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ABSTRACT
This paper aims to improve the design of modern Medical
Cyber Physical Systems through the addition of supplemen-
tal noninvasive monitors. Specifically, we focus on monitor-
ing the arterial blood oxygen content (CaO2), one of the
most closely observed vital signs in operating rooms, cur-
rently measured by a proxy – peripheral hemoglobin oxygen
saturation (SpO2). While SpO2 is a good estimate of O2

content in the finger where it is measured, it is a delayed
measure of its content in the arteries. In addition, it does
not incorporate system dynamics and is a poor predictor of
future CaO2 values. Therefore, as a first step towards sup-
plementing the usage of SpO2, this work introduces a predic-
tive monitor designed to provide early detection of critical
drops in CaO2 caused by a pulmonary shunt in infants.

To this end, we develop a formal model of the circulation
of oxygen and carbon dioxide in the body, characterized by
unknown patient-unique parameters. Employing the model,
we design a matched subspace detector to provide a near
constant false alarm rate invariant to these parameters and
modeling uncertainties. Finally, we validate our approach on
real-patient data from lung lobectomy surgeries performed
at the Children’s Hospital of Philadelphia. Given 198 in-
fants, the detector predicted 81% of the critical drops in
CaO2 at an average of about 65 seconds earlier than the
SpO2-based monitor, while achieving a 0.9% false alarm rate
(representing about 2 false alarms per hour).

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Time series analysis;
J.3 [Life and Medical Sciences]: Medical Information
Systems
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1. INTRODUCTION
With the proliferation of measuring devices in modern in-

tensive care units (ICUs) and operating rooms (ORs), much
effort has recently been devoted to the development of Med-
ical Cyber Physical Systems (MCPS). By interpreting mul-
tiple vital signs quickly and efficiently, they not only provide
another dimension of information to clinicians but may also
be used to close the loop and perform certain tasks indepen-
dently (e.g., analgesia infusion [23]). In addition, by analyz-
ing the trends in vital signs, these systems can be predic-
tive in nature, thereby allowing physicians to take proactive
measures to address deterioration in a patient’s condition.

In this work, we explore one aspect of the design of MCPS,
namely developing robust vital sign monitors and, in partic-
ular, the challenge of detecting sharp decreases in arterial
blood oxygen content (CaO2)1 caused by pulmonary shunts
in infants. A shunt is a condition in which a lung does not
participate in pulmonary exchange, i.e., it is not supplied
with fresh air. Shunts may lead to a drop in the amount of
O2 and are especially hazardous in infants because of their
limited O2 reserve and higher O2 consumption rate per kilo-
gram of body weight when compared to adults.

A shunt may occur naturally (e.g., due to pulmonary
edema), but it also occurs in surgical settings, when mechan-
ical ventilation through an endotracheal tube is required.
While it may happen inadvertently (i.e., the tube slips and
does not ventilate one lung), a surgical shunt (also called
an isolation) is often intentional as governed by the type of
operation. For instance, during a lung lobectomy procedure
for the excision of a cystic lung lesion [25],2 a surgeon can
perform either an open thoracotomy or a thoracoscopic ap-
proach. In the former, two-lung ventilation is common since
the surgeon can directly see the lung when removing the
cyst through an incision in the pleural space of the chest.
The latter approach, which usually results in less blood loss
but may lead to a drop in CaO2, requires one-lung venti-
lation to provide a still operating environment and better
visualization via an endoscope inserted through a small in-
cision on the side of the chest [17]. During a lobectomy,
especially in the presence of one-lung ventilation (and sub-
sequent shunt), careful monitoring of CaO2 is necessary to
ensure the patient’s health does not deteriorate.

1CaO2 is the quantity of oxygen in arterial blood that is
both bound and unbound to hemoglobin.
2A congenital cystic lung lesion is a dangerous tissue mal-
formation that may cause infection or malignancy later in
life [25], and thus warrants surgical resection in children.



Currently, CaO2 is measured directly using blood gas anal-
ysis; however, this method requires drawing blood from the
infant and cannot be utilized continuously. As a non-invasive
alternative, CaO2 is monitored based on a measurement of
the oxygen saturation (in percent) in the peripheral capillar-
ies, denoted by SpO2. Yet, when a shunt occurs, a decrease
in the CaO2 is likely to also take place; physicians might
not see it happen, however, until they receive a measure-
ment of low SpO2 (typically measured at the tip of a finger),
at which point the child may already be in a critical state.
Thus, while SpO2 is a good measure of oxygen content in
the extremities, it is a delayed measure of CaO2.

Therefore, in this work, we aim to use other available mea-
surements to predict a critical decrease in CaO2 as caused
by a shunt. This problem is made challenging by the lack
of observability – while multiple pulmonary measurements
are available (e.g., the partial pressure of CO2 in exhaled
air, denoted by EtCO2), SpO2 is the only blood variable
measured routinely in real time. Consequently, we leverage
laws of physics (e.g., ideal gas law) and published physiolog-
ical data trends to develop a formal parameterized model of
the dynamics of the partial pressures of O2 and CO2 in the
blood and relate them to the corresponding measured values
in the airways. The challenge is that many of these parame-
ters are unknown (e.g., baseline values of EtCO2) and some
cannot even be measured (e.g., lung development).

