed when \(g \) is nonsmooth. A canonical example of this use case is the ISTA algorithm below for the LASSO problem.

3. **[10 pts]** Consider the LASSO problem

\[x^* = \arg\min_{x \in \mathbb{R}^d} \frac{1}{2} \|Ax - b\|_2^2 + \lambda \|x\|_1. \quad \text{(LASSO)} \]

Write the expression for \(x_{t+1} \) in the composite gradient descent method for solving \([\text{LASSO}]\), using the soft-shrinkage operator. Assume that stepsizes \(\alpha_t \) are given.

Write a function \([xT, objhist] = \text{istaLasso}(A, b, lambda_{reg}, x0, alpha, T)\) that returns \(x_T \), the \(T \)th iterate of the composite gradient method for \([\text{LASSO}]\) when the initial iterate is \(x_0 \) and the stepsize constant and given by \(alpha \); it should also return a vector containing the objective values at each of the iterates \(x_0, \ldots, x_T \). Use your function `softShrink`.

4. **[10 pts]** Compute the subdifferential of the objective of \([\text{LASSO}]\) at a point \(x \).

Write a function \(g = \text{lassoSubgrad}(A, b, lambda_{reg}, x) \) that returns a subgradient for the LASSO objective at \(x \).

Write a function \([xT, objhist] = \text{subgradLasso}(A, b, lambda_{reg}, x0, alpha, T)\) that returns the last iterate of the subgradient descent method for solving \([\text{LASSO}]\) when the initial iterate is \(x_0 \) and the stepsize is constant and given by \(alpha \); it should also return a vector containing the value of the objective function at iterates \(x_0, \ldots, x_T \). Use your function `lassoSubgrad`.
5. [60 pts] Use the ISTA and subgradient solvers for the LASSO problem to solve the deblurring problem. The setup here is that we assume we observe a blurred and noisy version of an image, \(b = Bx + e \), and given knowledge of \(B \), our task is to recover an approximation of \(x \). Note that we are representing images as vectors by stacking the columns of the image together into a vector representation. Thus an image of size \(n \times n \) is represented as a vector in \(\mathbb{R}^{n^2} \).

In general the blur matrix \(B \) is not invertible, but we could solve a least-squares problem to obtain an estimate of the image,

\[
x_{\text{LS}} = \arg\min_w \|Bw - b\|_2.
\]

This method doesn’t work well if \(B \) is not close to invertible or in the presence of noise. In these cases, we want to take advantage of additional expectations on the image \(x \) to design a convex optimization problem whose solution is a better estimator of \(x \).

In this exercise, we will use the popular modeling assumption that natural images are approximately sparse in an appropriately chosen basis. We will assume that there is a known orthonormal basis \(H \) in which \(x \) is approximately sparse: i.e., there is a vector \(z \) for which \(x = Hz \), and \(\|z\|_1 \) is small. This implies that \(b = BHz + e = Az + e \), where \(A = BH \). Then we solve the LASSO problem

\[
z^* = \arg\min_z \frac{1}{2} \|Az - b\|_2^2 + \lambda \|z\|_1
\]

for a judicious choice of \(\lambda \) and form the estimate \(x_{\text{LASSO}} = Hz^* \).

A standard choice of \(H \) is given by the Haar wavelet basis, and for the data set and noise level you will use, I have found \(\lambda = 2 \times 10^{-4} \) to give good results.

- Load the image we will be working with, resize it so the problem is tractable, convert it to float format, and take a look at the image.

```python
from deblurringUtils import * from skimage import data
n = 128 camera = data.camera() smallcamera = resize(camera, [n, n]) camdata = img_as_float(smallcamera) visualize(camdata)
```

- Verify that the Haar basis does allow an almost sparse representation of the image

```python
H = vectorized2DHaarMatrix(n, n) # the Haar matrix, an orthonormal basis haarcoeffs = H.T @ vectorize(camdata) # convert to the Haar basis
```

```python
p = 90 # what percentage of the coefficients to set to zero thres = np.percentile(np.abs(haarcoeffs), p) haarcoeffs[abs(haarcoeffs) <= thres] = 0 # set most entries to zero
```

```python
# reconstruct the image from the sparse representation reconstim = unvectorize(H @ haarcoeffs, n, n) visualize(reconstim)
```

