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ABSTRACT

CONTEXT-AWARE SENSOR FUSION FOR SECURING CYBER-PHYSICAL

SYSTEMS

Radoslav Svetlozarov Ivanov

Insup Lee

James Weimer

The goal of this dissertation is to provide detection and estimation techniques in

order to ensure the safety and security of modern Cyber-Physical Systems (CPS)

even in the presence of arbitrary sensors faults and attacks. We leverage the fact that

modern CPS are equipped with various sensors that provide redundant information

about the system’s state. In such a setting, the system can limit its dependence

on any individual sensor, thereby providing guarantees about its safety even in the

presence of arbitrary faults and attacks.

In order to address the problem of safety detection, we develop sensor fusion

techniques that make use of the sensor redundancy available in modern CPS. First of

all, we develop a multidimensional sensor fusion algorithm that outputs a bounded

fusion set which is guaranteed to contain the true state even in the presence of

attacks and faults. Furthermore, we provide two approaches for strengthening sensor

fusion’s worst-case guarantees: 1) incorporating historical measurements as well as

2) analyzing sensor transmission schedules (e.g., in a time-triggered system using a

shared bus) in order to minimize the attacker’s available information and impact on

the system. In addition, we modify the sensor fusion algorithm in order to provide

guarantees even when sensors might experience transient faults in addition to attacks.

Finally, we develop an attack detection technique (also in the presence of transient

faults) in order to discard attacked sensors.

In addition to standard plant sensors, we note that modern CPS also have access

to multiple environment sensors that provide information about the system’s context

vi



(e.g., a camera recognizing a nearby building). Since these context measurements are

related to the system’s state, they can be used for estimation and detection purposes,

similar to standard measurements. In this dissertation, we first develop a nominal

context-aware filter (i.e., with no faults or attacks) for binary context measurements

(e.g., a building detection). Finally, we develop a technique for incorporating context

measurements into sensor fusion, thus providing guarantees about system safety even

in cases where more than half of standard sensors might be under attack.
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Chapter 1

Introduction

The steady advancements in sensing, actuating and computing technology over the

past few decades have enabled the development of increasingly sophisticated systems.

In fact, fully or partially autonomous systems can now be found in multiple and

diverse applications such as aircraft [70], automobiles [201], surgical systems [203],

smart grids [40], drones [2] and robotics [202]. What is common between all these

systems is the tight coupling of hardware and software capabilities and constraints

as well as the combination of heterogeneous components with various assumptions

and guarantees about their performance. This great complexity has highlighted the

need for the theory of Cyber-Physical Systems (CPS) at the intersection of control

and information theory, formal methods and embedded systems.

As the autonomy of modern CPS increases, however, so does the concern about

their safety – all of the examples cited in the previous paragraph are systems that

are in direct contact with or operate in the presence of people. What is more, safety

worries are not just a theoretical artifact; deadly CPS crashes have occurred due to

failures of components at all levels of system design, including sensors, actuators,

software and human operators (or any combination thereof). The following list

contains some recent examples of such failures:

• Sensor faults. An example of such a failure was the recent Tesla autonomous

1



driving crash on May 7, 2016 during which the Tesla driver was killed. Investi-

gators concluded that the crash was (partly) due to the inability of the camera

to recognize cross traffic (Tesla avoided blame as their Autopilot system was

not responsible for handling cross traffic) [8].

• Actuator faults. We illustrate this class of failures with an example from

medical CPS due to their high safety-criticality. The widely used Da Vinci

Surgical System [203] was forced to perform a major recall of some parts due

to an increased number of accidents. The main cause of malfunction was

friction within certain instruments that affects the surgeon’s actions [6, 166].

• Imperfect human-CPS interaction. Several aircraft accidents were caused to a

different degree by this type of failure. One of the most notable is the crash

of Air France Flight 447 off the coast of Brazil on June 1, 2009. According to

the official report, the reason for the accident was the deadly combination of

incorrect speed readings by the pitot tubes and an inadequate reaction by the

crew [63].

The problem of ensuring system safety is further exacerbated by security con-

cerns – due to the quickly rising number of their applications (including military

and medical applications), modern CPS are increasingly being subjected to mali-

cious attacks preventing them from correctly performing their tasks. In fact, the

potential attack surface has considerably grown with the introduction of compu-

tationally powerful and interconnected components. On the one hand, since CPS

consist of both physical and cyber components that perform critical functions, they

are by definition vulnerable to all conventional physical attacks such as breaking

or tampering with a certain part as well as standard cyber attacks such as buffer

overflow or denial of service. At the same time, multiple cyber-physical attacks ex-

ploiting the interaction between the two layers (e.g., communication vulnerabilities

or flawed estimation/control approaches) have now been carried out as well. A few
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notable classes of CPS-specific attacks are listed below:

• Sensor spoofing. In this class of attacks, sensor measurements are altered by

manipulating the system’s environment, including the communication medium.

Examples of this attack include a yacht that was carried off course due to

spoofed GPS readings [172] as well as the RQ-170 Sentinel drone that was

captured in Iran [164, 182] (while the details of the capture are not publicly

available, it is widely believed that hijackers captured the drone through jam-

ming the GPS signal).

• Software vulnerabilities. As demonstrated by the Stuxnet virus [77], critical

industrial infrastructure could be disabled by exploiting software bugs and

thereby gaining control of key components.

• Communication protocol vulnerabilities. In some systems, e.g., automotive

CPS, it is possible for the attacker to compromise the entire system by gaining

access to the internal network and exploiting communication vulnerabilities

such as the lack of authenticity in the Controller Area Network (CAN) bus [47,

119].

As illustrated in the above examples, modern CPS can crash in multiple and

unpredictable ways, caused both by arbitrary failures as well as by malicious attacks.

Furthermore, these crashes are often caused not just by a single component failing

but by a combination of Byzantine faults or crafty attacks that are difficult to detect

or prevent. Therefore, it is clear that there is a need for a unifying theory for

the design and analysis of modern CPS – this theory needs to not only ensure the

safety of these systems under nominal conditions but it also has to provide safety

and security guarantees even in the presence of unknown faults and attacks in the

individual components.
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1.1 High-Level Goal

As described in the previous section, ensuring the safety and security of modern

CPS requires considering all possible interactions of the system’s components as

well as all possible ways in which these components can fail or be attacked. As a

first step towards addressing this daunting task, we focus on a crucial aspect of any

autonomous system’s operation, namely providing precise information about its state

and context. Precise information (e.g., a vehicle’s location estimate) is a necessary

condition for guaranteeing the system’s safety – for example, it is not possible to

ensure automobiles will not crash in traffic that cannot be detected; similarly, a

boat cannot guarantee it will reach its destination if its location measurements are

spoofed. Thus, the goal of this dissertation is to develop a general approach for

detecting when the system is unsafe or insecure; furthermore, this technique needs

to provide guarantees about the system’s safety regardless of the fact that some

system components might be faulty/attacked.

To state the above goal more concretely, consider a system (e.g., a robot), denoted

by S, operating in an environment E (e.g., surrounding people and obstacles) in the

presence of a possible attacker A; the scenario is illustrated in Figure 1.1. The

system consists of the three typical components of any autonomous system: (1) a

plant (including actuators), (2) sensors, and (3) a control algorithm. The system has

an internal state, denoted by xk, signifying various aspects of its execution at time

k such as location, velocity, etc. The state evolves (in discrete time) as a function of

the previous state and the applied inputs:

xk+1 = f(xk, uk), (1.1)

where uk is the control input and f is a function mapping current states and inputs to

future states. The controls uk are computed by the control algorithm as a function,
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Figure 1.1: Overview of the system architecture considered in this dissertation. The
system operates in an environment that may include people, obstacles, etc. Sen-
sors are available to measure both the plant and the environment’s states. At the
same time, a malicious attacker might be able to compromise all vulnerable system
components. In this dissertation, we assume attacks can occur in sensors only.

denoted by g, of all received measurements:

uk = g(y0:k), (1.2)

where y0:k denotes all measurements received from time 0 up to k. The system has

sensors available for measuring both the system and the environment’s state such

that at each time k, the received measurements yk are:

yk = h(xk, x
E
k ), (1.3)

where xEk is the environment’s state, which contains relevant elements to the system,

e.g., location of people and obstacles, nearby buildings, texture of surface. The

environment’s state also evolves in time according to some (unknown) dynamics.

Finally, as shown by the examples in the previous section, the attacker might

compromise multiple system components and modify their behavior in an arbitrary
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way. At the same time, such an all-powerful attacker makes the problem of providing

any kinds of guarantees about the system undecidable. Thus, to keep the problem

tractable and as justified in the following section, we assume attacks can occur in

sensors only.

Given the description of the three of entities in Figure 1.1, the control algorithm’s

task is to reach a desired state (e.g., a destination), while preserving a given safety

property psafe, which is a predicate on the system and environment’s states (e.g.,

the robot should not collide with people). The control algorithm is split into three

components: (1) a state estimator that estimates the system’s state and (2) a detec-

tor that raises alarms when the system is unsafe or under attack; the estimator and

detector’s outputs are in turn used by the (3) controller in order to compute control

inputs for the actuators. This modular design is preferred in most systems to a uni-

fied control approach (e.g., optimal control using dynamic programming [26]) due

to its greater flexibility. While classical optimal control techniques such as dynamic

programming might find the optimal control policy in many scenarios, they become

computationally intractable (or even undecidable) in the case of faults and attacks.

The modular formulation, on other hand, can handle such scenarios by ensuring that

each of the three components provides guarantees about its output (e.g., the detec-

tor does not raise any safety false alarms) – thus the control algorithm can provide

guarantees on its final output as well (e.g., the state will be within some epsilon from

the desired state).

As described at the beginning of this section, the high-level problem is

to develop detection and estimation techniques for establishing whether

the system is safe and secure, i.e., for the property psafe. These techniques

must also provide guarantees about their performance even in the presence of

faulty/attacked system components (the exact form of these guarantees is stated

in Section 1.5; an example is that the detector never says psafe is true when it is false,

i.e., there are no false alarms). Given these guarantees on the estimator and detec-
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tor components, it is assumed that the controller component is developed in

such a way so as to ensure the overall task of the control algorithm.

1.2 Challenges for Detection and Estimation in

Modern CPS

Designing estimators and detectors for general CPS with arbitrary models is a chal-

lenging task. First of all, since CPS are a subset of the broad class of control sys-

tems, they present the standard challenges involved with modeling complex systems,

namely that if the f and h functions are non-linear or discontinuous, then few opti-

mal and computationally tractable algorithms exist. In addition, actual CPS never

behave according to their models – sensors and actuators experience faults, control

code has bugs, and systems are often subjected to malicious attacks on multiple

components. This subsection lists two of the main CPS-specific challenges for detec-

tion and estimation algorithms as well as the corresponding simplifying assumptions

that we make in order to make these challenges manageable.

1.2.1 Detection and Estimation in the Presence of Faults

As mentioned before, all system components experience faults during their lifetime.

For the purpose of this discussion, a fault is defined as any behavior that does not

match the system model, i.e., the component’s expected behavior. Faults are dan-

gerous because they disrupt system performance – since most systems are developed

with a given (parameterized) model/expectation in mind, faults may render these

systems unsafe and lead to crashes. Faults can be transient and recover on their own

(e.g., a GPS losing signal in a tunnel but regaining it after that) but can also be

permanent and irreparable (e.g., a broken actuator).

In some well-studied systems, it might be possible to plan for faults and react

accordingly. However, given the complexity of modern CPS, it is impossible to
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predict and guard against all kinds of faults in such systems. Therefore, it is difficult

to justify any assumption about the class or timing of faults in CPS. At the same

time, making no assumptions at all means the problem is undecidable – if faults are

allowed to happen at any time and in any way, then no control algorithm can meet

its goals in the worst case.

We alleviate this problem by restricting our attention to sensor faults only and

assuming that actuators (and other components) behave as modeled. As will be

explained in Section 1.3, the reason it is possible to provide guarantees even with

arbitrary sensor faults is that we can utilize the inherent sensor redundancy available

in modern CPS. On the other hand, no such redundancy can be exploited in actuators

or other components; thus, handling more general faults in actuators (and other

components) is left for future work.

Assumption. We assume that (arbitrary) faults can occur in sensors only. Actua-

tors and other components are assumed to behave as modeled.

1.2.2 Detection and Estimation in the Presence of Attacks

Similar to faults, malicious attacks are another major challenge for CPS analysis

and development. Once an attacker finds a vulnerability in a component, it is often

possible to gain full control of that component and force it to behave in any desired

way. Thus, attacks are similar to faults in the sense that they force the attacked

component to behave unexpectedly. At the same time, they are different as they

are always targeted and malicious whereas faults are often benign and transient;

therefore, attacks require a special treatment when ensuring systems’ resilience.

Once again similar to the fault case, the problem of securing the system becomes

undecidable if we assume that attacks can occur in all components and in all ways.

To overcome this problem, we leverage the redundant-sensor framework as well –

similar to the previous subsection, we focus on sensor attacks only and leave the

problem of providing resilience to attacks on all components as part of future work.
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Assumption. We assume that attacks can occur in sensors only. Actuators and

other components are assumed to behave as modeled.

1.3 Multi-Sensor Systems

As argued in the previous section, ensuring the safety of arbitrary CPS becomes

challenging when one considers the full generality of the problem. That is why, in

this dissertation we restrict our attention to faults/attacks in sensors only. Even in

this case, however, if sensors are modified by faults or attacks in a manner that causes

them to behave in unpredictable ways, then developing detection and estimation

techniques is not possible without additional assumptions. That is why, traditional

approaches usually make simplifying assumptions so as to scope the problem (a more

thorough review of related work is provided in Chapter 2); more specifically, at least

one of the following assumptions is made in most standard approaches to

fault/attack detection:

1. Rich training data containing attacks/faults is available. Such sys-

tems are able to detect and recover from attacks and faults by examining and

learning from previous occurrences of the same anomaly [46].

2. The system nominally operates in a known state. This a very common

assumption in related works, including intrusion detection systems [22, 131,

137], fault detection approaches [221], etc. Starting from a known nominal

condition allows these approaches to perform a variant of change detection

where an alarm is raised when an unexpected/unlikely behavior is observed.

3. The fault/attack has a known effect or comes from a known class of

faults/attacks. This assumption makes it possible to design detectors aimed

specifically at these classes of faults/attacks (e.g., by detecting a change of

system parameters [23, 24, 177, 178]).

9



While the above assumptions might be reasonable in simpler or well-understood

systems, they are difficult to justify in modern CPS. In particular, as shown in the

introductory examples, CPS can fail in intricate and unpredictable ways that have

not been observed before (thus invalidating assumptions 1 and 3). In addition, they

are designed to operate in hostile and rough environments – in fact, these systems can

never assume they are in known nominal states (assumption 2) since undetected data

injection attacks can produce arbitrary errors in nominal state estimation algorithms,

e.g., in the case of a perfectly attackable system [128, 147].

This is why, in this dissertation we do not make any of the above assumptions

and take a different approach, namely we leverage the fact that modern CPS are

equipped with multiple sensors that can be used to provide redundant information

about certain aspects of the system’s state (e.g., a GPS and an IMU can both be

used to estimate speed, even though neither one measures it directly). In this setup,

the dependence on any individual sensor can be reduced – while some sensors might

provide spurious data, whether due to a fault or an attack, the system will still be safe

if it uses the sensors that are operating normally. This means that no assumptions

are necessary about how and when faults/attacks might occur in any specific sensor,

information that might be difficult to obtain a priori.

At the same time, this framework comes at a cost as well – at least half of the

sensors must operate according to specification in order for the approach to work.

However, by developing multiple and diverse sensors, system designers can make it

unlikely for many sensors to fail at the same time. Increased sensor diversity also

makes it harder for an attacker to corrupt a large number of sensors; for example, all

known spoofing techniques, whether physical attacks [185] or cyber spoofing [47, 119],

require significant effort and time investment, which makes it difficult for attackers

to simultaneously control different sensors in a given system.

To better illustrate the benefit of multi-sensor systems, we now provide two exam-

ples of systems where multiple sensors are available. First consider the LandShark
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(a) The LandShark robot [7]. It has access
to five sensors that can be used to estimate
velocity: left and right encoders, an IMU, GPS
and a camera.

(b) Typical medical devices used in
an operating room: a pulse oxime-
ter [4], a blood gas analyzer [3], an
infusion pump [1] and an anesthesia
machine [5].

Figure 1.2: Example systems with multiple sensors that can be used to estimate the
same variables.

robot [7], as illustrated in Figure 1.2a. The LandShark is a heavy-duty vehicle,

designed to operate on rough terrain and hostile territory; therefore, it needs to be

resilient to multiple kinds of sensor and actuator failures as well as malicious attacks.