Even with uncertain models, one can still design accurate
monitors by deriving sufficient statistics that are invariant
to the unknown parameters [30]. We apply this technique
to obtain such a statistic based on the expected behavior of
the measured vital signs according to the model developed
in this work. We employ the statistic to design a matched
subspace detector that estimates the likelihood of the two
tested scenarios (i.e., shunt vs. no shunt) and makes a deci-
sion based on observed data in favor of the more likely one.
Since “alarm fatigue” is known to be a major issue in ORs,
the detector is specified to have a constant false alarm rate
for all patients. Additionally, such a system is a first step
towards predictive closed-loop control – by identifying the
cause of low CaO2, the controller can take the appropriate
remedial action, e.g., increase the amount of delivered O2,
which is the typical response applied by physicians. To our
knowledge, this work represents the first application of this
class of detectors to MCPS monitors.

Finally, we validate our approach on data from open tho-
racotomy and thoracoscopy surgeries performed at the Chil-
dren’s Hospital of Philadelphia (CHOP) over the last decade.
In particular, we examine cases when a shunt results in a
drop in SpO2 and record the detector’s predictive accuracy
as compared with SpO2 measurements. Based on 26 tho-
racoscopic cases, the detector is able to predict 81% of the
critical drops in CaO2 at an average of about 65 seconds
before a drop in SpO2 occurs, and achieves an average false
alarm rate of 0.9% on the 172 open thoracotomy cases (cor-
responding to 2.15 false alarms per hour).

In summary, this work’s contributions include: (a) the de-
velopment of a dynamic model for the blood and pulmonary
partial pressures in the presence of shunts; (b) the first ap-
plication of parameter-invariant monitors in MCPS; (c) a
case study evaluation on real-patient data.

The remainder of this paper is organized as follows. The
following section describes the related work on MCPS. Sec-
tion 3 specifies the problem addressed in this paper as well
as the current approach. Section 4 presents a physiologi-

cal model of O2 and CO2 circulation and describes which
variables are currently measured. Section 5 introduces the
monitor used in this work. A case study is provided in Sec-
tion 6 and the final section provides conclusions.

2. RELATED WORK ON MEDICAL CPS
The related work on MCPS is divided into two main areas:

formal verification and anomaly detection. In the former,
researchers begin with a known model of the system, e.g., a
pacemaker [9, 18] or an infusion pump [23], and use formal
methods to verify that it does not endanger the patient’s
safety [6]. In the latter, a system is already in place that
may lead to an adverse event, and the challenge is to detect
or predict that event. This work fits in the second area,
hence we review the related work on anomaly detection.

There are many approaches to performing anomaly detec-
tion and hypothesis testing. Model-based approaches have
long been the standard approach [11, 39]. For example, one
may assume each scenario follows a certain distribution so
that testing can be performed using the likelihood ratio [39].
Yet, most MCPS applications are modeled using parameters
that contain uncertainty. A common approach in such cases
is to optimize the worst-case performance [18]. In our work,
however, there exists no known model that would allow one
to perform worst-case analysis.

When models are not available, data-driven machine learn-
ing (ML) approaches leverage known classifiers [8]. These
have been successfully applied in many medical applica-
tions [10, 12, 21, 24, 28, 29]; however, they all require rich
training data with accurate event annotations. Yet, dur-
ing surgery clinicians’ priority is to serve the patient’s needs
rather than provide accurate annotations, thus event labels
are often delayed or missing altogether [32]. Therefore, due
to the high number of potential variables (e.g., body mass,
lung development, metabolic rate) and label inaccuracies, it
is unlikely that unaided ML will yield accurate monitors [24].
The challenges and potential methods for improving data-
driven approaches in MCPS are discussed in [5, 20].

An alternative approach that performs well with scarce
data and uncertain models is the parameter-invariant de-
tector [30]. It utilizes sufficient statistics that are invariant
to unknown parameters to achieve a constant false alarm
rate [30]. Although not previously applied to MCPS moni-
tors, these detectors have been shown to work well in other
CPS applications with structured dynamics and unknown
parameters, specifically in detecting faults in networked sys-
tems [36, 37], building heating, ventilating and air condition-
ing (HVAC) systems [34], and smart grids [35].

3. PROBLEM FORMULATION
This section describes the problem addressed in this work.

We consider infants undergoing surgery under general anes-
thesia. Depending on the type of operation, oxygen is deliv-
ered to patients either through one- or two-lung ventilation.
Regardless of surgery type, a shunt may occur, either due
to an intended isolation of a lung or a slip of the tube into
a mainstem bronchus. During an isolation, only one lung
supplies oxygen to the blood, hence CaO2 may decrease. In
this section we describe the current approach to monitoring
CaO2, and present the problem statement for this work.

3.1 Current Approach to Monitoring
Currently, clinicians do not have a wide variety of tools

to measure CaO2; however, it relates to other physiological



(a) A pulse oxime-
ter [2].

(b) A standard anes-
thesia machine [3].

(c) A blood gas
analyzer [1].

Figure 1: Measurement devices currently available to clinicians.

variables through the oxygen content equation [31]:

CaO2 = 1.34SaO2Hb+ 0.003PaO2, (1)

where SaO2 is the arterial hemoglobin oxygen saturation
in percent, Hb denotes the amount of hemoglobin in grams
per deciliter, and PaO2 is the arterial partial pressure of dis-
solved oxygen measured in mmHg (millimeters of mercury).
Note that the majority of oxygen in the blood is bound
to hemoglobin, making SaO2 a good indicator of the CaO2

value [31]; however, SaO2 is not easily measured. Since the
oxygen saturation (and content) is constant as the blood
travels to the peripheral capillaries [38], clinicians use SpO2,
as measured in real time by a non-invasive pulse oximeter
(see Figure 1a), to monitor CaO2.

