# Foundations of Computer Science Lecture 2

## Discrete Objects and Proof

The Cast of Discrete Objects Some Basic Proofs



# Today: Discrete Objects and Proof

Discrete Objects

- $\bullet~{\rm Sets}$
- $\bullet~$  Sequences
- $\bullet~{\rm Graphs}$

### Proof

• In 4 rounds of the speed-dating app, no one meets more than 12 people.

- $x^2$  is even "is the same as" x is even
- $\bullet\,$  Among any 6 people is a 3-clique or 3-war.
- Axioms. The Well Ordering Principle.
- $\sqrt{2}$  is not rational.

## Last Time

A taste of discrete math and computing (ebola, speed dating, friendship networks)

| \$100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$1,000                                                                                                                                                                                                                                                                                                                               | \$10                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| $Distinct {\rm subsets}$ with the same sum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Domino Program                                                                                                                                                                                                                                                                                                                        | Create the best 'math'-cartoon.                                                            |
| THE SECRET STORE         THE SECRET STORE STORE           STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STORE STOR | $\begin{array}{cccc} d_1 & d_2 & d_3 \\ \hline 0 & 01 & 110 \\ \hline 100 & 00 & 11 \\ \end{array}$ $d_3d_1d_3 &= \begin{array}{c} 110 & 0 & 110 \\ \hline 11 & 100 & 11 \\ \hline 11 & 100 & 11 \\ \end{array}$ $\begin{array}{c} \hline \\ \hline $ | Create a cartoon to illustrate/make fun of<br>some discrete math you learned in this class |
| tor: Malik Magdon-Ismail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Discrete Objects and Proof: 2/14                                                                                                                                                                                                                                                                                                      |                                                                                            |

## Sets

• Collection of objects, order does not matter:  $F = \{f, o, x\}; V = \{a, e, i, o, u\}$ .  $F \cap V = \{o\} \qquad F \cup V = \{a, e, f, i, o, u, x\} \qquad \overline{F} = ?$ **2** natural numbers  $\mathbb{N} = \{1, 2, 3, 4, 5, \ldots\}$ What is "...?" integers  $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \ldots\}$  $E = \{2, 4, 6, 8, 10, 12, \ldots\}$   $E' = \{2, 4, 6, 8, 10, 13, \ldots\}$ What is " $\dots$ ?"  $E = \{ n \mid n = 2k; k \in \mathbb{N} \} \quad \leftarrow \text{ no "..."}$ **Pop Quiz:** Define  $O = \{ \text{odd numbers} \}$ . • Rational numbers  $\mathbb{Q} = \{r \mid r = \frac{a}{b}; a \in \mathbb{Z}, b \in \mathbb{N}\}$ Subset  $A \subseteq B$  (every element of A is in B).  $\emptyset \subseteq A$  for any A. Power set  $\mathcal{P}(A) = \{ \text{all subsets of } A \}$ **Pop Quiz:**  $A = \{a, b\}$ . What is  $\mathcal{P}(A)$ ? • Set equality, A = B means  $A \subseteq B$  and  $B \subseteq A$ . Set operations: Intersection,  $A \cap B$ Lives in Troy, NY Union.  $A \cup B$ Complement.  $\overline{A}$ • Venn Diagrams are a convenient way to represent sets.

Discrete Objects and Proof: 4 /

## Sequences

• List of objects: order and repetition matter.

 $tap \neq taap \neq atp$ 

• We are mostly concerned with *binary sequences* composed of *bits* (ASCII code).

Discrete Objects and Proof: 5 / 14

Conflict graphs

# Graphs and Different Types of Relationships

Affiliation graphs



Courses with students in common conflict. (Why?)

Students and their courses.

Graphs





## A Proof Must Convince

A proof strings together "truths" to *convince* the reader of something *new*.

Our proof that  $\sqrt{2}$  is irrational strung together several "truths":

- The well ordering principle.
- High-school algebra for manipulating equalities.
- Our Theorem on when a square is even.

A proof's goal is always, always, ALWAYS to convince a reader of something.

Discrete Objects and Proof: 13/14

## Making and Proving Claim

#### Three Steps for Making and Proving a Claim

**Step 1: Precisely state the right thing to prove.** Often, creativity and imagination are needed. The claim should be non-trivial, i.e. useful, but also "provable" given the tools you have. Most importantly, the claim should be true (and how do you know that).

**Step 2: Prove the claim.** Sometimes a simple "genius" idea may be needed. Again, creativity and imagination play a role. Sometimes standard proof techniques can be used; you can become proficient in these techniques through training and practice.

**Step 3: Check the proof for correctness.** No creativity is needed to look a proof in the eye and determine if it is correct; to determine if you are convinced. Become an expert at this task. Don't allow anyone to claim bogus things and "convince" you with invalid proofs.

Discrete Objects and Proof: 14 / 14

Next. How to make precise claims.