\(^1\)You may use a smaller number during debugging, but \(n \) must be a power of two.
• Verify that a similarly sparse representation in the original pixel space is much worse.

```python
import numpy.random as random

# mask the same percentage of pixels, randomly
mask = np.ones(n**2)
mask[:int(p/100*n**2)] = 0
mask = unvectorize(random.permutation(mask), n, n)
visualize(camdata * mask)
```

• Create the blurred, corrupted image. Corrupt using i.i.d. \(N(0, 1 \times 10^{-4}) \) Gaussian noise.

```python
B = vectorized2DBlurMatrix(n, n, 5);
std = 1e-2
corruption = std * random.randn(n**2)
b = B @ vectorize(smallcamera) + corruption
blurredcam = unvectorize(b, n, n)
visualize(blurredcam)
```

• Compute and visualize the naive solution \(x_{LS} \).

```python
from scipy.sparse.linalg import gmres
from scipy.sparse import csr_matrix

# solving with sparse matrices is faster
sB = csr_matrix(B)
linres, _ = gmres(sB, b, maxiter=50)
visualize(unvectorize(linres, n, n))
```

• Define the matrix \(A \) to be used in the LASSO problem, and compute the \(\beta \)-smoothness parameter of the smooth part of the LASSO objective, \(\beta = \|A^T A\|_2 \). Set the constant stepsizes to \(\alpha = \frac{1}{\beta} \) for both methods.

```python
from scipy.sparse.linalg import svds
A = B @ H
_, topsv, _ = svds(A, k=1)
alphaSubgrad = 1/topsv**2
```

What is the stepsize for the subgradient method?

• Set \(\lambda = 2 \times 10^{-4} \) as the regularization parameter and use 1000 steps of the subgradient solver to recover the image. Visualize the recovered image. What is the final objective value?

• Using the same value of \(\lambda \), use 1000 steps of ISTA to recover the image. Visualize the recovered image. What is the final objective value?

• Plot the objective values of ISTA and the subgradient solvers on a log-scale. What conclusions do you draw about the relative merits of the two approaches to solving the LASSO problem? What are the advantages and disadvantages of solving the LASSO problem vs the least squares problem?

• We plotted the LASSO objective to verify visually that the methods seem to be converging. Comment on the meaningfulness of that value in measuring the quality of the recovered solution. Can you think of a more meaningful metric to report the quality of the iterates? (You may not use knowledge of the true image to compute that metric)

6. (CSCI 6961 students) [30 pts] Surprisingly, using large enough finite values of the regularization parameter \(\lambda \) ensures that the solution to is exactly 0. In fact, we can prove something much stronger!
(a) Assume f is a smooth convex function and we know \textit{a priori} that $\|\nabla f(x^*)\|_2 < C$ for some constant C, where x^* is the solution to

$$\arg\min_x f(x) + \lambda \|x\|_1.$$

Use Fermat’s condition to give a bound on the number of nonzero entries in x in terms of C and λ. Thus we see that by increasing λ when using ℓ_1 regularization, we can ensure that x^* is increasingly sparse.

The following steps find such a guarantee on the sparsity of the solution to the LASSO problem.

(b) Establish that for any d-dimensional vector, $\|x\|_2 \leq \|x\|_1$.

(c) Argue that the solution to (LASSO) satisfies $\|x^*\|_1 \leq \|x_{\text{OLS}}\|_1$, where x_{OLS} is the solution to the OLS problem, and show that it follows that

$$\|A^T(Ax^* - b)\|_2 \leq \|A^T A\|_2 \|x_{\text{OLS}}\|_1 + \|A^T b\|_2.$$

(d) Use this bound to give a constant λ_0 that ensures the solution to (LASSO) is 0 when $\lambda > \lambda_0$.