In addition to the SpO2 measurement, there are multi-
ple real-time measurements of pulmonary variables available
through the anesthesia machine (Figure 1b). In particular,
it provides readings of the fraction of inspired O2 (FiO2),
i.e., the percentage of O2 in inhaled air, as well as the par-
tial pressure of CO2 at the end of the breath, denoted by
EtCO2. The machine also provides clinicians with the abil-
ity to control certain variables. First of all, they can vary
FiO2 through an O2 flow control valve; in this way, they
can deliver more O2 in the case of a desaturation [3]. More-
over, there are two ways to control the patient’s ventilation:
(1) through the respiratory rate (RR) and tidal volume (Vt)
or (2) through peak inspiratory pressure (PIP ) and posi-
tive end-expiratory pressure (PEEP ). However, clinicians
interpret the machine’s measurements predominately based
on intuition and previous experience, hence the prediction
of drops in CaO2, and the resulting response, varies [14].

When suspecting a problem, clinicians may ask for a blood
gas analysis to measure CaO2. In such a case, blood is drawn
from the patient and is used in a blood gas analyzer (see Fig-
ure 1c) for extraction of its content and properties, includ-
ing acidity, partial pressure of O2 and CO2, etc. However,
whereas the pulse oximeter and the anesthesia machine used
at CHOP sample continuously through non-invasive means
and store data every 15 seconds, a blood gas analysis is in-
vasive and time consuming, taking up to 30 minutes.

3.2 Problem Statement
As argued above, the current approach to real-time mon-

itoring of CaO2 is reactive in nature and may lead to late
recognition of sharp decreases. In this work we aim to sup-
plement the monitoring of CaO2, especially during shunts.
Thus, the problem addressed in this paper is to develop a
non-invasive detector that predicts critical drops in CaO2 in
infants, as caused by a shunt, before they are measured by
the pulse oximeter.

Figure 2: A typical hemoglobin dissociation curve for
O2 [31]. It shows the shape of the relationship between the
partial pressure of dissolved O2 and hemoglobin saturation.

4. PHYSIOLOGICAL MODEL
This section presents a dynamic model of the O2 and CO2

partial pressures in the respiratory and cardiovascular sys-
tems as derived from clinical data and physics; furthermore,
it discusses the changes caused by the presence of a shunt.
While there are detailed models of the fluid dynamics in the
two systems [7, 16], they do not describe the dynamics of
the gaseous content; hence, this model represents a major
contribution of our work.

We begin by noting that CaO2 varies according to Equa-
tion 1 and the hemoglobin dissociation curve for O2 (Fig-
ure 2). Note that while the scale of the curve may vary
across patients and conditions, its general shape remains
constant. This suggests that if a patient is at the far right
portion of the curve, a sharp decrease in PaO2 precedes a
sharp decrease in SaO2 (and CaO2, consequently). There-
fore, one can detect a drop in CaO2 by monitoring the values
of PaO2; as argued in Section 3.1, however, measuring PaO2

is invasive and infeasible in real time. Accordingly, this sec-
tion provides an overview of the relevant partial pressure
variables (in blood and airways) and models their dynamics
in the two scenarios (i.e., shunt vs. no shunt).

4.1 Steady-State Partial Pressures
This subsection introduces the respiratory and cardiovas-

cular partial pressures employed in the model, and describes
their steady-state relationships. For easy reference, all vari-
ables discussed in this section are summarized in Table 1.

Consider the simplified schematic model of the respiratory
and cardiovascular systems as shown in Figure 3.3 During
inhalation, O2 and CO2 exert a partial pressure in the air-
way, denoted by PiO2 and PiCO2, respectively; in the alve-
oli, the partial pressures are PAO2 and PACO2 [38]. Once

3Note that, for better illustration, the figures show the pul-
monary veins merging before entering the heart, whereas in
healthy humans they connect to the left atrium directly.



Table 1: Summary of cardiopulmonary partial pressures.

Variable Names Physiological Location
PiO2, PiCO2 Airways (inspiration)
PAO2, PACO2 Alveoli

PLv O2, PLv CO2 Left pulmonary veins

PRv O2, PRv CO2 Right pulmonary veins
PaO2, PaCO2 Arteries
PpO2, PpCO2 Peripheral Capillaries
PvO2, PvCO2 Veins
PeO2, PeCO2 Airways (expiration)

Figure 3: A simplified schematic model of O2 and CO2 par-
tial pressures in the respiratory and cardiovascular systems.

in the lungs, the gases enter the blood stream through dif-
fusion at the pulmonary capillaries [38]. Here we distin-
guish between two groups of variables, denoted by PLv O2,
PLv CO2 and PRv O2, PRv CO2, that represent the left and
right side partial pressures, respectively, immediately af-
ter diffusion but before the pulmonary veins have merged.4

Once the blood from the pulmonary veins enters the heart, it
is pumped into the arteries, where the partial pressures are
PaO2 and PaCO2 [38]. After the blood carrying the gases
reaches the peripheral capillaries, metabolism converts some
of the O2 to CO2 [38]. When in the veins, the gases’ par-
tial pressures are denoted by PvO2 and PvCO2; thus PvO2

is typically smaller than PaO2, whereas PvCO2 is usually
larger than PaCO2 [38]. Finally, during expiration the par-
tial pressures are denoted by PeO2 and PeCO2.