The LandShark is equipped with five sensors: two wheel encoders, a GPS, an IMU

and a camera. While these sensors measure different physical variables, they can all

be used to estimate the vehicle’s velocity as well. Thus, if one of these sensors is

faulty or attacked, it might be possible to detect that its respective measurements

are inconsistent with the other sensors’ and raise an alarm.

Similarly, Figure 1.2b shows that modern operating rooms (ORs) also have mul-

tiple measuring devices as well. At minimum, a typical OR has a pulse oximeter [4],

a blood gas analyzer [3], an anesthesia machine [5] and an infusion pump [1]; depend-

ing on the case, other devices might be present as well such as a ventilator. These

devices provide clinicians with various data about the patient’s vital signs – although

it is not straightforward to map some vital signs to others, certain relationships be-

tween them can be used in order to conclude that a sensor is not behaving according

to specification (e.g., if the pulse oximeter is showing low hemoglobin oxygen satu-

ration but the blood gas analyzer measured a high blood oxygen concentration, then
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Figure 1.3: General architecture of a system with access to context measurements.

one of the two readings must be incorrect).

Combining data from diverse, but redundant, sensors lies in the broad field of

sensor fusion. The sensor fusion framework used in this dissertation is formalized in

Section 1.5. In the following section, we present another source of information that

can be used to enhance the capabilities of sensor fusion.

1.4 Context-Aware CPS

Although sensor redundancy enables us to avoid making unrealistic assumptions

about the occurrence of faults and attacks, it has its own limitations as well. In

particular, in order to provide guarantees about its output, it requires that at least

half of all sensors operate correctly – this is a theoretical barrier that cannot be

overcome without using additional information [78]. One such source of information

is state-related context that can be extracted from the system’s environment.

With the proliferation of sensing and computing technology, modern CPS have

access to a wealth of information about their environment as provided by their en-

vironment sensors. This information is rarely useful for estimation purposes since

it is too low-level and challenging to map to the state. However, given the recent

improvements in machine learning, it is now possible to obtain high-level represen-

tations of this information. For example, if a robot detects a known building using

image processing, the robot can conclude that it is near that building; similarly, if a
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medical device raises an alarm that a vital sign is above a certain threshold, it might

be possible to conclude that the patient is in a critical state. Consequently, these

discrete-valued context data can be viewed as measurements of (functions of) the

system state, similar to conventional continuous sensors such as IMU or GPS (this

notion is illustrated in Figure 1.3). Thus, context measurements can be used for es-

timation and detection both as a single source of information and in scenarios when

some of the continuous plant sensors are noisy/biased (e.g., GPS in an urban envi-

ronment [118] or medical sensors disrupted by moving artifacts [107]) or in security

applications when some sensors might be attacked (e.g., GPS spoofing [164]).

In this dissertation, we are specifically interested in binary measurements as an

important subclass of context measurements, i.e., each measurement takes on a value

of 1 or -1. Binary measurements capture a rich class of scenarios and events that

might occur during a system’s operation. Examples of binary context measurements

include a medical device alarm that a vital sign exceeds a certain threshold (e.g., if

the patient’s oxygen saturation is above a certain threshold, then the overall oxygen

content (the state) must be above a certain threshold [108]) as well as occupancy

grid mapping where a binary measurement is received as the robot gets close to an

obstacle [196].

Since using context measurements for estimation and detection purposes is a

novel idea in itself, one of the contributions of this dissertation is the development

of nominal estimation algorithms using context measurements (i.e., without faults

or attacks). In this setting, context measurements are defined as any binary data

that have a known probability of occurring given the system state. Context mea-

surements are especially useful when they represent low-level data that cannot be

easily expressed as a function of the state (e.g., it is challenging to functionally map

raw images to the state of a robot) – thus, by using the probability distribution of

context measurements given the state, one may use them for estimation in a rigorous

manner.
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In addition to nominal state estimation, context measurements can be used to

enhance sensor fusion techniques for safety detection as well. Since we are interested

in providing worst-case guarantees in this framework, when a context measurement

is received, a set is constructed that contains all possible values for the true state

(e.g., a rectangle around a building inside which the building could be detected using

image processing). As formulated in the following section, this treatment of context

measurements fits exactly into the standard sensor fusion setup.

1.5 Problem Formulation

Having motivated the problem, the shortcomings of existing work as well as our

approach in the previous sections, in this section we summarize all components and

provide the specific problem statements addressed in this dissertation.

1.5.1 Problem Space

In order to provide context for the specific problem statements, we first outline the

general problem space of this dissertation. As described in Section 1.1, we focus

on the detection and estimation components of standard CPS that might

experience faults and attacks in their sensors only. At a high level, there are

four levels of increasing attack resilience in modern CPS (illustrated in Figure 1.4):

1. Nominal State Estimation. When no attacks are present (or suspected),

the system performs nominal state estimation.

2. Attack Prevention. This includes techniques such as encryption [65, 168,

180], authentication [14], trusted computing [123, 205] and others that attempt

to prevent attackers from disrupting the system’s performance.

3. Attack Detection and Resilient State Estimation. If the system operates

in a hostile environment where attacks are possible, then it needs to develop
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Figure 1.4: Increasing levels of attack resilience in modern CPS. When the system is
under no threat of attacks, it performs nominal state estimation. If attacks might be
present, the system has access to attack prevention, attack detection, resilient state
estimation and, as a last line of defense, safety detection. This dissertation focuses
mostly on safety detection but also investigates related aspects of attack detection
and nominal context-aware estimation.

corresponding detection and estimation techniques. First of all, detectors are

developed for attacks in various system components. In addition, the system

performs resilient state estimation such that it provides guarantees on its state

estimates even if some sensors are under attack.

4. Safety Detection. Regardless of whether an attack exists, the system runs

the Safety Detection component in order to verify that it is in a safe state.

In this dissertation, we are primarily interested in item 4 in the above

list; safety detection can be considered as a last line of defense for the system –

even if attacks are present, the system might be able to avoid crashing if it can

detect when it is in an unsafe state. Furthermore, note that safety detection is

aided by attack detection as well – if a sensor is identified as attacked, it can be

discarded, thereby improving the performance of all other system components; thus,

we also develop techniques for sensor attack detection/identification. Fi-

nally, as noted in Section 1.4, we make use of context measurements in addition to

classical plant measurements; since no approaches exist to incorporate such discrete

measurements in estimation/detection algorithms, we develop a technique for

context-aware state estimation in the nominal case as well. Note that the
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Figure 1.5: Overview of the problem space considered in this dissertation.

problems of resilient state estimation and attack prevention are not considered in

this dissertation – they are orthogonal to our approach and can be applied in parallel

with the techniques presented here (a review of the related work on both topics can

be found in Chapter 2).

Given this setup, we investigate multiple problems in this problem space. In

particular, as shown in Figure 1.5, we consider the three problems discussed above,

namely context-aware state estimation, attack detection and safety detection; in

addition, each problem is made more challenging by the existence of sensor faults,

which adds a second dimension to the problem space. The first problem in the

space is nominal state estimation when no attacks or faults exist – in this case

the problem we address is context-aware state estimation. If no attacks exist but

faults are introduced, then the system should perform a modified version of state

estimation by implementing some of the established Fault Detection, Isolation and

Reconfiguration (FDIR) techniques available in the literature [49, 80, 81, 103] (a

thorough review of FDIR approaches is provided in Chapter 2).

If the system operates in an environment where it might be subjected to attacks,

then it needs to perform attack detection. Once again, we distinguish between nomi-

nal attack detection where non-attacked sensors behave according to their models, on

the one hand, and attack detection in the presence of sensor faults, on the other. Note
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that both detection problems are very general – we do not make any assumptions

about the timing or class of sensor faults and attacks that the system might expe-

rience. As argued in Section 1.3 and as illustrated in Figure 1.6, the reason we can

address problems of this generality is the fact that we focus on multi-sensor systems

and leverage sensor redundancy in order to detect inconsistencies between sensor

measurements (as also noted in Section 1.3, the multi-sensor framework requires a

different assumption, namely that at least half of the sensors operate correctly).

Finally, as a last line of defense, we consider the problem of safety detection.

Similar to the other problems, here we also distinguish between the nominal case

where sensors behave according to their models and the case where sensors might

experience faults as well. In order to analyze the system’s safety, we employ sensor

fusion techniques – sensor fusion exploits sensor redundancy and provides worst-case

guarantees about the system’s safety regardless of the way some sensors might fail

or be attacked (again, assuming at least half of all sensors are correct). We inves-

tigate different ways of improving the output of sensor fusion such as incorporating

measurement history, including context measurements as well as analyzing differ-

ent schedules of transmitting sensor measurements in order to limit the attacker’s

information.

1.5.2 Problem Statements

To formalize the problems considered in this dissertation, we first summarize the

system model components developed in Section 1.1 and make them more concrete

as needed. We consider a system with a known state dynamics model:

xk+1 = f(xk, uk) + wk, (1.4)

where xk ∈ Rd is the state, f models the state dynamics and w is noise that captures

the fact that f cannot perfectly explain all possible system dynamics. Note that
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Figure 1.6: High-level overview of the requirements of existing attack/fault detection
approaches. All techniques that do not utilize sensor redundancy either need training
data or make simplifying assumptions about the timing or class of attacks/faults.

depending on the specific problem that is considered, different assumptions will be

made about f and w in the following chapters.

As described above, the system has access to two kinds of sensors available to it:

plant (continuous) and context (binary). Each plant sensor is assumed to provide a

measurement that is a linear function of the state:

yci,k = Ci,kxk + vk, (1.5)

where we denote the measurement by yci,k ∈ Rm, vk is measurement noise, and matrix

Ci,k has appropriate dimensions.

Context sensors, on the other hand, do not measure the system’s state but

rather provide information about its context. We define context as a finite set

C = {c1, . . . , cN}, where each cj is a context element that can be detected by a

context sensor from certain states; example context elements include nearby build-

ings with known positions on a map or a vital sign exceeding a certain predefined

threshold. For each j, a measurement ybj,k is received that is 1 if cj is detected and

-1 otherwise. Thus, each context measurement ybj,k can be modeled as a function hj
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of the state and the context element, i.e.,

ybj,k = hj(xk, cj),where hj(xk, cj) ∈ {−1, 1}. (1.6)

Given this model, we may now ask questions of increasing difficulty and explore

the problem space defined in Figure 1.5.

Nominal State Estimation

The first problem that we address is nominal context-aware estimation, i.e., we

assume no faults or attacks are present and all sensors operate as modeled. Note

that estimation is usually solved in a probabilistic setting as probabilities are a

natural way of explaining measurement distributions and obtaining expected state

estimates given the available measurements. Therefore, in the nominal setting we

assume that both process and continuous measurement noises are random variables

(Gaussian, in particular). In addition, we model context measurements in terms of

the probability of obtaining a measurement given the current state, i.e.,

ybj,k =

 1 w.p. pd(cj | x)

−1 w.p. 1− pd(cj | x),
(1.7)

where pd is a function of the system state.

Problem 1 (Estimation). Given the system models in Equations (1.4)-(1.7), with

both process and continuous measurement noise following Gaussian distributions, the

first problem we address is how to develop a state estimation algorithm that computes

the exact probability distribution of the state given the measurements.

Safety Detection and Attack Detection

Once we have developed algorithms for context-aware estimation in the nominal case,

we can now ask the question of how to use sensor redundancy in order to perform
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safety detection as well as sensor attack detection/identification.

In order to formulate the problems, first note that safety and resilience are in-

herently worst-case concepts, i.e., they need to be established even in the worst case

(e.g., it is not enough to claim that the system is safe 99% of the time). Thus,

in this setting we adopt an abstract sensor framework (also known as a set mem-

bership framework [140]) instead of the probabilistic approach used in the nominal

estimation problem. Abstract sensors provide a set instead of a single (mul-

tidimensional) value – this set is constructed around the actual measurement of

the physical sensor and represents all possible values for the true state given the mea-

surement. By keeping track of these sets over time, it is possible to draw conclusions

about the system’s safety and security even in the worst case.

Furthermore, note that in this framework we assume that all sensors measure

the state directly. In other words, we abstract away the functional formulation in

both (1.5) and (1.6) – instead, a set of possible values is derived using those func-

tional formulations; the size and shape of this set depend on the particular sensor.

This technique allows us to consider a truly redundant setting with multiple sensors

“measuring” the same variable, using different processes and with different precision.

These redundant measurements can then be used in a sensor fusion algorithm that

outputs a fusion set that is guaranteed to contain the true state (assuming at least

half of all sensors operate correctly). The system is considered safe if the fusion set

does not contain any sets that are deemed unsafe.

With the above points in mind, we first state the safety detection problems. It

is clear from the previous paragraph that the smaller the output of sensor fusion

is, the stronger the guarantees about the system’s safety are. Thus, we explore

multiple ways of reducing the size of the fusion set by adding additional pieces of

information and modifying the sensor fusion algorithm accordingly. In particular,

first we solve the sensor fusion problem in a single time step, i.e., we only consider

the measurements obtained at that step. As a first extension, we also make use of
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system dynamics in order to incorporate historical measurements and thus reduce

the size of the fusion set. In the second extension, we note that in a shared bus (e.g.,

CAN bus in automotive CPS) setting, such as the one shown in Figure 1.1, each

system component may observe all transmitted sensor measurements. In particular,

this allows the attacker to observe correct sensor measurements before deciding what

spoofed measurements to send on behalf of the corrupted sensors. Thus, we explore

the effect of different measurement transmission schedules on the attacker’s impact

and what the best schedule from the system’s point of view is.

Problem 2 (Safety Detection with no Sensor Faults). Given the system models in

Equations (1.4)-(1.6) and assuming the abstract sensor framework where all (non-

attacked) sensors are correct (and transmit their measurements over a shared bus),

what is the smallest set that is guaranteed to contain the true state at a given time

step? What is the smallest set if historical measurements are used as well? Which

measurement transmission schedule minimizes the attacker’s impact on the output

of sensor fusion?

Note that the above problems can be formulated both in the nominal case where

sensors can only be attacked but are not faulty as well as in the case where sensors

can be faulty. When we introduce sensor faults, however, the assumptions of nominal

sensor fusion techniques (i.e., that at least half of all sensor measurements are correct

in a given round) might be invalidated due to the fact that all sensors might provide

faulty measurements at the same time. Thus, we investigate ways of incorporating

system dynamics (and historical measurements) in order to still provide worst-case

guarantees in the presence of both sensor attacks and faults.

Problem 3 (Safety Detection with Sensor Faults). Given the system models in Equa-

tions (1.4)-(1.6) and assuming the abstract sensor framework where (non-attacked)

sensors might experience faults, can we find a bounded set that is guaranteed to con-

tain the true state at any time step?
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Finally, we state the sensor attack detection problems in the abstract sensor

framework as well. Once again, two problems can be formulated, one where sensors

operate correctly if not attacked and one where sensors might be transiently faulty

as well.

Problem 4 (Attack Detection with no Sensor Faults). Given the system models in

Equations (1.4)-(1.6) and assuming the abstract sensor framework where all (non-

attacked) sensors are correct, can we detect sensor attacks?

Problem 5 (Attack Detection with Sensor Faults). Given the system models in

Equations (1.4)-(1.6) and assuming the abstract sensor framework where (non-attacked)

sensors might experience faults, can we detect sensor attacks? How do we distinguish

attacks from faults and not raise false alarms due to transient faults?

1.6 Contributions

At a high level, the goal of this dissertation is to develop detection and estimation

techniques for analyzing the safety and security of CPS in the presence of sensor

attacks and faults. We approach the problem by using the fact that modern CPS

are equipped with multiple and diverse sensors measuring related system states.

These sensors not only measure the plant’s state but they also provide information

about the system’s environment; thus, the context measurements extracted from the

environment sensors can be used as regular (discrete) measurements in addition to

classical continuous measurements. Combining these sensors’ data (both continuous

and discrete) not only results in better state estimates but also enables us, by finding

inconsistencies between measurements, to draw conclusions about the system’s safety

as well as about each sensor being faulty/attacked. The benefit of this approach is

that we do not need to make any assumptions about how each individual sensor might

fail or be attacked – instead we rely on redundant information to detect unsafe states.
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In summary, this dissertation addresses three aspects of the problem space de-

scribed above: 1) nominal state estimation, 2) safety detection and 3) attack detec-

tion. The specific contributions of each are listed below:

• Nominal state estimation. Since using discrete context measurements is

a novel idea in itself, our first contribution is the development of nominal

context-aware state estimation. We consider systems with access to both plant

(continuous) and context (binary) measurements – we investigate two ways of

modeling context measurements and derive closed-form Kalman-like filters for

both cases. The theoretical properties of the resulting context-aware filters

are analyzed as well. In addition, we illustrate the benefits of both filters

via several case studies; first, we provide simulations of two robot localization

scenarios with imperfect sensors that can be improved upon using context

measurements. Finally, we present a real-data medical CPS case study where

context measurements are used in order to improve the estimation of blood

oxygen content, a critical vital sign that cannot be reliably measured during

surgery.

