
Foundations of Computer Science

Lecture 22

Infinity
Size versus Cardinality: Comparing “Sizes”

Countable: Sets Which Are Not “Larger” Than N

Is There A Set “Larger” Than N? Cantor’s Diagonal Argument

Infinity and Computing



Our Short Stroll Through Discrete Math

1 Precise statements, proofs and logic.

2 INDUCTION.

3 Recursively defined structures and Induction. (Data structures; PL)

4 Sums and asymptotics. (Algorithm analysis)

5 Number theory. (Cryptography; probability; fun)

6 Graphs. (Relationships/conflicts; resource allocation; routing; scheduling,. . . )

7 Counting. (Enumeration and brute force algorithms)

8 Probability. (Real world algorithms involve randomness/uncertainty)
◮ Inputs arrive in a random order;
◮ Randomized algorithms (primality testing, machine learning, routing, conflict resolution . . . )
◮ Expected value is a summary of what happens. Variance tells you how good the summary is.
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Today: Infinity

Georg Cantor

1 Comparing “sizes” of sets: countable.
Rationals are countable.

2 Uncountable
Infinite binary strings.

3 What does Infinity have to do with computing?
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“Size” of a Set: Cardinality

You have 5 fingers on each hand.
You must know how to count.

You have an equal number of fingers on each hand.
All you need is a correspondence.

A B

not a function

A B

1-to-1;

(injection, A inj7→B)

implies |A| ≤ |B|

A B

onto;

(surjection, A sur7→ B)

implies |A| ≥ |B|

A B

1-to-1 and onto

(bijection, A bij7→B)

implies |A| = |B|

Cardinality |A|(“size”), read “cardinality of A,” is the number of elements for finite sets

|A| ≤ |B| iff there is an injection (1-to-1) from A to B, i.e., f : A inj7→B.

|A| > |B| iff there is no injection from A to B.

|A| ≥ |B| iff there is an surjection (onto) from A to B, i.e., f : A sur7→ B.

|A| = |B| iff there is an bijection (1-to-1 and onto) from A to B, i.e., f : A bij7→B.

|A| ≤ |B| and |B| ≤ |A| → |A| = |B|. (Cantor-Bernstein Theorem)
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A Countable Set’s Cardinality Is At Most | N |

Finite sets : |A| = n if and only if there is a bijection from A to {1, . . . , n}.

Infinite sets: The set A is countable if |A| ≤ | N |. A is “smaller than” N.

To show that A is countable you must find a 1-to-1 mapping from A to N.

➲ ✒ ❖ ✠ ✚ ✘ ♦ ✣ ❉ ▲ ❒ ◗ ❍

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A :

N :

· · ·

· · ·

You cannot skip over any elements of A, but you might not use every element of N.

To prove that a function f : A 7→ N is an injection:

1: Assume f is not an injection. (Proof by contradiction.)
2: This means there is a pair x, y ∈ A for which x 6= y and f(x) = f(y).
3: Use f(x) = f(y) to prove that x = y, a contradiction. Hence, f is an injection.
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All Finite Sets are Countable

A = {3, 6, 8}. To show |A| ≤ N, we give an injection from A to N,

3 7→ 1 6 7→ 2 8 7→ 3.

For an arbitrary finite set A = {a1, a2, . . . , an}, N,

a1 7→ 1 a2 7→ 2 a3 7→ 3 · · · an 7→ n.
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Non-negative integers N0 = {0, 1, 2, . . .} are countable

How can this be? N0 contains every element in N plus 0?

To prove | N0 | ≤ | N |, we give an injection f : N0
inj7→N,

f (x) = x + 1, for x ∈ N0.

Proof. Assume f is not an injection. So, there are x 6= y in N0 with f(x) = f(y):

x + 1 = f(x) = f(y) = y + 1.

That is x + 1 = y + 1 or x = y, which contradicts x 6= y.

Also, | N | ≤ | N0 | because N ⊆ N0 → | N0 | = | N |. (Cantor-Bernstein)

Bijection:
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

N0 :

N :

· · ·

· · ·
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Positive Even Numbers and Integers are Countable

E = {2, 4, 6, . . .}. Surely |E| = 1
2
| N |?

The bijection f (x) = 1
2
x proves |E| = | N |

2

1

4

2

6

3

8

4

10

5

12

6

14

7

16

8

18

9

20

10

E :

N :

· · ·

· · ·

Z = {0,±1,±2, . . .}. | Z | = | N |.

2

1

4

2

6

3

8

4

10

5

12

6

14

7

16

8

18

9

20

10 · · ·

3

-1

5

-2

7

-3

9

-4

11

-5

13

-6

15

-7

17

-8

19

-9

21

-10

1

0

N : · · ·

· · ·

Exercise. What is a mathematical formula for the bijection?
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Every Countable Set Can Be “Listed”

{3, 6, 8} is a list. E = {2, 4, 6, . . .} is a list. What about Z?