We note that CO2 has a high diffusing capacity such that
PaCO2 usually equals PACO2 [38]. When PaCO2 = PACO2

and the partial pressures are in equilibrium, i.e., enough O2

is inhaled so that the body can use it in the metabolism
process [38], the relationship between PaCO2 and PAO2 is
captured by the alveolar gas equation [15]:

PAO2 = FiO2(PATM−PH2O)− PaCO2(1− FiO2[1−RQ])

RQ
,

(2)
where PATM and PH2O are the atmospheric and water vapor
pressures (in mmHg), respectively, and RQ is the respira-
tory quotient. RQ can be calculated as

RQ =
CO2 eliminated

O2 consumed
, (3)

where “eliminated” means removed from the body. RQ is a

4Due to space limitation, only the CO2 pulmonary-vein par-
tial pressures are labeled in the figures.

measure of the ratio of O2 and CO2 used in metabolism and
varies with the type of consumed food.

4.2 Partial Pressure Dynamics
This subsection presents the dynamics of the partial pres-

sures in Figure 3. Since, to our knowledge, exact dynamics
are unknown and vary from patient to patient, we model the
general trends, based both on physics and published clini-
cal data. We begin with the no-shunt model by addressing
the dynamics of the cardiovascular system, diffusion, and
respiratory system. We conclude the subsection with the
shunt-induced partial pressure dynamics. Figure 4 is refer-
enced throughout this section as a visual aid.

4.2.1 Cardiovascular Partial Pressure Dynamics
We begin our model development with the transport of

blood from the pulmonary veins to the pulmonary arter-
ies; the diffusion process is discussed in the next subsection.
Models for fluid dynamics explain the flow of blood through
the blood vessels [7], but require difficult-to-obtain parame-
ters (e.g., arterial compliance). When accurate models can-
not be employed, the expected blood circulation time, τ , can
be approximated by dividing the blood volume (in mL) by
cardiac output (in mL/min) [19].5 Thus, on average, PpO2

and PpCO2 are expected to be time delays, denoted by τa, of
PaO2 and PaCO2, respectively, as illustrated in Figure 4a.

Similarly, PvO2 and PvCO2 are approximated as delays,
denoted as τv, of PpO2 and PpCO2 plus the metabolic ef-
fect.6 Metabolism converts O2 into CO2 and varies the
partial pressures linearly – PvCO2 is larger than PpCO2,
whereas PvO2 is smaller than PpO2 [38]. To complete the
loop, note that the pulmonary veins are short in compari-
son with the rest of the cardiovascular system [38], hence we
model PaO2 as an instantaneous average of the pulmonary-
vein partial pressures. Note that the body optimizes blood
flow in the direction of better oxygen uptake, however this
process is less pronounced during mechanical ventilation [33].

4.2.2 Diffusion Dynamics
In the body, diffusion is the movement of O2 between the

blood and airways, from higher to lower concentrations; it
occurs in the lungs. Note that both the O2 and CO2 ratios
between the pre- and post-diffusion partial pressures, called
diffusion ratios in this work, vary with many physiological
variables (e.g., FiO2, tidal volume, respiratory rate), some
of which are difficult to obtain non-invasively (e.g., lung ca-
pacity, thickness of alveolar membrane) [31]. However, we
are unaware of any closed-form models for the O2 diffusion
ratio; furthermore, it is challenging to develop such a model
due to O2’s relatively low diffusive capacity [31] and high
sensitivity to FiO2. In contrast, CO2 has high diffusive ca-
pacity and low sensitivity to FiO2; thus, as shown in prior
work [26], its diffusion ratio equals a parameter, α(t), that
is predominantly affected by the volume of inhaled air par-
ticipating in diffusion, V . V affects α(t) through the ideal
gas law: PV = nRT [38], where for constant temperature
(T ) and gas constant (R), an increase in V results in a lower
pressure (P ) and/or more diffused moles (n). Thus, the
diffusion ratio, α(t), is inversely proportional to V .

5While τ varies with cardiac output [38], we assume it is
time-invariant as governed by the granularity of the anes-
thesia machine’s sampling. This is explained in Section 6.
6Metabolism is constant for a small period of time (e.g., 5
minutes) [27].



(a) System with two functioning lungs. (b) System with a shunt.

Figure 4: An illustration of the response of the respiratory and cardiovascular partial pressures to a shunt.

4.2.3 Respiratory Partial Pressure Dynamics
To relate the blood and air partial pressures, first note

that a model could only be developed for CO2, for the rea-
sons discussed in the previous paragraph. In particular,
the high diffusing capacity of CO2 ensures that the alveolar
and lung-specific pressures are the same under normal con-
ditions [38], i.e., PACO2(t) = PRv CO2(t) = PLv CO2(t). Fi-
nally, note that PeCO2(t) = PACO2(t).7

4.2.4 Shunt Partial Pressure Dynamics
Now consider a shunt in which one of the lungs is not ven-

tilated. The effect on the partial pressures of CO2 is illus-
trated in Figure 4b. Whereas under normal conditions both
lungs participate in the removal of CO2, during a shunt the
CO2-rich venous blood that passes through the unventilated
lung does not receive oxygen [38] (i.e., PLv CO2 6= PRv CO2).
Since PaCO2 is the average of the pulmonary-vein partial
pressures, it is larger than in the no-shunt case; however, the
magnitude of this difference varies from patient to patient
and from shunt to shunt. This implies PaCO2 6= PACO2,
thus invalidating the alveolar gas equation in (2).

As discussed above, monitoring PaO2 (consequently, CaO2)
in real time is not possible due to the lack of dynamic mod-
els for O2 partial pressures. Yet, this section provides such
a model for CO2 in which a shunt results in elevated partial
pressures of CO2. Furthermore, PaCO2 and CaO2 are re-
lated through the functional lung’s capacity; for a lung with
greater capacity, a shunt may not lower CaO2 and only cause
a small rise in PaCO2; on the other hand, if the capacity is
insufficient, then CaO2 may drop and PaCO2 may increase
significantly. Thus, the model suggests the magnitude of
increase in PaCO2 is related to a decrease in CaO2.