• Safety detection. Using the abstract sensor framework, we employ sensor

redundancy and sensor fusion techniques in order to detect when the system

is unsafe even in the presence of sensor faults and attacks (without assuming

anything about their timing or functional form). We develop a sensor fusion

algorithm in order to find the smallest set that is guaranteed to contain the

true state. We also explore several approaches to improve the output of sen-

sor fusion, namely using historical measurements as well as selecting a sensor

transmission schedule that minimizes the attacker’s impact and available in-

formation. Finally, we extend the sensor fusion algorithm in order to handle

context measurements as well, thereby further improving the algorithm’s ac-

curacy. Evaluations of these techniques are provided both in simulation and

in experiments using an unmanned ground vehicle.
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• Attack detection. Sensor attack detection and identification is used to im-

prove the performance of safety detection by discarding attacked sensors. The

proposed attack detection techniques are also grounded in the abstract multi-

sensor setting. We note that such detectors often treat faults and attacks in

the same way, thus raising unnecessary alarms due to transient faults. Conse-

quently, we develop a framework for modeling transient faults and for distin-

guishing them from attacks – a corresponding attack detector in the presence

of transient faults is presented as well. Both detectors are evaluated both in

simulation and in experiments using an unmanned ground vehicle.

1.7 Outline of the Dissertation

The outline of this dissertation closely follows the highlighted problems in Figure 1.5.

We first present in Chapter 2 a general overview of the related work on CPS safety

and security, including nominal state estimation, anomaly detection as well as se-

curity approaches (both from a purely cyber and a combined cyber-physical point

of view). Chapter 3 addresses the problem of nominal context-aware estimation; we

develop two context-aware filters, analyze their theoretical properties and evaluate

them, both in simulation and on real data. In Chapter 4, we consider the main prob-

lem of this dissertation, namely safety detection in the presence of sensor attacks and

faults; we develop sensor fusion techniques and consider multiple ways of improving

the output of sensor fusion by incorporating measurement history and by analyz-

ing different schedules of measurement transmissions; all techniques are evaluated in

simulation and in experiments with the LandShark robot. The guarantees provided

by sensor fusion are further strengthened in Chapter 5 where we add another piece of

information, namely context measurements; we develop a context-aware sensor fusion

algorithm and evaluate it in simulation of a perfectly attackable system that can only

detect it is unsafe with the addition of context measurements. Finally, Chapter 6
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addresses the third major problem of this dissertation, namely sensor attack detec-

tion in the presence of transient faults; we develop a sound detection/identification

algorithm and evaluate it on real data from the LandShark sensors. Concluding

remarks and some avenues for future work are provided in Chapter 7.
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Chapter 2

Related Work

This chapter reviews the related work in the general problem space defined in Chap-

ter 1. We begin by presenting the most popular approaches to filtering and state

estimation in general before discussing works in the area of fault detection, isolation

and reconfiguration (FDIR) and robustness. The chapter concludes with security

and attack detection. More specific topics such as sensor fusion, sensor selection and

context-aware filtering are reviewed in their respective chapters.

2.1 State Estimation

State estimation is a very well studied problem in the control theory literature.

Some of the first approaches were developed in the 1940s with the introduction of

the Wiener filter and Wiener theory in general [219]. Consequently, the Wiener

filter was extended and transformed into the classical Kalman filter [113], which is

still the default choice for estimator in many applications due to its easy recursive

implementation and intuitive appeal. Multiple extensions of the Kalman filter have

been developed since then depending on the system and its assumptions, including

the Gaussian Mixture filter for multimodal distributions [99, 193], the consensus

Kalman filter for distributed systems [155, 156] and many others [14, 73, 76, 112].
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While the Kalman filter is the best linear unbiased estimator for linear systems

with Gaussian noise [26] (i.e., the function f is linear in (1.4) and the noises w in (1.4)

and v in (1.5) have Gaussian distributions), it is challenging to develop algorithms

with such strong properties in other settings, even in the linear-system framework.

For example, in linear systems where the noise is distributed according to a trun-

cated Gaussian distribution (e.g., in a turbofan engine model [188]) it is difficult

to obtain a closed-form filter, and a popular approach is to estimate the posterior

probability density function (pdf) using Monte Carlo techniques [69, 188]. Other,

heavy tailed, noise distributions have been considered as well, such as a Student-t

distribution [97], but they lead to noise disturbances that are not identically dis-

tributed, thus preventing researchers from obtaining closed-form estimates. Robust

filters for general distributions have been developed as well by deriving an optimal

time-varying smoothing boundary layer [84]. Alternatively, instead of a probabilistic

approach, one may assume bounds on the noise. For example, one may derive a

Kalman-like set membership filter given energy bounds on the noise [27]; if instead

the noise is bounded by quadratic inequalities, then the estimation problem can be

efficiently approximated by a convex optimization problem [74].

Unlike linear systems where a multitude of problems and setups have been ad-

dressed, estimation in general nonlinear systems is in still an open and challenging

problem. One of the standard approaches to nonlinear estimation is the extended

Kalman filter (EKF) [14], which works by linearizing the system dynamics and ob-

servation model and applying the standard Kalman filter to the linearized system.

Another popular approach is the unscented Kalman filter (UKF) [112], which recon-

structs the posterior mean and covariance matrix by propagating a minimal set of

sample (sigma) points. Similarly, the smooth variable structure filter is an iterative

algorithm that has also been shown to work well in smooth nonlinear systems [95].

All of these approaches work well in practice for mildly nonlinear systems with

Gaussian-like noise but they do not perform as well in highly nonlinear systems. In
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such cases, one might use non-parametric approximation methods such as Gaussian

Process filtering [99]. Yet another popular approach to nonlinear filtering is particle

filtering [87], which employs Monte Carlo techniques in order to approximate non-

linear functions with arbitrary probability distributions; particle filters have been

shown to work well in practice in robotics applications [62, 148, 202]. Particle filters

have also been combined with Kalman filters in special problems where subsets of

the state can be estimated in closed form [67, 90]. Finally, similar to the case of

linear systems, nonlinear systems with bounded (not probabilistic noise) have been

considered as well – e.g., set membership filters have been developed for systems with

bounded noise and bounded derivatives of state dynamics and have been shown to

outperform the EKF in highly nonlinear systems [139, 141].

A further complication to the estimation task is added by the fact that most sys-

tem models are inaccurate or at least parameterized by multiple variables that differ

across systems. System identification techniques can be utilized in such cases in order

to obtain a model of the system based on observed data [17, 105, 129]. Approaches

in this domain can be broadly classified as white-box (i.e., first principles) [151],

gray-box [34, 121, 207], or black-box (i.e., data-driven) [111, 191, 197] depending on

the assumptions on the underlying model. In addition, it is also possible to iden-

tify the model in an iterative fashion by gradually perturbing parameter values and

minimizing a given cost function of the difference between predicted and measured

states – this technique has been successfully applied in expectation maximization ap-

proaches [132, 186] as well as in multiple smoothing algorithms [116, 124, 176, 210].

To summarize, all nonlinear estimation techniques involve approximations, in

addition to often being computationally expensive. A main reason for these disad-

vantages is the generality of the considered problems – most approaches attempt to

develop estimators for all nonlinear systems or broad subsets thereof (e.g., all sys-

tems with differentiable dynamics). In contrast, in this dissertation we focus on a

specific class of nonlinear measurements, i.e., binary measurements, and derive the
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exact posterior distributions in an efficient way.

2.2 Fault Detection, Isolation and Reconfigura-

tion

The existing literature on FDIR is very broad and mature, including multiple ex-

haustive survey papers [49, 80, 81, 103]. FDIR methods work by developing a model

of the system’s operation and analyzing the residual between the expected and actual

(as measured) behaviors [49]. There are two main approaches in this framework: in

the first an initial condition is assumed such that the residuals can be computed at

each time step as the system evolves [105]. In this setting, observers are developed

that generate alarms when residuals are unlikely to have come from their nomi-

nal probability distributions or other expected behaviors [25, 52, 94, 130, 138, 221].

In the alternative approach, a certain type or direction of a fault is assumed such

that fault detection can then be performed by detecting a change of system pa-

rameters using a generalized likelihood ratio test or a sequential probability ratio

test [23, 24, 177, 178].

While the FDIR techniques work well in the presence of good models, many sys-

tems have complex models that may be difficult to derive. In such cases, system

designers might develop simpler models and then apply techniques that guarantee

the system is robust to modeling errors and faults [163]. Such approaches work by

robustifying the employed estimator algorithms, e.g., by using the minimum covari-

ance estimator [171], robust measure of data spread [57, 101] or robust principal

component analysis [200].
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2.3 Security and Attack Detection

The literature on security and attack detection can be broadly split into general

computer security as well as techniques specifically tailored to the needs of CPS.

Computer security is a widely researched area, with multiple established approaches

and practices [15]. Some of the most notable branches of the area include intrusion

detection systems [22, 131, 137], encrypted communication protocols [65, 168, 180],

trusted computing [123, 205], security software verification [48, 68] and other software

defenses [35, 56].

What is common between the standard computer security techniques is that

they focus exclusively on cyber attacks. Modern CPS, on the other hand, are much

more complex – a holistic analysis of the attack surface of CPS reveals that they

are not only vulnerable to standard cyber threats, but are also subject to attacks

exploiting their physical environment, thereby modifying sensor/actuator behavior

and affecting the overall system model [42, 43, 44]. There are various approaches to

securing CPS – the first class are those using fault-detection-like techniques such as

developing state observers and change detectors [145, 147, 198]. In addition, attack-

resilient state estimators have been introduced for systems with bounded noise [158,

159]. Researchers have also investigated ways to secure communication channels [10,

11, 12, 162] and more specifically the Control Area Network (CAN) bus [92, 96,

126, 127, 208], which is known to have multiple security vulnerabilities [98]. Finally,

techniques specific to the cyber-physical coupling of CPS have been developed such as

applying carefully chosen control inputs so as to expose the attacker [146], injecting

and defending against false data injection attacks [128, 145, 147] or employing game

theory analysis in order to model the attacker’s behavior [9, 39, 91].

The common theme among the discussed approaches in both the fault detection

and security domain is that certain assumptions are made about the occurrence of

faults and attacks, i.e., either that they have a known functional form/direction

or that the system begins in a known nominal state. Instead of making such as-
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sumptions, which might be unrealistic in modern CPS, we provide resilience and

robustness through sensor redundancy and sensor fusion techniques [136] (described

in more detail in the following chapters).
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Chapter 3

Context-Aware Estimation

In this chapter we investigate the problem of context-aware state estimation, i.e.,

continuous state estimation using both continuous and discrete context-dependent

measurements. As described in Chapter 1, context measurements are high-level

representations of environment-sensor data that cannot be easily mapped to the state

– by using the probability distribution of context measurements given the state, one

may use them for estimation in a rigorous manner. The probabilistic formulation

makes sense intuitively – for example, if a building is far from the robot and appears

small in images, it might be recognized in just a few images; on the other hand, if

the building is nearby, we expect to recognize it in most images, i.e., the probability

of receiving a context measurement would be high for states close to the building.

In this dissertation we focus on binary measurements, i.e., each measurement

takes on a value of 1 or -1. Binary measurements form an interesting subset of discrete

measurements as they appear in a lot of CPS applications: 1) a medical device alarm

that a vital sign exceeds a certain threshold (e.g., if the patient’s oxygen saturation

is above a certain threshold, then the overall oxygen content must be above a certain

threshold [108]) as well as 2) occupancy grid mapping where a binary measurement

is received as the robot gets close to an obstacle [196].

The concept of estimation with context-based measurements was originally ex-
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plored in radar target tracking where measurements may also arrive irregularly and

could take on discrete values; one notable technique developed in this domain is the

probability hypothesis density (PHD) filter [134]. At the same time, the models

considered in this domain are very general, which makes it challenging to derive

exact theoretical results and instead leads to approximations that might be compu-

tationally expensive to obtain. Other general non-linear filtering methods have been

developed as well, such as the hybrid density filter (HDF) [100], the set-membership

filter [139], as well as the assumed density filter (ADF) [106] (the context-aware filter

is actually a type of ADF for which we can compute the moments of the posterior

distribution). Due to their generality, however, these filters do not provide strong

theoretical guarantees about specific classes of non-linear systems.

Context measurements are also similar to quantized measurements in that they

take on discrete values [83, 167]. At the same time, quantized measurements are

different because they are derived from standard continuous measurements whereas

context measurements are only related to the state through the probability of de-

tection. System identification with binary measurements [213] has also been inves-

tigated although no approaches exist for the probabilistic setting considered in this

work.

Context-aware filtering is also similar to Kalman filtering with intermittent ob-

servations [183, 190] and unreliable links [93, 104, 155, 179] in that measurements

arrive irregularly; the frequency of measurement arrivals affects the filter’s perfor-

mance in these cases. Related to this is the concept of sensor scheduling where

different sensors are used at different times so as to minimize interference or power

consumption [110, 209, 220]. Yet another similar problem has been considered in the

wireless sensor networks area where multiple sensors are deployed over a large area

such that the receipt of each sensor’s measurement could be considered a context

measurement [75, 135].

Due to their discrete nature, context measurements can also be modeled with

33



hybrid systems [102], where different modes contain different models of context mea-

surements. Such models include Markov chain switching [55, 192], deterministic

switching [66, 161] and other more general models [214]. However, due to their

complexity, all of these approaches rely on approximations in order to perform the

estimation task.

Different notions of context are also widely used in robotics for the purpose of

localization and mapping [31] by using scene categorization [85] and object class

information [13, 19]. However, these papers do not provide theoretical guarantees

for their developed approaches. The work that is closest in its setup and assump-

tions to this dissertation addresses the problem of indoor localization by using both

continuous and discrete measurements [19]; however, the particle filter that is used

to combine the two types of measurements does not provide any theoretical guar-

antees for a finite set of particles and may suffer from particle deprivation problems

in high-dimensional spaces. Finally, context-aware filtering could also be related to

machine learning (e.g., Gaussian process classification [165]) in the sense that the

objective is to learn a continuous probability distribution from discrete-valued data.

In particular, the Expectation Propagation (EP) algorithm [143] is similar to the

context-aware filter in that posteriors are approximated with Gaussian distributions

as well – at the same time, no convergence results exist for EP.

In contrast with existing works, we develop a context-aware filter for linear sys-

tems with access to binary measurements – no knowledge is assumed about the

measurements other than their probability of occurring given the state. In partic-

ular, we focus on two classes of functions that lead to (near) closed-form solutions

and that represent a wide variety of detection scenarios observed in practice.

The first class of probability of detection functions are inverse-exponential func-

tions. With this class of functions, the probability of detection is high when the

state is close to a certain value (e.g., the robot is close to a building) and decreases

rapidly as the state moves away. We show that this class of functions leads to a
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closed-form filter with Gaussian Mixtures without any approximations. The second

class of functions are sigmoid functions defined as the probit function [152]. The

probit function resembles a step function, i.e., for small inputs it is close to 0 but

once a threshold is crossed, it increases rapidly and converges to 1. This class of

functions capture the threshold medical alarms described above as well as threshold

detection scenarios (e.g., occupancy grid mapping).

Similar to the inverse-exponential filter, we develop the probit-based context-

aware filter by deriving the exact posterior distribution of the state given a context

measurement. At the same time, it is not known how to compute the posterior

for multiple context measurements since the integrals become intractable. As a

result, we approximate the posterior distribution after the receipt of each context

measurement with a Gaussian distribution with the same first two moments as the

true posterior. The approximating Gaussian distribution is then used as a prior for

the next measurement, thus obtaining a recursive context-aware filter.

In order to understand the asymptotic nature of the probit-based filter, we also

analyze its theoretical properties. We first show that the posterior distribution is

unimodal, so that the Gaussian approximation is indeed justified. In addition, we

show that, for a scalar system, the expected variance of the filter’s estimates is

bounded provided that the probability of receiving both a measurement of 1 and

-1 is at least some positive number η. This result is similar to a corresponding

fact about Kalman filtering with intermittent observations [190] in the sense that

the system needs to perform “useful” updates often enough in order to keep the

uncertainty bounded. Generalizing this result to multidimensional systems, however,

is challenging due to the fact that we aim to estimate continuous variables using

discrete measurements only; at the same time, the intuition from the one-dimensional

result could be used to prove a similar claim in the multidimensional case as well.

To provide further intuition about the probit-based filter’s performance in the

multidimensional case, we show convergence results about systems with no dynam-

35



ics. In particular, we show that the eigenvalues of the filter’s covariance matrix

converge to 0 if and only if a persistence-of-excitation condition holds for the con-

text measurements. This result is the context equivalent to an observability claim

in a standard linear system – intuitively, it says that if there exist context mea-

surements that observe all states, then the filter’s uncertainty decreases over time.

