Foundations of Computer Science Lecture 22

Infinity

Size versus Cardinality: Comparing "Sizes"

Countable: Sets Which Are Not "Larger" Than N

Is There A Set "Larger" Than N? Cantor's Diagonal Argument

Infinity and Computing

Our Short Stroll Through Discrete Math

- Precise statements, proofs and logic.
- **INDUCTION**.
- Recursively defined structures and Induction. (Data structures; PL)
- Sums and asymptotics. (Algorithm analysis)
- Number theory. (Cryptography; probability; fun)
- Graphs. (Relationships/conflicts; resource allocation; routing; scheduling,...)
- O Counting. (Enumeration and brute force algorithms)
- Probability. (Real world algorithms involve randomness/uncertainty)
 - ► Inputs arrive in a random order;
 - ▶ Randomized algorithms (primality testing, machine learning, routing, conflict resolution . . .)
 - ► Expected value is a summary of what happens. Variance tells you how good the summary is.

Today: Infinity

- 1 Comparing "sizes" of sets: countable.
 - Rationals are countable.

Georg Cantor

- 2 Uncountable
 - Infinite binary strings.
- 3 What does Infinity have to do with computing?

"Size" of a Set: Cardinality

You have **5** fingers on each hand.

You must know how to count.

You have an *equal* number of fingers on each hand.

All you need is a correspondence.

 $\begin{array}{c} \text{1-to-1;} \\ \text{(injection, } A \overset{\text{INJ}}{\mapsto} B) \\ \text{implies } |A| \leq |B| \end{array}$

onto; (surjection, $A \stackrel{\text{sur}}{\mapsto} B$) implies $|A| \ge |B|$

1-to-1 **and** onto (bijection, $A \stackrel{\text{BIJ}}{\mapsto} B$) implies |A| = |B|

Cardinality |A| ("size"), read "cardinality of A," is the number of elements for finite sets

 $|A| \leq |B|$ iff there is an injection (1-to-1) from A to B, i.e., $f: A \stackrel{\text{INJ}}{\mapsto} B$.

|A| > |B| iff there is no injection from A to B.

 $|A| \ge |B|$ iff there is an surjection (onto) from A to B, i.e., $f: A \stackrel{\text{SUR}}{\mapsto} B$.

|A| = |B| iff there is an bijection (1-to-1 and onto) from A to B, i.e., $f: A \stackrel{\text{BIJ}}{\mapsto} B$.

 $|A| \le |B|$ AND $|B| \le |A| \to |A| = |B|$. (Cantor-Bernstein Theorem)

A Countable Set's Cardinality Is At Most | N |

Finite sets: |A| = n if and only if there is a bijection from A to $\{1, \ldots, n\}$.

Infinite sets: The set A is countable if $|A| \leq |\mathbb{N}|$. A is "smaller than" \mathbb{N} .

To show that A is countable you must find a 1-to-1 mapping from A to \mathbb{N} .

You cannot skip over any elements of A, but you might not use every element of \mathbb{N} .

To prove that a function $f: A \mapsto \mathbb{N}$ is an injection:

- 1: Assume f is not an injection. (Proof by contradiction.)
- 2: This means there is a pair $x, y \in A$ for which $x \neq y$ and f(x) = f(y).
- 3: Use f(x) = f(y) to prove that x = y, a contradiction. Hence, f is an injection.

All Finite Sets are Countable

$$A = \{3, 6, 8\}$$
. To show $|A| \leq \mathbb{N}$, we give an injection from A to \mathbb{N} , $3 \mapsto 1$ $6 \mapsto 2$ $8 \mapsto 3$.

For an arbitrary finite set $A = \{a_1, a_2, \dots, a_n\}, \mathbb{N},$ $a_1 \mapsto 1$ $a_2 \mapsto 2$ $a_3 \mapsto 3$ \cdots $a_n \mapsto n$. Non-negative integers $\mathbb{N}_0 = \{0, 1, 2, \ldots\}$ are countable

How can this be? \mathbb{N}_0 contains every element in \mathbb{N} plus 0?

To prove $|\mathbb{N}_0| \leq |\mathbb{N}|$, we give an injection $f : \mathbb{N}_0 \stackrel{\text{inj}}{\mapsto} \mathbb{N}$, f(x) = x + 1, for $x \in \mathbb{N}_0$.

Proof. Assume f is not an injection. So, there are $x \neq y$ in \mathbb{N}_0 with f(x) = f(y):

$$x+1 = f(x) = f(y) = y+1.$$

That is x + 1 = y + 1 or x = y, which contradicts $x \neq y$.

Also, $|\mathbb{N}| \leq |\mathbb{N}_0|$ because $\mathbb{N} \subseteq \mathbb{N}_0 \to |\mathbb{N}_0| = |\mathbb{N}|$. (Cantor-Bernstein)

Bijection:

Positive Even Numbers and Integers are Countable

$$E = \{2, 4, 6, \ldots\}$$
. Surely $|E| = \frac{1}{2} |\mathbb{N}|$?