5. CRITICAL SHUNT DETECTOR
In this section we present a detector for critical shunts

in infants based on the relations and models developed in
Section 4. A high-level introduction to the detector design
problem is provided in the following subsection. The final
two subsections formalize the model introduced in Section 4
and present the corresponding matched subspace detector.

7Note that PeCO2 might be smaller than PACO2 due to
dead space, i.e., the volume of air in the airways that is not
in contact with blood. However, dead space is about 5% of
tidal volume [13], hence it is not considered in this work.

5.1 Approach to Detector Design
Before formalizing the detector using the model from Sec-

tion 4, we summarize the parameter invariant detection ap-
proach, closely following [30]. Given a vector of M measure-
ments, y ∈ RM , the problem is to determine the state of
the system at the point of time y was obtained. In other
words, suppose there exist two hypotheses describing the
system’s operation: the null hypothesis H0 (e.g., no shunt)
and the alternative H1 (e.g., shunt). Under each hypothe-
sis, y is drawn from a different probability distribution, FH0

and FH1 , respectively. The problem is to conclude which
distribution y is more likely to have been drawn from.

As argued in Section 2, in this work we utilize the matched
subspace detector due to its robustness to scarce data and
unknown model parameters. Formally, the detector assumes
that y = νFθ + σin, where F ∈ RM×p defines the subspace
of the signal under H1, θ ∈ Rp denotes the p unknown pa-
rameters (which determine the coordinates of y in the sub-
space), σi is an unknown gain (possibly different under each
hypothesis), and n ∼ N(0, I) is white noise. The null hy-
pothesis H0 assumes ν = 0, whereas ν > 0 under H1. Thus,
y ∼ N(0, σ2

0I) under H0 and y ∼ N(νFθ, σ2
1I) under H1.

Based on this information, one may derive a sufficient and
invariant (to θ) statistic r.

Consequently, if r exceeds a certain threshold, an alarm
is raised and H0 is rejected based on the data. If the null
hypothesis is rejected in error, the alarm is considered a false
alarm. For this problem, there exists an r and threshold
such that the Neyman-Pearson lemma ensures a specified
constant false alarm rate [30].

5.2 Detector Model
Having described the matched subspace detector at a high

level, we formalize the model from Section 4 and rearrange
it in a form suitable for the detector. We observe that the
system in Figure 4 has two discrete modes, shunt and no
shunt, which we denote byMS andMNS , respectively. We
denote the system mode at time k by M(k) and define the
hypothesis testing problem as

H0 :M(k) =MNS , 1 ≤ k ≤M

H1 :M(k) =

{
MNS 1 ≤ k ≤ TNS
MS TNS + 1 ≤ k ≤M,

(4)

where TNS is the shunt transition time. The remainder of



this section formalizes the model(s) under each hypothesis.
Recalling that EtCO2 measures PeCO2, in this subsec-

tion we design a detector to monitor changes in EtCO2 as
governed by the model of CO2 dynamics. Recall also that
τ is the expected blood circulation time; yet, as constrained
by the sampling rate of the bedside monitors, denoted by ts,
we build the detector in a discrete-time fashion. We begin
with the relevant equations from Section 4:

PaCO2(k) = 1/2(PLv CO2(k) + PRv CO2(k)),

PvCO2(k) = PaCO2(k − κ) + µ2,

EtCO2(k) = PACO2(k) = PNSv CO2(k),

(5)

where k is the time step, κ denotes the number of sampling
periods (on average) it takes the blood to circulate (i.e., τ =
κts), and PNSv CO2 is the pulmonary-vein partial pressure
of the no-shunt lung (also equal to PaCO2 if both lungs are
receiving oxygen).

Thus, we develop the dynamics for each mode beginning
with MNS . The first conclusion to be drawn is as follows:

P ivCO2(k) = α(k)PvCO2(k), i ∈ {L,R}. (6)

To estimate α(k), we note that it is inversely proportional
to the volume of air participating in gas exchange, V (k),
as argued in Section 4. As will be apparent in Section 6,
the measuring machines’ sampling time is longer than the
time it takes an infant to take a few breaths. Thus, the
approximate volume of air participating in gas exchange, V̄ ,
during the sampling period is

V̄ (k) =
ts
60
×RR(k)× Vt(k), (7)

where RR is the measured respiratory rate (in breaths per
minute) and Vt is the measured tidal volume (in volume
per breath). Applying this observation, Equation 6 can be
approximated, for i ∈ {L,R}, as:

P ivCO2(k) = (ᾱ/V̄ (k))PvCO2(k) + σni(k), (8)

where ᾱ is an unknown parameter representing the CO2

diffusion ratio for fixed V , σ is an unknown gain, and ni(k) ∼
N [0, 1] is a white Gaussian noise. In (8), σni(k) denotes
a zero-mean noise with unknown variance to capture the
unknown error in our approximation. Combining (8) with
(5), we write the dynamics for MNS as:[

xL(k)
xR(k)

]
=

[
a(k) a(k)
a(k) a(k)

] [
xL(k − κ)
xR(k − κ)

]
+

[
2a(k) nL(k)
2a(k) nR(k)

] [
µ2

σ

]
y(k) =

[
1/2 1/2

] [ xL(k)
xR(k)

]
,

(9)

where xi(k) = P ivCO2(k), y(k) = EtCO2(k) and
a(k) = ᾱ/(2V̄ (k)).