Furthermore, we show that as the eigenvalues of the covariance matrix converge to

0, the expressions for the moments of the Gaussian approximations converge to the

Newton method [36], which suggests that the estimates themselves likely converge

to the true state, since the posterior distribution is unimodal. This result provides a

parallel with the widely used Expectation Propagation [143] algorithm where similar

Gaussian approximations are employed at each step – thus, the results presented in

this Chapter might be of interest to the machine learning community as well.

Finally, both context-aware filters are thoroughly evaluated in Sections 3.6, 3.7

and 3.8. We first provide simulations of two robot localization scenarios that il-

lustrate real-world applications of context measurements. In addition, we provide

additional simulations to illustrate the saw-shaped nature of the estimation curve

induced by the probit-based filter as well as to illustrate a case in which the probit-

based filter does converge for moving systems as well. Finally, we provide an appli-

cation of the probit-based filter on real-patient data from the Children’s Hospital of

Philadelphia (CHOP) where the context-aware filter is used to estimate the patient’s

blood oxygen concentration.

3.1 System Model and Problem Formulation

This section formalizes the system model and states the estimation problem ad-

dressed by the context-aware filter. We consider a linear discrete-time system of the

form

xk+1 = Akxk + νpk , (3.1)
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where xk ∈ Rd is the system state, x0 ∼ N (µ0,Σ0), νpk ∼ N (0, Q) is Gaussian process

noise, and Ak is a matrix of appropriate dimensions.1

As described in Chapter 1, the system has two kinds of sensors available to it:

plant (continuous) and context (binary). Plant sensors measure (subsets of) the

state directly. The system has a linear observation model for plant sensors of the

form

yck = Ckxk + νmk , (3.2)

where we denote plant sensors’ measurements by yck ∈ Rm, νmk ∼ N (0, R) is Gaussian

measurement noise, and matrix Ck has appropriate dimensions. Note that yck is a big

vector with all individual sensor measurements yci,k stacked on top of one another;

vk and Ck are obtained similarly.

Context sensors, on the other hand, do not measure the system’s state but rather

provide binary information about the system’s context; example context measure-

ments include detecting nearby objects with known positions on a map or a vital

sign exceeding a certain predefined threshold. At each time k, a measurement ybk is

received that is equal to 1 if a detection occurs and -1 otherwise.2 We assume that

ybk is equal to 1 with a known probability of detection given the state, denoted by

pdk(y
b
k | x), i.e.,

ybk =

 1 w.p. pdk(y
b
k | xk)

−1 w.p. 1− pdk(ybk | xk),
(3.3)

where pdk is a function of the system state. As noted in the introduction of this

chapter, pdk is close to 1 when the system is in a state that is highly correlated with

receiving a context measurement (e.g., a robot is close to a building). Note that pdk is

time-varying, i.e., different binary measurements may be received at different times.

1Note that we do not consider inputs uk in order to simplify notation. All results presented in
this chapter hold in the addition of inputs as well.

2Note that our framework can handle more than one binary measurement per time by repeated
updates. We make the one-measurement assumption in order to simplify notation.
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It is assumed that, conditioned on the state, context measurements are mutually

independent.

Problem. Given the system defined in (3.1)-(3.3) and a prior pdf

pk|k(x) = p(x | yc0:k, y
b
0:k)

the goal is to compute the posterior density

pk+1|k+1(x) := p(x | yc0:k+1, y
b
0:k+1),

describing the system’s state given all available measurements and inputs.

3.2 Challenges with a Bayesian Approach

The problem formulation in Section 3.1 naturally lends itself to a recursive Bayesian

approach with a predict and an update phase of the form

Predict: pk+1|k(x) =

∫
pf (x | z)pk|k(z)dz, (3.4)

Update: pk+1|k+1(x) = ξk+1po(y
c
k+1, y

b
k+1 | x)pk+1|k(x),

where pf (xk+1 | xk, uk) is the conditional pdf of the state at time k+1 given the state

and input at time k, po(y
c
k+1, y

b
k+1 | xk+1) is the joint pdf of all available measurements

(plant and context) given the state and ξk+1 is a normalization constant [202].

While (3.4) provides a compact representation of the filtering problem, in general

it is impossible to obtain a closed-form expression for the densities and the corre-

sponding integrals. The notable exception is the linear Gaussian case which results

in the Kalman filter, as noted in Chapter 2. However, the discrete measurements

considered in this paper do not lead to clean analytic derivations such as the one

in the Kalman filter. In such a case it might be possible to use some of the non-
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linear estimation techniques described in Chapter 2 such as the ADF, PHD filter,

HDF and others. At the same time, as argued in Chapter 2, all these approaches

involve approximations and have variable performance on real problems. Therefore,

in this thesis we focus on two specific probability of context detection functions (i.e.,

pdk(y
b
k | x) in (3.3)) that lead to closed-form filters. We argue that each of these

functions captures a sufficiently large class of scenarios so as to be useful in a lot of

modern systems. The following two sections present these functions, both formally

and intuitively, before deriving the resulting filters.

3.3 Context-Aware Filter with Inverse-Exponential

Functions

The first class of probability of context detection functions considered in this disser-

tation are inverse-exponential functions.

Assumption. Suppose the probability of context detection functions are inverse-

exponential functions that are defined as follows:

pdk(y
b
k | xk) = e−

1
2

(Gkxk−θk)TV −1
k (Gkxk−θk), (3.5)

which are parameterized by θk ∈ Rq and Vk ∈ Rq×q, and Gk ∈ Rq×d, which can be

thought of as a selection matrix when q < d. This probability is 1 when Gkxk = θk

and approaches 0 when Gkxk − θk gets large. Note that Gk, θk and Vk are possibly

time-varying, i.e., a different context measurement could be received at each time

step.

We argue that inverse-exponential functions capture a wide class of context mea-

surements observed in reality. In particular, they are designed so that the probability

of detecting a context element is large when the system is in the vicinity of that ele-

ment and is small otherwise. For example, in the case of detecting a nearby building
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using image processing, the probability of getting a detection is very high when the

camera is close to the building but starts decreasing rapidly as the system moves

away [19]. As another example, consider a vehicle trying to localize by detecting

frequency modulation (FM) radio signals – since certain FM signals can only be

detected in certain regions, receiving such a known signal may help the vehicle im-

prove its localization estimate. Inverse-exponential functions can be used to model

this scenario as well, since wireless signals are also known to greatly decay as the

receiver gets far away from the transmitter [86].

Having fixed (3.5) as the probability of context detection, with θk, Gk and Vk

known at each time step (or potentially learned from data), we now derive the re-

sulting context-aware filter. Note that, due to the shape of the function in (3.5)

(i.e., it resembles a non-normalized Gaussian pdf), incorporating the context mea-

surements in the filter results in a Gaussian Mixture (GM) distribution. A GM is a

distribution whose pdf is defined as a weighted sum of Gaussian pdfs:

gGM(x) =
M∑
i=1

wiφ(x;µi,Σi), (3.6)

where φ(x;µi,Σi) is the pdf of a Gaussian distribution with mean µi and covariance

matrix Σi, and wi are weights such that
∑M

i=1 wi = 1. GMs have two properties

that make them suitable for modeling multimodal distributions. First of all, they

are linear combinations of Gaussian pdfs; thus, a recursive filter using a GM can

be developed with a bank of Kalman filters, one for each element in the GM. In

particular, this means that the context-aware filter developed in this chapter has a

closed-form solution for GMs, i.e., if the prior is a GM (including a single Gaussian

distribution, which is a special case of a GM), then so is the posterior. The second

useful property of GMs is that, given a sufficient number of elements, a GM can

be used to approximate any continuous pdf [99]. For these reasons, GMs have been

extensively studied and appear in a lot of the popular nonlinear filters.
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We now present the main result of this section, namely the context-aware filter

with inverse-exponential functions.

Proposition 1. Consider a system with linear dynamics

xk+1 = Akxk + νpk ,

linear state observation model

yck = Ckxk + νmk ,

and context observation model of the form

pdk(y
b
k | xk) = e−

1
2

(Gkxk−θk)TV −1
k (Gkxk−θk).

Assuming that the state prior pk|k is a Gaussian Mixture, then the predicted and

updated pdf’s, pk+1|k and pk+1|k+1 respectively, are also Gaussian Mixtures without

any approximation.

Proof. Note that, unlike the conventional Kalman filter that has a predict and an

update stage, the proposed filter has three steps: prediction, continuous update and

discrete update. There is also an optional mixture reduction step discussed at the

end of the section.

3.3.1 Predict

For the predict stage, we note that

pk+1|k(x) =
M∑
i=1

wi

∫
φ(x;Akz,Q)φ(z;µi,Σi)dz
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=
M∑
i=1

wiφ(x;Akµi, AkΣiA
T
k +Q)

=
M∑
i=1

wiφ(x;µpi ,Σ
p
i ),

which is the usual form of the Kalman filter predict equations (e.g., see [113]). The

resulting distribution is again a GM.

3.3.2 Continuous Update

As described above, we perform the update separately for state (continuous) and con-

text (discrete) sensors. Upon receiving a measurement yck+1, the continuous update

is:

pck+1|k+1(x) =
p(yck+1 | x)pk+1|k(x)∫
p(yck+1 | z)pk+1|k(z)dz

=
φ(yck+1;Ckx,R)

∑M
i=1 wiφ(x;µpi ,Σ

p
i )∫

φ(yck+1;Ckz,R)
∑M

j=1wjφ(z;µpj ,Σ
p
j)dz

=
M∑
i=1

(
wiγ

c
i

αc

)
φ(yck+1;Ckx,R)φ(x;µpi ,Σ

p
i )∫

φ(yck+1;Ckz,R)φ(z;µpi ,Σ
p
i )dz

=
M∑
i=1

wciφ(x;µci ,Σ
c
i),

where

αc :=
M∑
i=1

wiγ
c
i

γci :=

∫
φ(yck+1;Ckz,R)φ(z;µpi ,Σ

p
i )dz

= φ(yck+1;Ckµ
p
i , CkΣ

p
iC

T
k +R)

µci := µpi +Kc
i (y

c
k+1 − Ckµ

p
i )

Σc
i := (I −Kc

iCk)Σ
p
i
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Kc
i := Σp

iC
T
k (CkΣ

p
iC

T
k +R)−1.

Note that the posterior distribution is also a GM with the same number of ele-

ments but with possibly rescaled weights.

3.3.3 Discrete Update

For the discrete update, first note that the posterior distribution depends on whether

ybk+1 is -1 or 1 as the probabilities of getting either one are different. Consider first

the case when ybk+1 = 1:

pk+1|k+1(x) =
p(ybk+1 = 1 | x)pck+1|k+1(x)∫
p(ybk+1 = 1 | z)pck+1|k+1(z)dz

=
φ(θk;Gkx, Vk)

∑M
i=1 w

c
iφ(x;µci ,Σ

c
i)∫

φ(θ;Gkz, Vk)
∑M

j=1w
c
jφ(z;µcj,Σ

c
j)dz

=
M∑
i=1

(
wciγ

d
i

αd

)
φ(θk;Gkx, Vk)φ(x;µci ,Σ

c
i)∫

φ(θk;Gkz, Vk)φ(z;µci ,Σ
c
i)dz

=
M∑
i=1

(
wciγ

d
i

αd

)
φ(x;µdi ,Σ

d
i ),

where αd, γdi , µdi , Σd
i and Kd

i are defined similar to their continuous analogues.

Finally, when ybk+1 = −1, the update becomes

pk+1|k+1(x) =

(
1− p(ybk+1 = 1 | x)

)
pck+1|k+1(x)∫ (

1− p(ybk+1 = 1 | z)
)
pck+1|k+1(z)dz

=
M∑
i=1

wci
(
1− p(ybk+1 = 1 | x)

)
φ(x;µci ,Σ

c
i)

1−
∑M

j=1 w
c
j

∫
p(ybk+1 = 1 | z)φ(z;µci ,Σ

c
i)dz

=
M∑
i=1

wci

1−
∑M

j=1 w
c
jβj

φ(x;µci ,Σ
c
i) +

−wciβi
1−

∑M
j=1 w

c
jβj

φ(x;µdi ,Σ
d
i )

where βi := γdi
√

(2π)q det(Vk).
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Thus, we have inductively shown that for the probability of detection function

considered in this paper, the localization filter can be computed in closed form and

results in a GM distribution of the posterior. Note that the number of elements in

the GM doubles every time ybk = −1, thus an additional step may be necessary in

order to bound the number of elements.

3.3.4 Mixture Reduction

The proof of Proposition 1 provides an exact form for the posterior. However, the

number of elements in the GM doubles every time a measurement of -1 is received;

hence, this number may increase exponentially over time. Many approaches for

reducing the number of elements have been proposed in the literature, ranging from

keeping the elements with highest weights to merging or discarding elements based on

certain notions of distance between them [193]. Note that most available techniques

assume weights are positive, yet the GM developed in this paper may have negative

weights as well. In such cases, one may use a Gibbs Sampler [195] in order to reduce

the size of the GM. A Gibbs Sampler draws random samples from the distribution

and can approximate it with a GM with a desired number of elements. Note that in

order to sample from a distribution with negative weights such as the one developed

in this paper, accept-reject sampling may be utilized [150].

3.4 Context-Aware Filter with Sigmoid Functions

Although inverse-exponential functions capture a wide variety of context measure-

ments that occur in practice, there are other interesting scenarios that cannot be

explained with this class of functions. In particular, a major limitation of inverse-

exponential functions is that they are symmetric around their θ parameter; thus,

they would not be well suited for modeling inherently non-symmetric context mea-

surements such as a vital sign crossing a predefined threshold (e.g., the blood-oxygen
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saturation is less than 90%). Similarly, inverse-exponential functions cannot be used

to model a scenario in which a building can only be detected from certain angles

(e.g., because of occlusions).

In order to overcome these limitations, in this section we investigate a second

broad class of context detection functions, namely sigmoid functions.

Assumption. Suppose the probability of context detection functions are sigmoid

functions that are defined as the probit logistic function [153]:

pdk(y
b
k | xk) = Φ(ybk(b

T
k xk + ak)), (3.7)

where Φ is the cumulative distribution function of the standard Normal distribution,

bk ∈ Rd is a vector of known weight parameters, and ak ∈ R is a known parameter

offset. Note that pdk(y
b
k = 1 | xk) = 1− pdk(ybk = −1 | xk) due to the rotational sym-

metry of Φ, i.e., Φ(−x) = 1 − Φ(x). We assume there is a finite set of size C of

context weights and offsets V = {(b1, a1), . . . , (bC , aC)}.

Note that the inner function in (3.7) defines a hyperplane, determined by the

values of ak and bk, that can be intuitively considered as the detection threshold,

i.e., the probability of getting a detection is very low when the state xk is below the

“threshold” and increases rapidly as xk crosses the “threshold”. To explain the name

of this class of context detection functions, note that in the one-dimensional case,

this function greatly resembles the classical sigmoid function: f(x) = 1/(1 + e−x),

which also exhibits this pattern of values close to 0 as x approaches −∞ and close

to 1 for large x, with a very quick transition period in between. Due to this step-like

shape, sigmoid functions are well suited for modeling the scenarios presented above –

it is expected that once a signal exceeds a certain threshold, even inaccurate sensors

will be able to detect the event and raise an alarm.

Assumption. In this section, to simplify notation we assume the system has access

to context measurements only (but not continuous plant measurements). All results
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presented in this section hold in the presence of continuous (linear) measurements

as well.

Developing an exact filter incorporating probit-based measurements is not straight-

forward, however, due to the fact that the posterior distribution, once context mea-

surements have been received, is not the same as the prior (even if the prior is

Gaussian). At the same, as argue below, a Gaussian distribution with the same

mean and covariance matrix is a good approximation for the posterior distribution.

We now present the phases of the sigmoid-based filter, in a similar fashion to the

GM-based one (excluding the continuous update). In this case we assume the prior

pk−1|k−1, at time k ≥ 1, is a single Gaussian distribution with mean µk−1|k−1

and covariance matrix Σk−1|k−1.

3.4.1 Predict

The predict phase is the classical Kalman filter prediction:

pk|k−1(x) =

∫
φ(x;Ak−1z,Q)φ(z;µk−1|k−1,Σk−1|k−1)dz

= φ(x;Ak−1µk−1|k−1, Ak−1Σk−1|k−1A
T
k−1 +Q)

= φ(x;µk|k−1,Σk|k−1),

where φ(x;µ,Σ) denotes the pdf of a Gaussian distribution with mean µ and covari-

ance matrix Σ.

3.4.2 Update

The posterior distribution after the receipt of a binary measurement ybk is shown in

Proposition 2 below (all proofs are given in the Appendix).

Proposition 2. Upon receipt of a discrete measurement ybk ∈ {−1, 1}, the discrete
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update is as follows:

pk|k(x) =
Φ(ybk(b

T
k x+ ak))φ(x;µk|k−1,Σk|k−1)

Zk
, (3.8)

where

Zk = Φ

ybk(bTk µk|k−1 + ak)√
bTkΣk|k−1bk + 1

 .