· · · ,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, · · · ← not a list

0,±1,±2,±3,±4,±5, · · · ← list

➲ ✒ ❖ ✠ ✚ ✘ ♦ ✣ ❉ ▲ ❒ ◗ ❍

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A :

N :

· · ·

· · ·

✒ ▲ ✚ ❒ ➲ ❖ ❍ ♦ ✣ ❉ ◗ ✠ ✘

2 3 5 6 8 9 10 11 12 13 14 18 201 4 7 15 16 17 19

A :

N :

· · ·

· · ·

N0 : {0, 1, 2, 3, 4, 5, . . .} E : {2, 4, 6, 8, 10, . . .} Z : {0, +1,−1, +2,−2, +3,−3, +4,−4, . . .}

1 Different elements are assigned to different list-positions.
2 Can determine the list-position of any element in the set. For Z,

list position of z =















2z z > 0;

2|z| + 1 z ≤ 0;
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Union of Two Countable Sets is Countable

A and B are countable, so they can be listed.

A = {a1, a2, a3, a4, a5, . . .} B = {b1, b2, b3, b4, b5, . . .}.

Here is a list for A ∪ B

A ∪B = {a1, a2, a3, a4, a5, . . . , b1, b2, b3, b4, b5, . . .}. ✘

What is the list-position of b1? Cannot use “. . .” twice.

A ∪B = {a1, b1, a2, b2, a3, b3, a4, b4, a5, b5, . . .}.

list-position of ai is 2i− 1;
list-position of bi is 2i.

Pop Quiz. Get a list of Z with A = {0,−1,−2,−3, . . .} and B = {1, 2, 3, . . .} using union.
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Rationals are Countable: |Q | = | N |

This is surprising because between any two rationals there is another (not true for N).

Q

N

Z

0
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1

+4
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0 +1 −1 +2 −2 +3 −3 +4 −4 · · ·

1

2

3

4

5
...

· · ·

· · ·

· · ·

· · ·

· · ·

... ... ... ... ... ... ... ... ... . . .

Intuition suggests

|Q | = | N | × | Z | ≫ | N |. ✘

Q = {0
1
, +1

1
, +1

2
, 0

2
, 0

3
, +1

3
, −1

3
, −1

2
, −1

1
, +2

1
, +2

2
, +2

3
, +2

4
, −1

4
, +1

4
, 0

4
, 0

5
, . . .}

|{Rational Values}| ≤ |Q | ≤ | N |.

Exercise. What is a mathematical formula for the list-position of z/n ∈ Q?
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Programs are Countable

Programs are finite binary strings. We show that all finite binary strings B are countable.

B = {ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, . . .} ←list

Pop Quiz. What is the list-position of 0110?

Exercise. For the (k + 1)-bit string b = bkbk−1 · · · b1b0, define the strings numerical value:

value(b) = b0 · 2
0 + b1 · 2

1 + · · · + bk−1 · 2
k−1 + bk · 2

k.

Show:
list-position of b = 2length(b) + value(b).

N0, E,Z,Q,B are countable,. . . Is Everything Countable?
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Infinite Binary Strings are Uncountable

Cantor’s Diagonal Argument: Assume there is a list of all infinite binary strings.

b1: 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 · · ·
b2: 0 0 1 1 0 1 0 0 1 0 0 0 0 1 0 · · ·
b3: 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 · · ·
b4: 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 · · ·
b5: 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 · · ·
b6: 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 · · ·
b7: 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 · · ·
b8: 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 · · ·
b9: 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 · · ·
b10: 1 0 1 1 1 0 1 0 0 1 1 0 0 0 0 · · ·

...

Consider the “diagonal string”
b = 0000100101 · · ·

Flip the bits,
b̄ = 1111011010 · · ·

b̄ is not in the list (differs in the ith position from bi), a contradiction.

Reals are Uncountable
Every real has an infinite binary representation and every infinite binary string evaluates to a real number.

e.g. 0.00111111111111111 · · · = 1
23 + 1

24 + 1
25 + 1

26 + 1
27 + · · · = 1

2.

That is |{reals in [0, 1]}| = |{infinte binary stings}| > | N |.
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Infinity and Computing

Cantor took on the abstract beast Infinity. (1874)
∼ 60 years later, Alan Turing asked the abstract question: What can we compute? (1936)

Every binary function f on N corresponds to a infinite binary string f (1)f (2)f (3) · · · ,

1

0

2

1

3

1

4

0

5

1

6

0

7

0

8

0

9

1

10

1

· · ·

· · ·

n:

f (n):

Every program is a finite binary string. For example,
int main(); //a program that does nothing

is the finite binary string (ASCII code)

0110100101101110011101000010000001101101011000010110100101101110001010000010100100111011

Programs ← Countable
Functions ← Uncountable

→ |{functions on N}| ≫ |{programs}|

There are MANY MANY functions that cannot be computed by programs!
Are there interesting, useful functions that cannot be computed by programs?
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