A similar derivation exists for MS . We first observe

PSv CO2(k) = PvCO2(k)

PNSv CO2(k) = α(k)PvCO2(k).
(10)

where, PSv CO2 and PNSv CO2 denote the shunted and non-
shunted pulmonary-vein partial pressures, respectively. Sub-
stituting the approximation for α(k), we obtain

PSv CO2(k) = PvCO2(k)

PNSv CO2(k) = (ᾱ/V̄ (k))PvCO2(k) + σnNS(k),
(11)

where, similar to (8), nNS(k) ∼ N [0, 1] and σ is the same
unknown gain. Thus, the dynamics for MS are[

xNS(k)
xS(k)

]
=

[
a(k)

2
a(k)

2
1/2 1/2

] [
xNS(k − κ)
xS(k − κ)

]
+

[
a(k) nNS(k)

1 0

] [
µ2

σ

]
y(k) =

[
1 0

] [ xNS(k)
xS(k)

]
,

(12)

where, xNS(k) = PNSv CO2(k) and xS(k) = PSv CO2(k).
Without loss of generality, suppose a right-lung shunt oc-

curs and the governing dynamics switch fromMNS toMS .
Thus, the MS pulmonary-vein partial pressures reset such
that xNS(k′) = xL(k′) and xS(k′) = xR(k′), TNS − κ+ 1 ≤
k′ ≤ TNS . This results from the fact that the blood takes κ
steps to circulate (as explained in Section 4.2.1).

The dynamics for both MNS and MS contain the un-
known parameters ᾱ , µ2, and σ. Since both models are
sensitive to their values, we design a detector that is invari-
ant to them in the following subsection.

5.3 Detector Design
Given the models in (9) and (12), respectively, we con-

struct a detector invariant to the unknown parameters. First,
we convert the models into a form that can be used by the
detector, i.e., y = νFθ + σin, where ν = 0 under H0 and
ν > 0 under H1, θ contains the model parameters, σi is the
unknown gain, and n ∼ N(0, I) is white noise. Under H0,
the system is always in MNS . Thus, one can verify that

y(k) =
ᾱ

V̄ (k)
y(k − κ) +

ᾱ

V̄ (k)
µ2 + σ0n0(k). (13)

where σ0n0(k) = (σ/2)
(
nL(k) + nR(k)

)
∼ N [0, σ2/2], i.e.,

σ0 = σ/
√

2. Hence, θ = [ᾱ, ᾱµ2]T ; with M measurements,
y = F0θ + σ0n0, where

y =


y(κ+ 1)
y(κ+ 2)

...
y(M)

 , and F0 =


y(1)

V̄ (κ+1)
1

V̄ (κ+1)
y(2)

V̄ (κ+2)
1

V̄ (κ+2)

...
...

y(M−κ)

V̄ (M)
1

V̄ (M)

 .

Note that the first κ measurements are not included in y
since the initial partial pressures are unknown, thus requir-
ing the blood to fully circulate before testing can commence.

Under H1, the system begins in MNS and switches to
MS at time TNS such that (13) holds for k ≤ TNS , and for
k > TNS one can derive the following relation:

y(k) =
ᾱ

4V̄ (k)
y(k−κ)+

ᾱ

4V̄ (k)
xS(k−κ)+

ᾱ

2V̄ (k)
µ2+σnNS(k).

(14)
Note that once a shunt has occurred,
xS = [xS(TNS + 1) · · · xS(M)]T is unknown since y mea-
sures the no-shunt partial pressure. Therefore, it is only
possible to estimate xS by following the dynamics since the
last sample obtained when no shunt was in place. To esti-
mate xS after TNS , note that from (12),

xS(k) = (1/2)y(k − κ) + (1/2)xS(k − κ) + µ2. (15)



Finally, we obtain the following model, starting at TNS + 1,

(I + B)xS =





y(TNS + 1− κ)
...

y(TNS)
(1/2)y(TNS + 1)

...
(1/2)y(M − κ)


+ µ21


, (16)

where I ∈ RM−T
NS×M−TNS

denotes the identity matrix,
and B is a matrix such that Bij = −1/2 if i = j + κ,
and Bij = 0 otherwise. Thus, by multiplying both sides by
(I+B)−1 and expanding the parentheses, one can represent
xS as follows:

xS(k) = f(k) + g(k)µ2, k > TNS . (17)

Therefore, under H1, y = F1θ + σ1n1, where σ1 = σ and
the first TNS rows of F1 are equal to the corresponding rows
of F0, and the remaining are as follows (the matrix F′1 is
obtained by taking all rows of F1 starting at K = TNS +1):

F′1 =


y(K−τ)

4V̄t(K)
+ f(K−τ)

4V̄t(K)
1

2V̄t(K)
+ g(K−τ)

4V̄t(K)
y(K+1−τ)

4V̄t(K+1)
+ f(K+1−τ)

4V̄t(K+1)
1

2V̄t(K+1)
+ g(K+1−τ)

4V̄t(K+1)

...
...

y(M−τ)

4V̄t(M)
+ f(M−τ)

4V̄t(M)
1

2V̄t(M)
+ g(M−τ)

4V̄t(M)

 .
Thus, we have arrived at the model y = F0θ+σ0n0 under

H0 and y = F1θ+σ1n1 under H1. To convert it to the form
y = νFθ+σin, we premultiply both equations by PF⊥

0
, i.e.,

the projection matrix to the null space of F0. Thus, we
obtain the model z0 = νG0θ + σin0, where z0 = PF⊥

0
y,

G0 = PF⊥
0
F1 and n0 ∼ N(0, I). Thus, as shown in [30], the

following is both a sufficient (i.e., independent of σi) and
invariant (to θ) statistic

r0 =
zT0 PG0z0/rank(PG0)

zT0 (I−PG0)z0/null(PG0)
, (18)

where PG0 is the projection on the range of G0, and null
and rank are the dimensions of its null space and range, re-
spectively. r0 is distributed according to an F-distribution
with rank(PG0) numerator and null(PG0) denominator de-
grees of freedom. Thus, by choosing a threshold t∗0 at the
tail of the distribution (e.g., larger than 99% of the values)
and raising an alarm only when r0 > t∗0, one can guarantee
a false alarm rate for the detector (e.g., 1%).