Approximation. We approximate the posterior distribution in (3.8) with a Gaus-

sian distribution with the same mean and covariance matrix.

Note that the posterior distribution after incorporating context measurements is

no longer Gaussian. However, a Gaussian still seems to be a good approximation

for (3.8). In particular, as shown in Proposition 3 below, the distribution in (3.8)

is log-concave; log-concavity, in turn, implies unimodality, as discussed in Corollar-

ies 1 and 2. Thus, we approximate the posterior in (3.8) with a Gaussian with the

same mean and covariance matrix as the distribution in (3.8) – these quantities are

computed in Proposition 4 below.

Proposition 3. The distribution in (3.8) is log-concave, i.e., the function

g(x) = ln(pk|k(x)) (3.9)

is concave.

Corollary 1 ([64]). In one dimension, the distribution in (3.8) is unimodal, i.e.,

there exists a point x∗ such that pk|k(x) is increasing for x ≤ x∗ and pk|k(x) is

decreasing for x ≥ x∗.

Corollary 2 ([64]). In many dimensions, the distribution in (3.8) is star-unimodal

(a random variable X ∈ Rn is said to have a star-unimodal distribution if for ev-
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ery bounded non-negative Borel measurable function f on Rn, tnE[f(tX)] is non-

decreasing for t ∈ [0,∞)).3

Proposition 4. The mean of the distribution in (3.8) is:

µk|k = µk|k−1 + Σk|k−1bk(b
T
kΣk|k−1bk + χk)

−1ybk, (3.10)

where

χk =

√
bTkΣk|k−1bk + 1− bTkΣk|k−1bkα(Mk)

α(Mk)
(3.11)

α(x) = φ(x; 0, 1)/Φ(x) (3.12)

Mk =
ybk(b

T
k µk|k−1 + ak)√
bTkΣk|k−1bk + 1

. (3.13)

The covariance matrix of the distribution in (3.8) is:

Σk|k = Σk|k−1 − Σk|k−1bk(b
T
kΣk|k−1bk + γk)

−1bTkΣk|k−1 (3.14)

where

γk =
(1− h(Mk)) b

T
kΣk|k−1bk + 1

h(Mk)
(3.15)

h(x) = α(x)(x+ α(x)). (3.16)

Remark. Note that the context-aware filter is similar to Kalman filtering with in-

termittent observations [190] in that measurements arrive in a stochastic manner.

Thus (3.14) resembles a standard Riccati equation (update), where the non-linear

term γk could be considered as the equivalent of measurement noise.

Note also that the functions α and h defined in (3.12) and (3.16), respectively,

3Note that while there is a standard definition of unimodality in one dimension, many definitions
exist in multiple dimensions (consult [64] for an exhaustive discussion).
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have been studied extensively in the statistics community. The ratio α is known

as the inverse Mills ratio; some properties of the inverse Mills ratio that are used

throughout this dissertation are summarized below.

Definition. The inverse Mills ratio is defined as the ratio of the pdf and cdf of a

standard Normal distribution, respectively, i.e.,

α(x) = φ(x; 0, 1)/Φ(x).

Proposition 5 ([173]). The following facts are true about the inverse Mills ratio:

1. h(x) := −α′(x) = α(x)(x+ α(x))

2. 0 < h(x) < 1,∀x ∈ R

3. h′(x) < 0,∀x ∈ R.

Remark. Since 0 < h(x) < 1, we can conclude that γk > 1.

3.5 Convergence Properties of the Sigmoid-Based

Context-Aware Filter

In this section we analyze the convergence properties of the sigmoid-based context-

aware filter. Due to the fact that the task is to estimate a continuous variable using

only discrete measurements, proving convergence is hard in general, especially given

the random and time-varying nature of the filter. Ideally, one could hope to prove

that the expected covariance matrix is bounded under some conditions on the initial

covariance matrix and the probability of measurement arrivals (i.e., similar to the

result for Kalman filtering with intermittent observations [190]). However, note that

there is an extra non-linear γk term in the Riccati equation for the covariance matrix

update in (3.14). The presence of γk makes it challenging to analyze the system when
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dynamics are also considered since γk cannot be upper-bounded in general (as shown

in Proposition 5, the function h can be arbitrarily close to 0). Such an upper bound

can be derived in the special case of a scalar system as shown in the next subsection.

To provide further intuition about the filter’s convergence, we also show results

for a non-moving system. In particular, in Subsections 3.5.2 and 3.5.3 we provide an

observability-like claim for the filter, i.e., the eigenvalues of the covariance matrix

converge to 0 if and only if a persistence-of-excitation condition is true for the weight

vectors vk over time. Furthermore, we show that, as the eigenvalues of the covariance

matrix converge to 0, the discrete update of the filter converges to a Newton Method

step, which is an intuitive result given that the filter approximation matches the first

two moments of the true posterior distribution.

3.5.1 Bounded Variance for a Scalar System

In this section we analyze conditions that result in a bounded variance of the context-

aware filter given a scalar system:

xk+1 = axk + νpk , (3.17)

where xk, a ∈ R, and νpk ∼ N (0, q).

First note that the update in (3.14) looks like a standard Riccati equation, except

for the non-linear term γk. Thus, one way to show that the context-aware filter’s

variance is bounded is by providing an upper bound on γk such that (3.14) is bounded

(with some positive probability) by a standard Riccati equation. In such a case, our

problem can be reduced to Kalman filtering with intermittent observations [190],

and we can use some of the known facts for that scenario.

One case in which γk can be bounded (with positive probability) is when the

probability of receiving both a measurement of 1 or -1 is at least some positive

number η. In such a case, γk can be upper-bounded (with probability at least η) by
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((1−h(0))bkσkbk +1)/h(0) by using the properties of h, i.e., h′(x) < 0 for all x. This

condition leads to the following result, similar to a result from Kalman filtering with

intermittent observations.

Theorem 1. Consider the system in (3.17) and suppose that, for all xk, pdk(y
b
k |

xk) ≥ η for ybk = ±1. Then there exists some ηc ∈ [0, 1) such that

∀σ0,E[σk] ≤Mσ0 , for ηc < η ≤ 1,

where Mσ0 is a constant that depends on the initial condition.

Theorem 1 says that the filter’s expected uncertainty is bounded at all times if

the probability of receiving “useful” context measurements is sufficiently high (by

“useful” we mean that a measurement can be both 1 or -1 with probability at least

η such that receiving the measurement does provide significant information). This

result makes sense intuitively – if the system is moving away from all available context

measurements (i.e., if bTx + a is very large in absolute value for all (b, a) ∈ V), we

cannot expect to be able to estimate the state; conversely, if context measurements

are available throughout the system’s execution, then the filter’s uncertainty should

be low.

Note that the proof of Theorem 1 does not generalize immediately to the multi-

dimensional case, as the bound on γk in the multidimensional case does not lead to

a standard-Riccati-equation bound on the expected covariance matrix. At the same

time, we believe the same intuition could be used to obtain a similar result for the

multidimensional case as well.

3.5.2 Covariance Matrix Convergence for Non-Moving Sys-

tem

While we cannot bound the filter’s expected uncertainty in the multidimensional

case, we provide such a result in the special case of a non-moving system. In partic-
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ular, we show that for a system with no dynamics, the eigenvalues of the covariance

matrix converge to 0 if and only if a persistence-of-excitation condition (formalized

below) is true for the weight vectors bk over time. To simplify notation and since no

dynamics predictions are performed in this section, we drop the prediction notation

in the rest of this section (i.e., we write Σk instead of Σk|k = Σk+1|k).

Before presenting the main result of this subsection, we first describe the behavior

of the covariance matrix after multiple binary updates, as presented in the following

lemma.

Lemma 1. After applying N updates at time k, the covariance matrix update from (3.14)

can be written as:

Σk+N = Σk − ΣkB
T
k (BkΣkB

T
k + Γk)

−1BkΣk, (3.18)

where Bk = [bk+1, . . . , bk+N ]T , [Γk](i,j) = γk+i if i = j and [Γk](i,j) = 0 otherwise.

The update in Lemma 1 looks similar to a standard Riccati equation (without

the dynamics elements). Thus, it is not surprising that convergence of the covari-

ance matrix depends on similar conditions on the matrix Bk as for a Ck matrix

in a standard linear system. One such property is the widely used persistence of

excitation [89].

Definition (Persistence of Excitation). The sequence of context weights and offsets,

(bk, ak), is said to be persistently exciting if there exist d linearly independent

weight vectors with corresponding offsets P = {(b1, a1), . . . , (bd, ad)} that appear in-

finitely often, i.e., for every k, there exists lk ∈ N such that

∀(bi, ai) ∈ P , ∃t ∈ {k, . . . , k + lk} s.t. (bt, at) = (bi, ai).

Persistence of excitation is a standard assumption in estimation and system iden-
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tification [89].4 Intuitively, it means that there exists a set of context measurements

that are received infinitely often such that their corresponding weights span Rd.5

The offsets are also important because even if the same weights repeat over time,

the change of offsets might still affect the probability of receiving new context mea-

surements.

Theorem 2. Suppose the system has no dynamics (i.e., Ak = I, the identity matrix,

and Q = 0). Let λjk > 0 be the eigenvalues of Σk. Then λjk
p−−→ 0 as k → ∞ if and

only if (bk, ak) is persistently exciting.

Theorem 2 is essentially an observability result. It suggests that if some states

are not observed through binary measurements, then the uncertainty about those

states does not decrease over time. On the other hand, if all states are observed, then

the uncertainty is reduced over time in a manner similar to the standard Kalman

filter with a persistently exciting Ck matrix.

At the same time, even if the covariance matrix converges to zero, it is not clear

whether the mean of the estimator converges to the true state. However, as shown

in Section 3.7, simulations suggest that the estimates do converge to the true state.

Furthermore, similar convergence results exist for the Expectation Propagation (EP)

algorithm (which also approximates the posterior distribution with a Gaussian with

the same moments), namely 1) EP converges to the true state for strongly log-concave

observation models [60] (the probit model is log-concave but is not strongly log-

concave) and 2) in the limit, EP has a fixed point at the true state if the observation

model has bounded derivatives [61] (true for the probit model). Thus, it is likely

that the context-aware filter’s mean also converges to the true state but we leave

proving this result for future work.

4The definition used in our work is a special case of standard definitions since we have a finite
set of context weights.

5Note that persistence of excitation does not require the received context measurements to take
on a specific value, i.e., they can be either -1 or 1. Intuitively, the definition only requires the same
classifiers to run infinitely often.
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3.5.3 Convergence of “Site” Approximations

In an effort to better understand the asymptotic behavior of the sigmoid-based

context-aware filter for systems with no dynamics, in this subsection we analyze

the effect of a single update in the limit. In particular, we show that as more data

is available, each discrete update resembles a Newton Method step (this result is

similar to a recent result about the limit behavior of EP [61]).

Definition. The Newton Method for finding the minimum of a twice-differentiable

function f is computed as follows: given the previous iteration point xn, the next

step is [36]:

xn+1 = xn −
[
f
′′
(xn)

]−1

f
′
(xn).

The significance of this property is that the Newton Method converges to the

optimal value (i.e., the peak of the distribution) of concave or quasi-concave func-

tions. Since the posterior distribution considered in this work is log-concave (i.e.,

quasi-concave), there is strong evidence to believe that the context-aware filter with

the probit observation model does indeed converge to the true state.

Before presenting the result, we first note that each update of the context-aware

filter could be viewed as a Gaussian approximation of the observation model itself

(i.e., of the probit model). More specifically, the posterior Gaussian approximation

could be considered as a Gaussian distribution that resulted from an update in

which the observation model was also a Gaussian distribution with the appropriate

parameters (also known as a “site” approximation in machine learning).

Definition (Site Approximation). Given a Gaussian prior φ(x;µk−1,Σk−1) and a

binary update with observation model Φ(ybk(b
T
k x + ak)), a site approximation is a

Gaussian distribution ps(x) := φ(x;µs,Σs) such that the distribution (normalized by
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the constant β)

pG(x) = βφ(x;µk−1,Σk−1)φ(x;µs,Σs)

has the same mean and covariance matrix as the true posterior

pk|k(x) =
1

Zk
Φ(ybk(b

T
k x+ ak))φ(x;µk−1,Σk−1).

Site approximations are easily computed when we consider the natural param-

eters of the distribution. Suppose the prior distribution is φ(x; Ω−1
k−1ωk−1,Ω

−1
k−1),

where Ωk−1 = Σ−1
k−1 and ωk−1 = Ωk−1µk−1 are the prior’s information matrix and

mean, respectively. Similarly, suppose the posterior Gaussian approximation is

φ(x; Ω−1
k ωk,Ω

−1
k ). Then the parameters of the site approximation φ(x; (Ωs

k)
−1ωsk, (Ω

s
k)
−1)

are computed as follows [18]:

Ωs
k = Ωk − Ωk−1 (3.19)

ωsk = ωk − ωk−1. (3.20)

The site approximation abstraction is useful as it allows us to reason about the

“contribution” of each update. In particular, we can derive the following result.

Theorem 3. Suppose the prior is φ(x; Ω−1
k ωk,Ω

−1
k ) (where Ωk = Σ−1

k and ωk =

Ωkµk). After performing an update in the context-aware filter, the natural parameters

of the site approximation are:

Ωs
k+1 = bk+1γ

−1
k+1b

T
k (3.21)

ωsk+1 = Ωs
k+1µk + (I + Lk+1)bk+1N

−1
k+1y

b
k+1, (3.22)
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where

Nk+1 = bTk+1Σkbk+1 + χk+1

Lk+1 = bk+1γ
−1
k+1b

T
k+1Σk.

Corollary 3. Suppose the system has no dynamics (i.e., Ak = I, the identity matrix,

and Q = 0). If (bk, ak) is persistently exciting, then the natural parameters of the

site approximations converge to the Newton Method [36], i.e.,

Ωs
k+1

p−−→ ψ
′′

k+1(µk) (3.23)

ωsk+1

p−−→ Ωs
k+1µk − ψ

′

k+1(µk), (3.24)

where ψk+1 is the negative log-likelihood of the measurement ybk+1, i.e.,

ψk+1(x) = − ln(Φ(ybk+1(bTk+1x+ bk+1))).

Remark. Note that since Ωs
k+1µ

s
k+1 = ωsk+1, we can conclude that µsk+1

p−−→ µk −

[ψ
′′

k+1(µk)]
−1ψ

′

k+1(µk), which has the exact form of the Newton Method.

The significance of Corollary 3 is that since the Newton Method converges to the

minimal (maximal) point of a log-convex (-concave) function, then the site approx-

imations converge to the so called Canonical Gaussian Approximation (CGA) [60],

i.e., the Gaussian distribution whose mean is the maximizer of the true observation

model’s probability distribution and whose covariance matrix is the Hessian at that

maximum. Finally, it is known that CGA’s converge almost surely to a large class

of posterior distributions, e.g., as shown by the Bernstein-von Mises Theorem [28].

Thus, Corollary 3 presents strong evidence to believe that the context-aware filter

does indeed converge to the mean of the true posterior distribution. Sections 3.7

and 3.8 present multiple evaluations in support of this claim as well.
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Figure 3.1: Entire Land-
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3.6 Evaluation of the Inverse-Exponential Context-

Aware Filter: Localization Simulation

Having developed the theory of context-aware filtering in the previous sections of this

chapter, in the remaining sections we provide several case-study evaluations in order

to illustrate the usefulness of this approach. To evaluate the inverse-exponential

context-aware filter, in this section we present a simulation of a robot localization

scenario where context measurements can be used to improve state estimation. The

sigmoid-based context-aware filter is evaluated, both in simulation and on real data,

in the following sections.

In order to evaluate the inverse-exponential filter, we develop a case study using

the LandShark robot. In this scenario, the LandShark is moving in an urban envi-

ronment while trying to visit different waypoints as part of its mission. The vehicle

has access to one continuous sensor, namely GPS, in order to perform localization;

however, GPS measurements are often inaccurate in urban environments – in this

case, they have a large variance and a bias to the North, thereby making localization

challenging. In order to improve its state estimates, the LandShark also uses context

measurements – it can recognize nearby buildings using image processing and model

the corresponding binary measurements using the inverse-exponential functions as

described above.
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The entire trajectory driven by the LandShark, including the city’s map, is pre-

sented in Figure 3.1. Note that the LandShark has a differential-drive model, i.e.,

each turn results in nonlinear state dynamics. Therefore, a linearization is necessary

in these cases in order to apply the context-aware filter, similar to the one in a typical

extended Kalman filter (EKF).

In order to evaluate the performance of GM-based filter, we compare the accuracy

of its estimates with a regular EKF that only uses the continuous GPS measurements.

The (first part of the) estimated trajectories by each filter are shown in Figure 3.2.