The bijection $f(x) = \frac{1}{2}x$ proves $|E| = |\mathbb{N}|$

$$\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}. \mid \mathbb{Z} \mid = \mid \mathbb{N} \mid.$$

Exercise. What is a mathematical formula for the bijection?

Every Countable Set Can Be "Listed"

$$\{3,6,8\}$$
 is a list. $E = \{2,4,6,\ldots\}$ is a list. What about \mathbb{Z} ?
$$\cdots, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, \cdots \qquad \leftarrow \text{not a list}$$
$$0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \cdots \qquad \leftarrow \text{list}$$

$$\mathbb{N}_0: \{0,1,2,3,4,5,\ldots\}$$
 $E: \{2,4,6,8,10,\ldots\}$ $\mathbb{Z}: \{0,+1,-1,+2,-2,+3,-3,+4,-4,\ldots\}$

- Different elements are assigned to different list-positions.
- Can determine the list-position of any element in the set. For \mathbb{Z} ,

list position of
$$z = \begin{cases} 2z & z > 0; \\ 2|z| + 1 & z \le 0; \end{cases}$$

Union of Two Countable Sets is Countable

A and B are countable, so they can be listed.

$$A = \{a_1, a_2, a_3, a_4, a_5, \ldots\} \qquad B = \{b_1, b_2, b_3, b_4, b_5, \ldots\}.$$

Here is a list for $A \cup B$

$$A \cup B = \{a_1, a_2, a_3, a_4, a_5, \dots, b_1, b_2, b_3, b_4, b_5, \dots\}.$$

What is the list-position of b_1 ? Cannot use "..." twice.

$$A \cup B = \{a_1, b_1, a_2, b_2, a_3, b_3, a_4, b_4, a_5, b_5, \ldots\}.$$

list-position of a_i is 2i-1; list-position of b_i is 2i.

Pop Quiz. Get a list of \mathbb{Z} with $A = \{0, -1, -2, -3, \ldots\}$ and $B = \{1, 2, 3, \ldots\}$ using union.

Rationals are Countable: $|\mathbb{Q}| = |\mathbb{N}|$

This is surprising because between any two rationals there is another (not true for \mathbb{N}).

$$\mathbb{Q} = \{ \frac{0}{1}, \frac{+1}{1}, \frac{+1}{2}, \frac{0}{2}, \frac{0}{3}, \frac{+1}{3}, \frac{-1}{3}, \frac{-1}{2}, \frac{-1}{1}, \frac{+2}{1}, \frac{+2}{2}, \frac{+2}{3}, \frac{+2}{4}, \frac{-1}{4}, \frac{+1}{4}, \frac{0}{4}, \frac{0}{5}, \ldots \}$$

 $|\{\text{Rational Values}\}| \le |\mathbb{Q}| \le |\mathbb{N}|.$

Exercise. What is a mathematical formula for the list-position of $z/n \in \mathbb{Q}$?

Programs are Countable

Programs are finite binary strings. We show that all finite binary strings \mathcal{B} are countable.

$$\mathcal{B} = \{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, \ldots \} \qquad \leftarrow \text{list}$$

Pop Quiz. What is the list-position of 0110?

Exercise. For the (k+1)-bit string $b = b_k b_{k-1} \cdots b_1 b_0$, define the strings numerical value:

value(b) =
$$b_0 \cdot 2^0 + b_1 \cdot 2^1 + \dots + b_{k-1} \cdot 2^{k-1} + b_k \cdot 2^k$$
.

Show:

list-position of
$$b = 2^{\text{length}(b)} + \text{value}(b)$$
.

 $\mathbb{N}_0, E, \mathbb{Z}, \mathbb{Q}, \mathcal{B}$ are countable,... Is Everything Countable?

Infinite Binary Strings are Uncountable

Cantor's Diagonal Argument: Assume there is a list of *all* infinite binary strings.

Consider the "diagonal string"

$$b = 0000100101 \cdots$$

Flip the bits,

$$\overline{b} = 1111011010 \cdots$$

 \overline{b} is not in the list (differs in the *i*th position from b_i), a contradiction.

Reals are Uncountable

Every real has an infinite binary representation and every infinite binary string evaluates to a real number.

That is $|\{\text{reals in } [0,1]\}| = |\{\text{infinte binary stings}\}| > |\mathbb{N}|$.

Infinity and Computing

```
Cantor took on the abstract beast Infinity. (1874)
```

 ~ 60 years later, Alan Turing asked the abstract question: What can we compute? (1936)

Every binary function f on N corresponds to a infinite binary string $f(1)f(2)f(3)\cdots$,

$$n$$
: 1 2 3 4 5 6 7 8 9 10 ···· $f(n)$: 0 1 1 0 1 0 0 1 1 ····

Every program is a finite binary string. For example,

```
int main();
             //a program that does nothing
```

is the finite binary string (ASCII code)

```
Programs \leftarrow Countable
                                                         |\{\text{functions on }\mathbb{N}\}| \gg |\{\text{programs}\}|
Functions \leftarrow Uncountable
```

There are MANY MANY functions that cannot be computed by programs! Are there interesting, useful functions that cannot be computed by programs?