At the same time, we note that the O2-CO2 circulation
model during a shunt developed in this section may be also
(partly) matched by other conditions, e.g., hypovolemia.
Therefore, to reduce the expected high number of false alarms,
we compute the reverse statistic of r0, i.e., we assume ν > 0
under H0 and verify whether we can reject this hypothesis
based on the data. The statistic is computed similarly:

r1 =
zT1 PG1z1/rank(PG1)

zT1 (I−PG1)z1/null(PG1)
, (19)

where z1 = PF⊥
1
y and G1 = PF⊥

1
F0. One may choose a

threshold, t∗1, such that H1 is rejected if r1 > t∗1.
Based on these two statistics, the detector’s decision space

consists of four cases, as indicated in Table 2. If the two tests
agree, then the detector accepts the hypothesis that they
agree on. If both statistics are above their thresholds and

Table 2: Decision space for the detector developed in this
paper. The detector’s decision is given in parentheses.

r0 > t∗0 r0 ≤ t∗0

r1 > t∗1
Inaccurate Model

(warning)
Accept H0

(no alarm)

r1 ≤ t∗1
Accept H1

(alarm)
Insufficient Power

(warning)

both hypotheses are rejected, then the data does not match
either model, thus we only output a warning indicating the
model is inaccurate. Finally, if neither statistic is above
the threshold, then the data matches both models, and a
warning is issued indicating the test lacks power.

6. CASE STUDY
To evaluate the performance of the detector, we used real

patient data from lobectomy surgeries on infants performed
at CHOP over the last decade. The initial data set consisted
of 292 patients varying in age between 0 and 323 days, 195
of which underwent the open procedure while the remaining
underwent thoracospopy.

The relevant vital signs (SpO2, Vt, RR, EtCO2) were sam-
pled every 15 seconds. Note that the time for blood to cir-
culate the body (i.e., the parameter τ) is about a minute in
adults but is much shorter in infants [22]. Thus, given the
discrete model, the best choice matching observed data [22]
is τ ≈ 30 seconds, i.e., κ = 2 time steps. Additionally, note
that the detector was run in a sliding window fashion; for
evaluation purposes, we chose the window size (M from Sec-
tion 5) to be M = 18, i.e., 4.5 minutes, and the detection
window size to be M − TNS = 8, i.e., 2 minutes. For both
thresholds, t∗0 and t∗1, we specify a corresponding error rate
of 1% to be the false alarm rate and miss rate, respectively.

For a variety of reasons (e.g., disconnection of ventilator)
the patient data contains wrong or missing measurements.
In particular, if any of the vital signs directly used in the
detector (i.e., EtCO2, Vt or RR) has a missing measurement
during a window of time, the detector does not make a de-
cision for that window. Additionally, most cases begin with
artifactual data (e.g., caused by motion artifact, tournique
on the limb). Consequently, when an isolation is performed
during this time, a lot of the measurements are wrong, hence
all cases with events in the first 15 minutes are discarded
since the data is unreliable. After removing bad data cases,
we retain 26 cases containing shunts (for evaluating the de-
tection rate) and 172 cases without a shunt (for evaluating
the false alarm rate). The detection rate and false alarm
rate are evaluated in the following sections, respectively.

6.1 Detection Rate Evaluation
To evaluate the detection rate of the critical shunt de-

tector, we run the detector on all 26 cases with annotated
shunts. We first define the events that are worth detect-
ing from a medical point of view. Ideally, these are events
that led to a physician taking action, but they are rarely
clear from the data. Thus, we look for events that can be
observed, namely sharp decreases in SpO2 correlated with
shunts. However, as argued in Section 2, the annotated
timestamps do not always correspond to the actual time
the shunt occurred. Therefore, we identified the “nearest in
time” decrease in SpO2, also referred to as “inferred time”,
as the actual event that we would like our alarm to precede.

To evaluate the detection rate, we note that the fact that



Table 3: A table showing the detection, annotation and in-
ferred event times (in sampling steps) for cases with shunts.

Case # A. Time I. Time D. Time I - D
1 205 208 116 92
2 50 73 70 3
3 71 84 80 4
4 158 161 51 110
5 290 245 232 13
6 14 65 60 5
7 73 83 65 18
8 126 147 131 16
9 33 69 67 2
10 33 104 96 8
11 39 60 56 4
12 152 146 148 -2
13 230 228 228 0
14 49 79 74 5
15 49 75 114 -39
16 251 207 204 3
17 67 71 57 14
18 258 261 254 7
19 46 82 152 -70
20 217 231 192 39
21 77 62 62 0
22 63 122 71 51
23 76 121 61 60
24 224 227 221 6
25 297 312 306 6
26 130 133 123 10

a prediction occurred is arguably equally important as the
time of prediction. Thus, in this section, we provide two
different ways of analyzing the detection rate – (1) the pro-
portion of cases with an alarm preceding the event (raw
detection rate) and (2) a summary of results for all cases
showing how much time in advance each event was detected.