For the EKF, the estimate is chosen to be the mean of the posterior Gaussian distri-

bution at each time step; for the inverse-exponential filter, the estimate is the mode

of the distribution (in this application the mode is selected as the element with

highest weight in the mixture). As shown in Figure 3.2, the context-aware filter

consistently outperforms the EKF – its estimates are closest to the actual trajectory

and are more robust to the large variance in GPS measurements, whereas the EKF’s

estimates tend to change significantly when inaccurate measurements are received.

As further evaluation, Figure 3.3 shows the absolute errors incurred by each

filter for the entire trajectory of the LandShark. The context-aware filter’s errors

are invariably lower than those incurred by the EKF and also do not exhibit much

lower variability from one round to the next. All these results suggest that the

context-aware filter with inverse-exponential functions can significantly improve state

estimation and greatly outperforms continuous-sensor-based approaches, especially

in scenarios with inaccurate and unreliable continuous sensors.

3.7 Evaluation of the Probit-Based Context-Aware

Filter: Simulations

In this section, we provide three simulation evaluations in order to illustrate different

properties of the probit-based context-aware filter. Real-data evaluation is provided

58



Time
200 400 600 800 1000 1200 1400 1600 1800 2000

M
a
g
n
it
u
d
e

-1

0

1

2

3

4

5
Example Run for Non-Moving System

Context-Aware Filter Estimates
True State
Context Measurements

(a) Example run.

Time
0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
a

g
n

it
u

d
e

0

0.5

1

1.5

2

2.5

3
Estimation Error For Ten Runs of Non-Moving System

(b) Estimation error for ten
runs.

Time
0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
a

g
n

it
u

d
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Covariance of Ten Runs of Non-Moving System

(c) Magnitude of variance for
ten runs.

Figure 3.4: Illustration of the performance of the context-aware filter on a non-
moving scalar system.

in Section 3.8.

3.7.1 System with No Dynamics

In the first simulation scenario, we evaluate the performance of the filter on a system

with no dynamics, in order to illustrate the significance of Theorem 2. Figure 3.4

shows the filter’s evaluation on a scalar system with a constant state xk = 3 and with

access to one context measurement with corresponding parameters bk = 1 and ak =

−5. The initial condition is set to µ0 = 1, Σ0 = 2. Figure 3.4c shows the evolution

of the covariance for 10 runs of the system; as expected, the covariance converges to

0 for each one, thus ensuring the convergence of the filter overall. Figure 3.4b shows

the estimation errors for the same 10 runs – the figure indicates that the estimates

are close to the true state, although some estimates converge more slowly due to

different random realizations of the measurements. Finally, Figure 3.4a shows the

interesting toothed shape of the estimates for an example run, with discrete jumps

as new context measurements are incorporated.
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Figure 3.5: Illustration of the performance of the context-aware filter on an unstable
system.

3.7.2 System with Unstable Dynamics

In the second simulation, we evaluate the performance of the context-aware filter on

a system with unstable dynamics. The system dynamics are as follows:

xk+1 =

 1.01 0

0 1.01

xk + νpk ,

where νpk ∼ N (0, 0.001I) and x0 = [1 1]T .6 30 context measurements are received

at each time, 15 with weights bk,1 = [0 1]T and 15 with weights bk,2 = [1 0]T ; the 15

offsets ak are decreased linearly from 0 to -150 (i.e., they provide rough information

as to whether each state is between 0 and 10, 10 and 20, etc.).

Figure 3.5 shows the results of the simulation. We observe similar trends as in

Figure 3.4, i.e., the trace of the covariance matrix (Figure 3.5c) converges over time,

and the filter’s estimates seem to track the real system well after the initial period of

uncertainty (Figure 3.5b). These results suggest that the context-aware filter does

seem to converge over time (given certain observability-like conditions) and is likely

asymptotically unbiased.

6Note that systems with larger-eigenvalue dynamics were tested as well with similar results; the
system used in this section was chosen for visualization purposes.
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3.7.3 Velocity Estimation with Biased Measurements

Finally, we evaluate the sigmoid-based context-aware filter in a scenario with both

plant (continuous) and context measurements; note that plant measurements are

biased in order to illustrate the fact that context measurements can be used to

improve estimation in scenarios where standard sensors are not sufficient. Once

again, we use the LandShark robot as the experimental platform. In this case study,

the LandShark is moving in a straight line in an urban environment, accelerating

to a target velocity and then slowing down for intersections. The LandShark’s goal

is to estimate its velocity in order to avoid collisions at intersections while moving

as quickly as possible. Once again, it has access to GPS measurements to estimate

velocity; however, the GPS velocity measurements have a negative bias at high

speeds, thus potentially causing the LandShark to apply higher inputs and reach a

dangerously high speed. In order to improve estimation, the LandShark can also

measure air resistance at the front of the vehicle; while resistance cannot be mapped

to speed in a straightforward fashion, it possible to establish whether the vehicle

is moving beyond a certain velocity threshold. This information can be converted

into a binary context measurement indicating that the LandShark is approaching its

target velocity and can be consequently modeled using a sigmoid function.

To evaluate the performance of the sigmoid-based filter, we compare it with a

Kalman filter that is only using the continuous measurements (note that a classical
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Kalman filter is sufficient in this case since the vehicle is moving in a straight line).

Figure 3.6 shows the estimates produced by each filter, including the actual velocity.

Once again, the context measurements provide essential information that allows

the system to significantly improve its state estimates and overcome the GPS bias,

especially when running at high speeds. In addition, Figure 3.7 provides the absolute

errors of each filter; the Kalman filter’s errors have a much larger variance and are

invariably higher as well, similar to the localization scenario discussed above. Thus,

this case study also supports the conclusion that the context-aware can be used to

greatly improve estimation by incorporating binary context measurements.

3.8 Estimation of Blood Oxygen Concentration

Using Context-Aware Filtering

While the previous case studies were simulated and focused on automotive CPS, in

this section we investigate a medical CPS application of the sigmoid-based context-

aware filter using real-patient data collected at the Children’s Hospital of Philadel-

phia (CHOP). In particular, we address the problem of non-invasively estimating

the concentration of oxygen (O2) in the blood, one of the most closely monitored

variables in operating rooms (ORs).

The motivation for this problem comes from the fact that modern ORs are

equipped multiple devices that measure various vital signs and provide clinicians

with ample information about the patient’s state. Analyzing this information in real

time can be challenging in a busy OR, especially when trends over time and corre-

lations between variables need to be considered. The OR setting fits exactly in the

framework of this thesis, namely the design and development of CPS that process

multi-sensor information and provide safety analysis of the resulting system.

As mentioned above, the specific problem addressed in this section is the esti-

mation of the O2 concentration (also referred to as content) in the blood; the O2
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content has to be maintained within certain limits at all times because too low values

can lead to organ failure and brain damage whereas too high concentration could be

toxic. Therefore, one of clinicians’ highest priorities is controlling the O2 by keeping

a stable and sufficient end-organ perfusion.

Similar to the previous case studies, the estimation of O2 content is made chal-

lenging by imprecise measurements. The total concentration can currently be mea-

sured only in an invasive fashion, i.e., by drawing blood from the patient. As a result,

clinicians use a non-invasive alternative, namely the hemoglobin-oxygen saturation

(SpO2), which is measured by a pulse oximeter. While SpO2 is a good measure of the

concentration in the location where it is measured (e.g., a finger tip), it is not a good

indication of the O2 content in other parts of the body as there may be differences

in perfusion (e.g., as caused by a tourniquet on a limb). Furthermore, monitoring

SpO2 forces clinicians to perform reactive control only – they take action when low

SpO2 is observed, at which point the patient may already be in a critical state.

As a proactive way of controlling the O2 concentration, clinicians also monitor

the remaining O2 content (i.e., non-hemoglobin-bound), namely the content of O2

dissolved in arterial blood. Unlike SpO2, the partial pressure of dissolved oxygen in

arterial blood (denoted by PaO2) can used as a predictive control indicator – PaO2

drops significantly before major decreases in the overall concentration are observed.

At the same time, PaO2 is currently only measured by drawing blood from the

patient, which is invasive and requires more time (on the order of several minutes),

thus losing its predictive value.

To overcome this problem, in this thesis we address the problem of estimating

PaO2 non-invasively and in real time. To do so, we employ other measurements

available in real time in modern ORs, namely the fractions of O2 and carbon dioxide

(CO2) in inhaled and exhaled air, respectively, the pressure and volume of inhaled

air, and the respiratory rate. By using the correlation between PaO2 and these

pulmonary variables, one can estimate PaO2 without having to draw blood from the
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patient. However, this approach introduces another challenge – models describing

the circulation of O2 in the blood and airways are imprecise and contain multiple

parameters that vary widely across patients, e.g., metabolic rate, lung membrane

thickness, arterial wall thickness. While it may be possible to learn some of these

parameters given enough data, most of them are not identifiable using non-invasive

measurements only. At the same time, certain binary correlations between variables

can be established, e.g., when SpO2 is above a certain threshold, then the overall

O2 concentration must be above a certain threshold as well. Having obtained such

binary measurements, we can now apply the context-aware filter to the O2 content

estimation problem.

3.8.1 Related Work

Related work in the MCPS domain can be broadly divided in three areas: verifica-

tion, detection and estimation [125, 142, 149]. When precise models are available, it

is possible to use formal methods in order to analyze the system and ensure it satisfies

certain safety properties; several applications have been investigated in this domain,

including the cardiac pacemaker [33, 154], the artificial pancreas [37, 122, 217] and

the verification of the infusion pump [16, 157].

The most common approach to detection of adverse events in hospitals is the use

of threshold alarms [117]. These systems work by tracking a single vital sign and

raising an audible alarm when an upper or lower threshold is crossed [72]. Threshold

alarms are popular because they are simple to implement and understand. However,

multiple works have shown that single-variable-tracking alarms are severely limited

because they tend to produce a large amount of false alarms, ranging from 57%

to 99% depending on the application [32, 88, 206]. This in turn has led to the

problem of alarm fatigue in caregivers who would sometimes ignore important alarms

believing that they are false [59, 71, 187]. The main reason threshold alarms fail is

that physiological models contain a lot of parameters that vary drastically across
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humans – in order to deal with this issue and to provide consistent and guaranteed

performance regardless of the patient physiology, the parameter-invariant detector

has been developed [177, 216] and successfully applied to three different detection

scenarios, namely critical pulmonary shunt detection [107, 108], meal detection in

Type I diabetics [50, 215] and hypovolemia detection [169, 170].

Estimation tends to be harder than detection because it requires knowledge of

physiological models in order for the resulting estimates to be accurate. Physio-

logical models are typically developed using compartments [53] – in this setting a

compartment may represent an actual physical location, e.g., a lung, or may be an

abstraction for a larger component, e.g., the transport of blood from the heart to

the tissues. Example compartmental models include the cardiac [204] and insulin-

glucose [133] systems. A fundamental challenge of compartmental modeling is the

balance between physiological accuracy and model identifiability. While accurate

models may better capture human physiology, it is harder to identify their param-

eters using standard system identification techniques [17, 105, 129]. On the other

hand, parsimonious models can be identifiable through the training data, but their

accuracy may be poor.

In cases where models may be difficult to develop or identify, it may be possible

to use data-driven approaches such as machine learning [41, 54, 144, 160, 174, 175].

In order to perform well, however, machine learning requires rich training data

with accurate annotations [29] which may not be available in most medical appli-

cations [71, 189]. Moreover, temporal reasoning over clinical data using data-driven

techniques is still an open area of research [194, 197]. Thus, it is unlikely that a pure

data-driven approach will perform well as an oxygen content estimator. Instead, as

explained below, in this dissertation we approach the problem by building a crude

physiological model and improving it by providing extra information through context

measurements.
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(a) A blood gas ana-
lyzer [3].

(b) A pulse oximeter [4]. (c) A standard anesthesia ma-
chine [5].

Figure 3.8: Measurement devices currently available to clinicians.

3.8.2 Problem Formulation

This subsection outlines the current approach to monitoring the O2 concentration,

notes its drawbacks, and formulates the problem addressed by the context-aware

filter.

Currently, clinicians have only one available real-time measurement on the blood

side, namely the hemoglobin-oxygen saturation in the peripheral capillaries (SpO2),

measured by a pulse oximeter (Figure 3.8b) at an extremity (usually a finger tip).

The saturation is a good measure of the O2 concentration in the location it is mea-

sured because of the oxygen content equation [218]:

CpO2 = 1.34SpO2Hb+ 0.003PpO2, (3.25)

where CpO2 is O2 concentration in the peripheral capillaries, Hb is the amount of

hemoglobin in g/dL, and PpO2 is the partial pressure of dissolved oxygen in the

peripheral capillaries measured in mmHg. As can be observed in (3.25), O2 appears

in only two forms in the blood – it is either bound to hemoglobin or dissolved in the

blood. Equation (3.25) shows that, for normal values of PpO2 around 80-200 mmHg

and of Hb around 12-17 g/dL [218], the majority of O2 is bound to hemoglobin.

Thus, SpO2 is a good measure of the O2 concentration in the peripheral capillaries.
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Figure 3.9: A typical hemoglobin dissociation curve for O2. It shows the shape of the
relationship between the partial pressure of dissolved O2 and hemoglobin saturation.
The curve is true for any physiological location, e.g., in the peripheral capillaries the
horizontal axis label would be PpO2 and the vertical would be SpO2.

By assuming that CpO2 is just a delay of CaO2 (the O2 concentration in the arteries),

SpO2 can also be used as a good proxy for CaO2. The disadvantage of using only

SpO2, however, is that it is usually at 100% in healthy humans – by the time it

starts dropping, the O2 content has already decreased; hence, monitoring the O2

concentration through SpO2 is reactive in nature.

In contrast, monitoring the partial pressure of dissolved O2 is proactive. In

addition to (3.25), dissolved O2 and hemoglobin-bound O2 are related according to

a well-studied hemoglobin dissociation curve [181]. Figure 3.9 shows an example

dissociation curve. While the magnitude of the curve may vary across patients, the

overall S-shape remains the same. Figure 3.9 shows that for large values of the

partial pressure (top right corner), the saturation is close to 100%; at the same time,

any noticeable decrease in saturation (and consequently the O2 concentration) can

be observed only after a large decrease in the partial pressure. Thus, monitoring

the partial pressure of dissolved O2 in arterial blood (PaO2) provides clinicians with

a proactive way of addressing changes in O2 content before they are reflected in

changes in SpO2.

Estimating PaO2, however, is challenging because it cannot be measured non-
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invasively and in real time (it can only be measured by drawing blood and analyzing

it in a blood-gas analyzer, shown in Figure 3.8a). Instead, we focus on other real-

time measurements, available in modern ORs, as means to infer PaO2. At CHOP, the

anesthesia machine (Figure 3.8c) provides several pulmonary measurements, namely

the fractions of O2 and CO2 in inspired and expired air, the volume and pressure of

inspired air, respiratory rate and others. At the same time, estimating PaO2 from

these variables is not straightforward – while it is possible to model the relationship

between PaO2 and the anesthesia machine measurements (e.g., using Fick’s laws of

diffusion), such models contain multiple parameters that vary widely across patients.

Instead of learning these parameters for each patient (which is made challenging

by the limited amount of available data), we aim to incorporate the pulmonary

measurements by extracting context information from them, thereby improving the

overall O2 content estimates.

Problem 6. The problem considered in this section is to develop an estimator for

PaO2 and CaO2 by using the noninvasive real-time inputs (fraction of O2 in inspired

air, volume and pressure of inspired air, respiratory rate) and pulmonary measure-

ments (partial pressure of CO2 in exhaled air) available to clinicians.

Remark: Our solution uses one blood-gas analysis in order to initialize the esti-

mator.

3.8.3 Physiological Model

In order to develop an estimator for PaO2, one needs to first identify a model map-

ping the available measurements to PaO2, as well as formalize the dynamics of the

variables in the human body. This subsection develops both of these models; a

general-trends dynamics model is described first capturing the first-order effects of

the circulation of O2 around the body. Next, a measurement model is presented,

containing both the available regular continuous measurements as well as context

measurements derived from the real-time pulmonary measurements.
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Table 3.1: Summary of cardiopulmonary partial pressures and blood concentrations.
Partial pressures begin with the letter “P” whereas concentrations begin with “C”.

Variable Names Physiological Location
PiO2 Airways (inspiration)
PAO2 Alveoli

CaO2, PaO2 Arteries
CpO2, PpO2 Peripheral capillaries
CvO2, PvO2 Veins
CdO2, PdO2 Pulmonary capillaries

PeO2 Airways (expiration)

Figure 3.10: A simplified schematic
model of O2 variables in the respira-
tory and cardiovascular systems.7

Figure 3.11: An illustration of shunted (bot-
tom) vs. non-shunted (top) blood dynamics
in the lung. O2-rich non-shunted blood par-
ticipates in diffusion and then mixes with
CO2-rich shunted blood.

3.8.4 Overview of Physiological Variables

Before presenting the actual models, we first provide an overview of the physiological

variables used in this section. For reference, all variables are summarized in Table 3.1

and shown in Figure 3.10. In inspired air, the partial pressure of O2 is denoted by

PiO2. In the lungs, the air enters the alveoli where the partial pressure is denoted

7Note that, for better illustration, the figure shows the pulmonary veins merging before entering
the heart, whereas in healthy humans they connect to the left atrium directly.
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by PAO2. In the alveoli, diffusion occurs, and the gas enters the blood stream at the

pulmonary capillaries where the partial pressure of O2 is denoted by PdO2 and the

total concentration is CdO2. Note that, as shown in Figure 3.11, some of the blood

is shunted (e.g., due to blood draining directly into the cavity of the left ventricle

through the thebesian veins [218]) and does not participate in diffusion. When the

blood from the pulmonary veins enters the heart, it is pumped in the arteries where

the partial pressure and concentration are denoted by PaO2 and CaO2, respectively.

The arteries transport the blood to the peripheral capillaries (PpO2 and CpO2),

where metabolism occurs and converts O2 into CO2. Finally, the veins (PvO2 and

CvO2) transport the blood back to the lungs and the cardiovascular cycle repeats.

The breathing cycle concludes with expiration, where the partial pressure of O2 in

expired air is denoted by PeO2.

Dynamics Model

Having introduced the variables and processes at a high level, we now formalize the

model dynamics. While models of varying complexity exist in the literature, typ-

ically, as the model complexity increases, so does the number of unknown model

parameters (e.g., lung capacity, metabolism) that vary across patients. Since these

parameters are unidentifiable with current non-invasive measurements, the most

popular approach is to use minimal models, i.e., models with a minimal number

of parameters that still capture the first- or second-order dynamics of the system.

Therefore, we develop a minimal dynamics model, building on results from the work

of Kretschmer et al. [120] on estimating PaO2 and from our previous work [107] on

detecting drops in the O2 concentration. Our model is approximate in the sense that

it captures general trends and relationships among the variables in order to reduce

the number of unidentifiable parameters. We use population average values for the

few remaining parameters and improve the fidelity of the model by incorporating

binary context measurements.
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We develop a discrete-time model for the O2 concentration and later discuss how

to convert from concentrations to partial pressures.8 The relationship between the

variables in the airways is governed by the alveolar air equation [79]:

PAO2(k) = FiO2(k)(PATM − PH2O)− PACO2(k)(1− FiO2(k)[1−RQ])

RQ
, (3.26)

where FiO2 is the fraction of O2 in inhaled air (it can be converted to PiO2 using

the first term on the right-hand side), PACO2 is the partial pressure of CO2 in the

alveoli, PATM and PH2O are the atmospheric and water vapor pressures (in mmHg),

respectively, and RQ is the respiratory quotient. RQ is a measure of the ratio of

O2 and CO2 used in metabolism and varies with the type of consumed food. Note

that FiO2 is set by clinicians, so it can be considered as input, whereas PACO2 is

measured by end-tidal CO2 (EtCO2), i.e., the partial pressure of CO2 at the end of

the breath.9

When diffusion occurs, O2 usually diffuses completely so that the partial pressures

are the same:

PdO2(k) = PAO2(k). (3.27)

After diffusion, O2 is in the blood, so its concentration needs to be computed as

well. To convert from partial pressure to concentration, one uses (3.25)10 in combi-

nation with the O2 dissociation curve (Figure 3.9) in order to compute the saturation

corresponding to that partial pressure. Let us denote the dissociation curve by g,

i.e., g is a function mapping partial pressures of dissolved O2 to hemoglobin oxygen

saturation. Thus, the O2 concentration in the pulmonary capillaries after diffusion

8Our model is discrete-time because the available sensors (at CHOP) have a discrete sampling
rate. It does not model the partial pressures of dissolved O2 directly because the required relation-
ships are nonlinear and would unnecessarily complicate the estimation task.

9Note that EtCO2 might be smaller than PACO2 due to dead space, i.e., the volume of air in
the airways that is not in contact with blood. However, dead space is about 5% of tidal volume [58],
hence it is not considered in this dissertation.

10Note that the O2 content equation is true for any location in the body, i.e., one can replace
CpO2 and PpO2 with CdO2 and PdO2.
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can be expressed as:

CdO2(k) = 1.34Hb · g(PdO2(k)) + 0.003PdO2(k). (3.28)

Note that g varies greatly between patients. We show how to select g based on

population averages below.

Continuing with the cardiovascular dynamics, the concentration in arterial blood,

as shown in Figure 3.11, is the weighted average of the concentrations in shunted

and non-shunted blood, according to the fraction f of shunted blood. Then

CaO2(k) = (1− f)CdO2(k) + fCvO2(k), (3.29)

where the shunted blood has the same O2 concentration as venous blood.

The O2 concentration in the peripheral capillaries is assumed to be the same as

in the arteries [218], i.e., no reactions occur that change the gas concentrations:

CpO2(k) = CaO2(k). (3.30)

Finally, the concentration in the veins is equal to that in the peripheral capillaries

minus the effect of metabolism:

CvO2(k + 1) = CpO2(k)− µ, (3.31)

where µ captures the patient-specific metabolic rate. Note that a delay is introduced

in order to model the fact that it takes time for the blood to travel from the arteries

to the veins.

The whole parameterized model can now be summarized in a typical state-space
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equation:

ak+1 = (1− f)(dk+1) + f(ak − µ) + v1,k

ek+1 = ek + v2,k

(3.32)

where ak := CaO2(k), dk := CdO2(k), ek := PACO2(k), vk := [v1,k, v2,k]
T is white

Gaussian process noise. Modeling the dynamics of PACO2(k) more precisely is pos-

sible but introduces more parameters. A random walk model achieves two goals: 1)

a linear model with few parameters is maintained and 2) PACO2 is a system state

and, hence, may vary less than the noisy EtCO2 measurements.

Note that the model in (3.32) is close to linear in the ranges we are inter-

ested in. To see this, note that FiO2(k), i.e., the fraction of O2 in inhaled air,

is 21% in breathing air and usually much higher during mechanical ventilation.

This means that PAO2(k), as computed in (3.26), is also very high (in the ex-

treme case when FiO2(k) = 100%, PAO2(k) = 713mmHg, with normal values for

PATM = 760mmHg, PH2O = 43mmHg). This in turn means that PdO2(k) is also

high, i.e., in the top right corner of the dissociation curve in Figure 3.9. Therefore,

g(PdO2(k)) ≈ 1, i.e., (3.28) simplifies to:

CdO2(k) = 1.34Hb+ 0.003PdO2(k). (3.33)

Using (3.33) in (3.32), the new model becomes

ak+1 = (1− f)(1.34Hb+ 0.003(c1uk + c2,kek)) + f(ak − µ) + v1,k

ek+1 = ek + v2,k,
(3.34)

where c1 = (PATM − PH2O), uk = FiO2(k) and c2,k = (1− uk[1−RQ])/RQ.

Thus, the above model is a linear time-varying system (note that the input uk,

which also appears in c2,k, is multiplied by one of the states, ek, but this does not

introduce non-linearities because we are only considering the estimation problem
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and not the control problem). There are several parameters in the model; as argued

above, these cannot be learned due to unobservability. Thus, we select population

average values for the parameters (except for f) and argue that context measure-

ments will correct model inaccuracies. More specifically, based on medical litera-

ture [218], these values were selected as: Hb = 12 g/dL, PATM = 760 mmHg, PH2O =

47 mmHg, µ = 5 mL/dL, RQ = 0.8.

The parameter f , which represents the fraction of shunted blood, does not have

typical ranges and can vary widely depending on the patient’s condition (e.g., a

pulmonary shunt leads to 50% shunted blood). Thus, we adopt an approach used in

prior work [120] for the estimation of f . This requires an initializing measurement of

PaO2 through blood-gas analysis. By obtaining this measurement, one can estimate

CaO2 through (3.28), where a functional form for g is also assumed, as developed

in [115]. Then, using (3.32) and assuming that ak+1 = ak = a, one obtains the

equation:

a = (1− f)d+ f(a− µ), (3.35)

where d is computed from (3.28). This equation can now be solved for f in order to

obtain the fraction of shunted blood.

Measurement Model

As usual in the context-aware setting, the available measurements are split into

continuous and context. The only available continuous measurement is

yk = ek + wk, (3.36)

where yk := EtCO2(k) and wk is white Gaussian measurement noise, independent

of the process noise vk.

In addition to the continuous measurement, the system has access to several

context measurements. The first context measurement can be derived from the
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hemoglobin-oxygen saturation – when SpO2 is below 100%, this information can be

used to upper-bound the O2 concentration since the majority of O2 is hemoglobin-

bound (as shown in (3.25)). Note that we do not use SpO2 measurements directly in

the model since mapping the saturation to the concentration of dissolved O2 requires

knowledge of the magnitude of the dissociation curve g. The alarm related to SpO2

measurements is raised when SpO2(k) drops below 99%. According to (3.25), one

can reasonably conclude that if SpO2 < 99%, then CaO2 < (1.34 ∗ 0.99)Hb. This

naturally leads to a threshold alarm based on SpO2 and to the sigmoid-based context

aware filter. The sigmoid parameters of the context detection function in (3.7) can

be set to vi = [1 0]T , ai = −(1.34 ∗ 0.99)Hb.

The second class of alarms consists of several alarms due to the more complicated

nature of the signal. This class of alarms aims to use the three other inputs available

to clinicians: tidal volume (Vt), respiratory rate (RR) and peak inspiratory pressure

(PIP ). Each of these inputs affects diffusion through Fick’s law of diffusion, which

can be stated as follows, adapted to this application [218]:

ḋk ∝ cA(PAO2(k)− PdO2(k)), (3.37)

where dk = CdO2(k) as before, c is a constant that captures the O2 diffusive capacity

and lung thickness, and A is the lung surface area. Equation (3.37) states that

the number of diffused moles is directly proportional to the surface area and to the

difference between the pressures in the lung and in the blood. Note that (3.37)

cannot be solved because of the unknown initial condition and unknown parameters.

However, one can compute the signal on the right hand side at each point in time;

since it is proportional to O2 diffusion, when the signal is higher, one would expect

the O2 concentration to increase as well.

To construct this signal, note that if we make the usual assumption that a lung

is a sphere, then A ∝ V
2/3
t . In addition, since a patient can take several breaths

in between two measurements, the respiratory rate can be used as well in order to
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compute a “cumulative tidal volume” since the last measurement, i.e.,

V̄ (k) =
tS
60
RR(k)Vt(k), (3.38)

where tS is the sampling time in seconds. Thus A ∝ V̄ 2/3.

Furthermore, note that PIP is directly proportional to PAO2. Thus, one can

adapt (3.26) to include PIP as effectively increasing atmospheric pressure:

PAO2(k) = FiO2(k)(PATM − PH2O + PIP (k))− PACO2(k)(1− FiO2(k)[1−RQ])

RQ
.

(3.39)

The final piece of the “diffusion” signal is the initial value of PdO2(k). Since

the initial value is equal to the venous PvO2(k), PdO2(k) is directly proportional

to PaO2(k − 1); therefore, we use the expected value of ak−1 to obtain an “ex-

pected” PaO2(k). To obtain a rough estimate of the partial pressure, one needs

to invert (3.25) and solve the following nonlinear equation (e.g., by using simplex

methods):

E[ak−1] = 1.34Hb · g(E[PaO2(k − 1)]) + 0.003E[PaO2(k − 1)], (3.40)

where E denotes the expectation operator; note that a functional form of g must be

assumed, e.g., as in [115]. Thus, the final constructed signal is:

sk = V̄ (k)2/3 ∗ (PAO2(k)− E[PaO2(k − 1)]). (3.41)

In order to use s as a context measurement, one needs to identify changes in its

baseline and raise alarms. To do this, an initial baseline of the signal is selected, and

alarms are raised if the signal is too high or too low with respect to that baseline. In

particular, suppose the first blood-gas measurement of PaO2 is received at time step

q; then the value of sq is selected as a baseline and alarms are raised at a later step k
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if sk is lower than 0.5sq or 0.8sq or if it is higher than sq, 1.2sq, or 1.5sq. Therefore,

similar to the first class of context measurements, one can use a sigmoid function to

model these binary measurements.

To select the respective CaO2 thresholds, we note that since sk is directly propor-

tional to CaO2, a relative change in sk should result in a similar relative change in

CaO2(k). Thus, we identify the baseline CaO2(q) and set the thresholds accordingly.

For example, if sk < 0.8sq, then an alarm is raised and the corresponding sigmoid

parameters are vi = [1 0]T , ai = −0.8CaO2(q). The other thresholds are derived

similarly.

This fully specifies the context observation model and completes the full system

model. The following subsection presents the case-study evaluation of this model

and of the resulting context-aware filter.

3.8.5 Case Study

This section presents a case-study evaluation of the context-aware estimator for

PaO2. We use real-patient data collected during lung lobectomy surgeries on children

performed at CHOP. A lung lobectomy is the surgical removal of a lung lobe, often

due to disease such as cancer or a cystic lung lesion; lobectomies often require one-

lung ventilation (i.e., the endotracheal tube is inserted down a mainstem bronchus,

so the patient breathes with one lung only) in order to keep the perioperative lung

still. In children, one lung is often not enough to provide sufficient O2 to the body,

hence the O2 concentration tends to decrease.

For evaluation purposes, we use the blood-gas samples taken during these cases

and compare them with our estimates. As mentioned earlier, clinicians do not usually

draw blood unless they suspect a problem, hence there are at most several measure-

ments per case, while most cases do not have any. After removing all cases with less

than two measurements (recall that one is necessary for the algorithm initialization),

we retain 51 cases overall. In each case, we initialize the context-aware filter with
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Figure 3.12: Absolute errors for each of the two compared PaO2 estimators, the
context-aware filter and the FiO2-based estimator. Red dashed line shows the average
error of the context-aware filter, whereas blue dashed line indicates the average error
of the FiO2-based estimator.

the first blood-gas measurement and evaluate it on the remaining ones. In addition,

as described in the previous section, the diffusion signal baseline (used to define

context measurement thresholds) is also computed at the time of the first blood-gas

measurement. Finally, note that the available blood-gas measurements only contain

PaO2 measurements, hence only PaO2 estimates are evaluated.

Figure 3.12 presents the absolute errors of the context-aware filter, with all mea-

surements from all patients stacked together. For better evaluation, we compare

the filter with a PaO2 estimation algorithm developed in previous work that uses a

similar model and also requires one blood-gas measurement for initialization [120];

this algorithm is named here “FiO2-based estimator”. As can be seen in the Figure,

the context-aware filter eliminates all of the FiO2-based estimator outliers except for

one (discussed below). In addition, the context-aware filter achieves a lower aver-

age error overall, 51.7 mmHg, than the FiO2-based estimator’s average error, 63.3

mmHg. To put the error in perspective, note that PaO2 measurements are usually

in the 200-400 mmHg range (due to FiO2 being usually close to 100%), with the

exception of a few cases with infants where it is in the 100-200 mmHg range. With
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(a) Example case with good estimation by the
context-aware filter.
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(b) Example case with bad estimation by the
context-aware filter.

Figure 3.13: Example cases for different scenarios. Red SpO2 data points indicate
low-SpO2 alarms; blue SpO2 data points indicate no SpO2 alarms. Diffusion signal:
red data points indicate 0.5sq alarms; yellow data points indicate 0.8sq alarms; green
data points indicate no alarms; blue data points indicate 1.2sq alarms; magenta data
points indicate 1.5sq alarms (recall sq is the diffusion signal at the initialization point,
i.e., first blood-gas analysis).

this in mind, errors of 100 mmHg are still significant; yet, the reasonably uniform

distribution of the errors suggests that the context-aware filter is not greatly affected

by inter-patient variability and is thus a reasonable choice of estimator, once a more

accurate model and more precise context measurements are obtained.

To further analyze the performance of the context-aware filter, we analyze two

cases, one with very good performance and one with bad performance. Figure 3.13a

presents an example case where context measurements bring a significant improve-

ment.11 It shows the estimates of each of the two estimators, together with the

blood-gas samples, as well as all other measurements and inputs used in the fil-

ters. Note that after the initializing blood-gas measurement, clinicians reduce FiO2

11Note that the estimates prior to the first blood-gas sample are not used for evaluation but are
included for completeness.
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(around time step 800), probably content with the patient’s current condition. Yet,

other inputs (Vt, RR, PIP ) do not change greatly, indicating that the patient’s O2

concentration should not decrease significantly. This is confirmed by the diffusion

signal, which only decreases by about 20%; thus the 0.8sq alarm is raised but the

0.5sq alarm remains silent, which causes the filter to set the estimate somewhere in

between. In contrast, the FiO2-based estimator is greatly affected by the reduced

FiO2.