To record the time of detection, we record the alarm oc-
curring closest to 2 minutes before the drop in SpO2, which
corresponds to the specified detection window time. To show
both ways of evaluating the detection rate, first note that
the raw detection rate was 88.5%. The results for the detec-
tion, annotation and inferred times for all cases are shown
in Table 3.

A histogram of the last column in the table, i.e., how much
time in advance each event was detected, is shown in Fig-
ure 5, with cases labeled according to the time of detection.
Most events were detected less than 20 steps (5 minutes) be-
fore the start of the event. This highlights the power of the
detector – the majority of the cases, 81%, received alarms at
a time that would enable clinicians to take proactive mea-
sures, at an average of 65 seconds earlier than previously
possible. Only two cases had late detections, thus miss-
ing the event, while five had non-critical detection (some of
which potentially false alarms).

We now examine a case from each group to illustrate the
detector’s performance in greater detail. Figure 6a shows
a case whose event was predicted before its occurrence. It
contains the evolution of the vital signs used in the detec-
tor as well as the decision made.8 As shown in the figure,
there is a period with noisy data at beginning of the case,
followed by the clear pattern of EtCO2 rising. Note that
the isolation itself likely occurred before the sharp decrease
in SpO2 (as indicated by the steady rise in EtCO2) but this
would not be captured by the detector due to the noisy RR

8Note that time starts with negative values because no de-
cision can be made until M measurements are collected.

Figure 5: A histogram showing how many time steps (one
step = 15 seconds) in advance each critical event was de-
tected (negative values represent late detection).

measurements. Finally, note that there is a long period dur-
ing the surgery (beginning around time 120) without any
alarms, which indicates that when good data is available,
the detector is not prone to raise false alarms.

Figure 6b shows a case with late detection. The incorrect
data patterns are the same as in the previous case. This
case is detected late because of the few-minute period with
noisy data (especially EtCO2), however an alarm is raised
only 30 seconds after the beginning of the event, thus still
being potentially useful to a clinician.

Finally, Figure 6c shows a case in which the event was
predicted too early, possibly due to a false alarm. In this
case an alarm was raised more than 50 steps (i.e., more
than 12 minutes) before the event. The alarm was due to
the wrong measurements of Vt and RR at that time. On the
other hand, the alarm was raised around the annotated time
for this case, so the detector may have actually detected
the shunt but not the drop in SpO2 caused by it. After
close inspection, it was noted that SpO2 dropped in this case
due to a sharp decrease in FiO2. Adjusting the detector to
incorporate changes in FiO2 is an avenue for future work.

6.2 False Alarm Rate Evaluation
To evaluate the false alarm rate, we used the open cases

with no annotated isolation. To count false alarms in a way
that would be meaningful to the medical community,9 the
detector is implemented as follows. If H1 is accepted, then
an alarm is raised, which can be muted by a physician. This
alarm denotes the beginning of an event; if the following de-
cisions of the detector are also either an alarm or a warning,
then they relate to the same event, hence no further alarms
are raised. As soon as a “no alarm” decision is made, the
event has ended, and the next time H1 is accepted denotes
a new event and a new alarm.

For each case we count the average number of events de-
tected per hour, and all are treated as false alarms. At
the same time, it was noted that certain events flagged
by the detector may be worth considering by physicians
(e.g., partial shunts due to mucus plugging), therefore the
number of false alarms shown in this work may be exag-

9The definition of false alarm rate in statistics is different
from medicine. In the former it is the number of false alarms
divided by the number of tests; in the latter it is the number
of false alarms divided by the number of alarms.



(a) An example case with good prediction (case 9). (b) An example case with late detection (case 12).

(c) An example case with early detection (case 23). (d) An example case with no isolation (case 50).

Figure 6: Example cases for different scenarios. The shaded area denotes the occurrence of the isolation.

gerated. A scatter plot with the result for each case is
shown in Figure 7, starting from case number 27. The
cases are reasonably uniformly distributed, with no outliers
with more than six alarms per hour; the low variance is
due to the constant-false-alarm-rate property of our detec-
tor and presents an improvement to the high-variance bed-
side alarms currently used [4]. The average over all cases is
2.15 per hour, which is significantly less than most current
threshold-based alarms [4].

To investigate how to further lower the number of false
alarms, we present a typical open case in Figure 6d. This
case has eight alarms in about two hours. However, almost
every alarm is caused by wrong measurements in some vari-
ables. For example, RR, which is usually held constant, has
multiple spikes that most certainly are wrong measurements
because patients are frequently taken off mechanical ventila-
tion (e.g., in order to be hand-ventilated to check for a leak
at the surgical site). Thus one way of reducing false alarms
is to detect wrong data and either correct it or discard the
window it is encountered in.

Figure 7: A scatterplot with the average number of false
alarms per hour for each of the open cases.



7. CONCLUSION
In this work we addressed the early detection of sharp de-

creases in CaO2 due to pulmonary shunts. We developed
a model of the O2 and CO2 circulation in the blood and
airways and described the effect of a shunt. Based on the
model, we used a matched subspace detector with a constant
false alarm rate in order to account for unknown parame-
ters and differences between patients. Finally, we validated
our approach on a real-patient data case study and demon-
strated that it is a promising direction for future work in
MCPS. Extensions of this work include a bad data detector
to further reduce the number of false alarms and a real-world
implementation in an Intensive Care Unit.
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[10] A. Burgos, A. Goñi, A. Illarramendi, and J. Bermúdez.
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