As an example bad-performance case, we consider the outlier in Figure 3.12 for

the context-aware filter. Note that, once again, the context-aware filter is not greatly

affected by the decreased FiO2. In this case, the problem is that the diffusion signal is

actually too low at the initialization stage (around step 580), so high-signal alarms

are raised later. A possible explanation for the bad performance of the filter in

this case is a wrong timestamp of the first blood-gas sample; these timestamps are

entered manually and are prone to significant errors, as explored in prior work [189].

In particular, note that tidal volume and respiratory rate are steadily decreasing

from around step 420 onwards; thus it is not unlikely that the blood-gas sample was

obtained at that time as well. As is apparent from the diffusion signal, if the baseline

is set around step 420, no high-signal alarms would be raised later. Finally, note

that estimation is made harder by the lack of low-SpO2 alarms.

Based on these results, we conclude that the context-aware filter is a promising

direction for future research in the MCPS area. By incorporating auxiliary informa-

tion, it is able to correct some of the deficiencies of imprecise models and results in

better estimation overall, even when the variables in question are unobservable.
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Chapter 4

Safety Detection Using Sensor

Fusion

In this chapter, we consider the main problem of this dissertation, namely safety

detection. As noted in Chapter 1, modern systems can fail and be attacked in

arbitrary ways; thus, it is difficult to justify any assumptions about the timing

or types of faults/attacks. At the same time, since we are primarily interested

in providing accurate information to the controller (in the form of estimation and

detection), we focus on attacks and faults in sensors only and assume that other

components (e.g., actuators) behave as modeled.

We address the problem of safety detection in the presence of arbitrary sensor

attacks and faults by using the inherent redundancy in modern CPS. As shown

in Chapter 1, modern CPS have access to multiple sensors that can be used to

provide redundant information (e.g., several sensors can be used to estimate velocity

in the LandShark robot). Using redundancy allows us to develop safety detection

techniques without making assumptions about how and when sensors might fail/be

attacked; as argued in Chapters 1 and 2, such assumptions are made in most related

work on detection/estimation, which makes those approaches not suitable for the

problem considered in this dissertation.
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Sensor redundancy has been explored in depth in the area of sensor fusion where

sensors are generally considered to measure the same variable but through different

means and with different accuracies [109, 136]. One of the first works in this field [136]

assumes that sensors provide one-dimensional intervals and shows worst-case results

regarding the size of the fused interval based on the number of faulty sensors in the

system. A variation of [136] relaxes the worst-case guarantees in favor of obtaining

more precise fused measurements through weighted majority voting [38]. Another

extension combines the abstract and probabilistic models by assuming a probability

distribution of the true value inside the interval and casting the problem in the

probabilistic framework [222]. Finally, sensors can be assumed to not only provide

intervals but also multidimensional rectangles and balls [51] and more general sets

as well [139, 140].

Sensor redundancy has also been applied to multiple fault detection and isolation

problems where relations between sensor measurements can be derived [211]. Simi-

larly, it might also be possible to combine the measurements and draw conclusions

using a voting [45, 114] or a fuzzy voting scheme [30].

The concept of sensor redundancy has also been used in attack resilience research

as well. In particular, Fawzi et al. [78] provide worst-case state estimation analysis

depending on the number of attacked sensors; more specifically, they derive sufficient

conditions on the maximum number of attacked sensors the system can tolerate, i.e.,

conditions under which the system can recover its initial state. This result was

extended for the purposes of resilient state estimation where the authors considered

bounded process and measurement noise as well [158, 159].

In this dissertation, we provide several contributions over related works. First

of all, we modify the sensor fusion framework in order to handle multidimensional

measurements. In particular, we model each sensor as providing a multidimensional

polyhedron (constructed around the physical sensor’s measurement). Based on the

assumption that at most half of all sensors are attacked/faulty, a bounded fusion
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polyhedron is derived that is guaranteed to contain the true value. The fusion

polyhedron is then used for safety detection – if it does not contain any unsafe

states, the system is considered safe.

In addition, we develop a few algorithms for reducing the size of the fusion poly-

hedron (thereby improving the guarantees of sensor fusion). In the first, we incorpo-

rate historical measurements in order to improve the output of sensor fusion. More

specifically, we develop several approaches for mapping historical measurements to

the current time and compare them in terms of the volume of the resulting fusion

polyhedron. Different optimal approaches are presented depending on the assump-

tions on attacked sensors (e.g., the same sensors are attacked at all times).

In the second approach, we revisit the overall system architecture and note that

in many modern CPS, nodes communicate over a shared bus (e.g., a CAN bus in au-

tomotive CPS); thus, all sensor measurements can be observed by all other system

components, including attacked ones. In addition, these systems are often imple-

mented in a time-triggered fashion where at every round of execution, each sensor

transmits its measurement during its allocated time slot, according to a predefined

schedule [184, 199]. This in turn means that, depending on the schedule, the at-

tacker can consider other (correct) sensor measurements before sending his own in

an attempt to increase the uncertainty of the sensor fusion output while remaining

undetected. Therefore, we consider different communication schedules (based on sen-

sors’ precisions) and investigate how they affect the attacker’s impact on the output

of sensor fusion. We provide both theoretical and experimental evidence to show

that systems with similar architectures to the one considered in this work should

implement the Ascending schedule, which orders sensors according to their precision

starting from the most precise.

Finally, we note that the above algorithms assume that less than half of all

sensors are faulty or attacked at any given time. However, sensors often experience

transient faults that recover on their own (e.g., GPS losing connection in a tunnel)
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– since transient faults are a normal part of system operation, controllers should be

designed to be robust and achieve a guaranteed level of performance regardless of the

manifestation of these faults. On the other hand, sensor fusion loses its worst-case

guarantees if all sensors are allowed to be faulty at a given time. Thus, we develop

a transient fault model for each sensor and a corresponding sensor fusion algorithm

that is still guaranteed to contain the true state (and can be used for safety analysis)

even in the presence of transient sensor faults.

All of the above approaches are evaluated both in simulation and in experiments

using the LandShark robot. Thus, we believe that this is a powerful framework

that can be used to improve the resilience of any modern CPS that have access to

redundant information.

4.1 System Model and Problem Formulation

This section formalizes the sensor fusion framewrok as well as the attack models

used in rest of this chapter. The problem formulations considered in this chapter are

stated as well.

4.1.1 System Model

We begin by noting that many of the techniques used in sensor fusion are independent

of system dynamics (i.e., they are applied at every time step and provide guarantees

even if the dynamics are unknown). That is why we do not specify a dynamics model

at this point and leave the dynamics model in its most general form, i.e.,

xk+1 = f(xk, uk) + νpk . (4.1)

At the same time, some of the following sections are developed with specific dynamics

models in mind – the corresponding assumptions are always explicitly noted in their
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respective sections.

The sensor model, on the other hand, is markedly different from the one in Chap-

ter 3 – while in Chapter 3 we used a probabilistic model, here we adopt an abstract

sensor model (also known as a set membership model). The reason for this is that

although probabilistic models are well suited for describing a system’s expected op-

eration and expected state estimation given the measurements, their safety detection

performance may suffer when the wrong noise distributions are selected. Under the

abstract model, on the other hand, a set is constructed around each sensor’s mea-

surement containing all possible values for the true state, where the size of the set

depends on the sensor’s accuracy. By tracking these sets over time, one may be

able to draw conclusions about the system’s safety even in the worst case, e.g., if

none of the received “measurements” contain unsafe states, then the system must

be safe. Thus, the abstract model does not require any assumptions on the process

or measurement noise distributions and is naturally suited for safety and security

analysis.

Another modification to the sensor model is that in this chapter we abstract away

the functional relation between the state and the measurements. More specifically,

we assume that all sensors measure the state directly despite the fact that the actual

measurements may be some non-linear functions of the state. This assumption al-

lows us to consider sensors as truly providing redundant information and to directly

compare their “measurements”. Note that while this assumption may not hold in

certain systems (e.g., in medical scenarios it is difficult to convert most available

measurements to other available measurements), it is a reasonable assumption in

many other cases where the same variable may be estimated through several sensors

(e.g., speed can be estimated using multiple sensors on the LandShark as shown in

Figure 1.2a). Naturally, these different sensors will have varying accuracy depending

on the estimation technique that is used; yet, by leveraging the redundant informa-

tion that they provide, the system should be able to detect when it is unsafe even in
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the presence of attacks/faults in some of the sensors.

We now formalize the above notions by using the abstract sensor framework, as

noted above. Thus, each sensor i provides a direct measurement of the state at time

k of the form

yi,k = xk + νmi,k, (4.2)

where νmi,k is bounded measurement noise. Using the bounds on νm, one may then

construct the set of all possible values for xk given yi,k. These bounds can be ob-

tained by using sensor specifications and manufacturer guarantees or they can also

be learned from data by observing the system’s operation and the largest deviations

of the measurements from the true states.

An intuitive approach to specifying the bounds on νm is to select bounds in each

dimension independently, i.e., form an d-rectangle around the measurement. How-

ever, since most modern sensors employ internal filtering techniques (e.g., Kalman

filters in GPS) these bounds are not always as simple as d-rectangles; furthermore,

some camera-based velocity and position estimators used in urban robotics appli-

cations, for example, guarantee different position precisions at different velocities.

Therefore, we use a more expressive notion than d-rectangles, namely d-dimensional

polyhedra.1 Thus, each abstract sensor i can now be considered as providing an

d-dimensional polyhedron Pi,k (constructed around the actual measurement yi,k) of

the form

Pi,k = {yi,k + z ∈ Rd | Biz ≤ bi}, (4.3)

where Bi ∈ Rq×d and bi ∈ Rq (for some q) are parameters that are determined by

the accuracy of sensor i.

By construction, each polyhedron Pi,k in (4.3) is guaranteed to contain the true

state under nominal conditions. At the same time, sensors often experience transient

1Note that in some areas the term “polyhedron” is used to refer to three-dimensional objects
only. In this work, polyhedra can have arbitrary dimensions; in some areas, a “convex polytope”
is another synonym for “polyhedron” as used in this thesis.
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faults, e.g., a camera might be affected by the sun or by temporary obstructions.

Thus, we distinguish between a correct and a faulty measurement depending on

whether a polyhedron contains the true value.

Definition. A measurement is said to be correct if the corresponding polyhedron

contains the true state times and faulty, otherwise.

4.1.2 Attack Model

In addition to sometimes being faulty, a sensor can also be attacked. Note that

no assumptions are made on attacked sensors – once a sensor is under attack, the

attacker can send any measurements on behalf of that sensor. The only assump-

tions we make are on the number of attacked sensors – we distinguish between two

quantities, namely the real number of attacked sensors, denoted by fa, as well as the

assumed upper bound by the system on the number of attacked sensors, denoted by

f .

Assumption. We assume that the (assumed) upper bound on the number of attacked

sensors, f , is always larger than the actual number of attacked sensors, and that the

number of attacked sensors, fa, is less than half of all sensors, i.e.,

fa ≤ f ≤ dn/2e − 1, (4.4)

where n is the total number of sensors.

This assumption ensures that the problem is decidable – if it does not hold, then

the system cannot provide any bounds on the true state.

4.1.3 Problem Statement

Given the system and attack models defined above, we can now state the safety

detection problem considered in this dissertation. Note that in the sensor fusion

87



framework we perform safety detection by checking whether the fusion polyhedron

(which is guaranteed to contain the true state) contains any unsafe states. Thus, the

problem of sensor fusion is to obtain a minimal-in-volume fusion polyhedron that is

guaranteed to contain the true state.

Note that we first address the nominal sensor fusion problem where sensors are

assumed to be always correct unless they are attacked. In this setting, we address

three problems: 1) the problem of obtaining a minimal fusion polyhedron in a single

time step; 2) the problem of obtaining a minimal fusion polyhedron when histori-

cal measurements are used as well; 3) the problem of analyzing different schedules

of measurement transmissions in order to minimize the attacker’s information and

impact on the size of the fusion polyhedron.2 These three problems are stated below.

Problem. The first problem in the sensor fusion framework is how to obtain a fusion

polyhedron in a single time step, i.e., a minimal-volume polyhedron that is guaranteed

to contain the true state.

Problem. The second problem is to incorporate historical measurements in the sen-

sor fusion algorithm in order to further reduce the volume of the fusion polyhedron

while preserving the guarantee that it contains the true state.

Problem. The third problem is to consider different schedules of measurement trans-

missions in order to limit the attacker’s impact on the size of the fusion polyhedron.

Note that the above problems are all addressed in the nominal case, i.e., when

non-attacked sensors always provide correct measurements. However, if sensors are

allowed to temporarily provide faulty measurements as well, then the fusion polyhe-

dron would not be guaranteed to contain the true state at all times since it is possible

that all sensors might provide faulty measurements at the same time. Thus, we also

consider the problem of sensor fusion in the presence of transient sensor faults.

2Note that the third problem is only addressed in the one-dimensional case as shown in Sec-
tion 4.6.
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Problem. The problem of sensor fusion in the presence of transient sensor faults is

to produce a bounded fusion polyhedron that is guaranteed to contain the true state

at each time step despite the fact that unattacked sensors might experience transient

faults (choosing an appropriate model for transient faults is also a contribution of

this dissertation).

4.2 Sensor Fusion in One Dimension

We begin our discussion of sensor fusion with the special one-dimensional case. In

this case each sensor’s polyhedron reduces to an interval. As discussed in the intro-

duction of this chapter, sensor fusion with intervals has been studied extensively in

the related literature. In this section, we briefly describe the classical sensor fusion

algorithm in one dimension [136].

The inputs to the one-dimensional sensor fusion algorithm are n real intervals,

and a number f that denotes an upper bound on the number of attacked3 intervals

the system might have. The fusion interval is then computed as follows: its lower

bound is the smallest point contained in at least n−f intervals and the upper bound

is the largest such point. Intuitively, the algorithm works conservatively: since at

least n− f intervals are correct, any point that is contained in n− f intervals may

be the true value, and hence it is included in the fusion interval.

The algorithm is illustrated in Figure 4.1. When f = 0 and the system is confident

that every interval is correct, the fusion interval is just the intersection of all intervals.

When at most one sensor can be attacked (f = 1), the fusion interval is the convex

hull of all points contained in at least four intervals. Similarly, when f = 2 the fusion

interval contains the convex hull of all points that lie in at least three intervals. As

shown in Figure 4.1, as f increases so does the uncertainty represented as the size

of the fusion interval. In particular, for f = n − 1 the fusion interval is the convex

3Note that the original sensor fusion work was developed with faulty, not attacked, sensors in
mind [136]. We modify the paper’s language to refer to attacked sensors.
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Figure 4.1: Fusion interval for three values of f . Dashed horizontal line separates
sensor intervals from fusion intervals in all figures.

hull of the union of all intervals.

Three important results of this work are worth noting. If f ≤ dn/3e−1, then the

width of the fusion interval is bounded above by the width of some correct interval.

Additionally, if f ≤ dn/2e − 1, the width of the fusion interval is bounded above

by the width of some interval (not necessarily correct). Finally, if f ≥ dn/2e, then

the fusion interval can be arbitrarily large. Thus, as noted in Section 4.1.2, we

assume that f is always at least as large as the true number of attacked sensors, fa,

and always less than half of all sensors, i.e., fa ≤ f ≤ dn/2e − 1, causing the fusion

interval to be bounded.

4.3 Notation

Before we address the problem of multidimensional sensor fusion, we introduce some

notation that is used throughout this chapter. Let Nk denote all n polyhedra at time

k. We use SNk,f to denote the fusion polyhedron given the set Nk and a fixed f . Let

|P | denote the volume of polyhedron P ; in particular, |SNk,f | is the volume of the

fusion polyhedron. We use Ck to denote the (unknown) set of all correct polyhedra.

Finally, we use s1, . . . , sn to denote the sensors themselves (not their measurements).
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Algorithm 1 Sensor Fusion Algorithm

Input: An array of polyhedra P of size n and an upper bound on the number of
corrupted polyhedra f

1: C ← combinations n choose n minus f(P )
2: RNk,f ← ∅
3: for each K in C do
4: add(RNk,f , intersection(K))
5: end for
6: return conv(RNk,f )

4.4 Multidimensional Sensor Fusion

The sensor fusion alorithm in the multidimensional case uses the same intuition as the

one-dimensional case, with the main difference being that different tools are required

to argue over general polyhedra as opposed to one-dimensional intervals. The sensor

fusion algorithm is described in Algorithm 1. It is based on the algorithm for d-

rectangles described by Chew and Marzullo [51]. It computes the fusion polyhedron

by finding all regions contained in n − f polyhedra, denoted by RNk,f , and then

taking their convex hull in order to return a polyhedron, i.e.,

SNk,f = conv(RNk,f ), (4.5)

where conv(·) denotes the convex hull. Intuitively, the algorithm works in the same

conservative fashion as the one-dimensional case – since there are at least n − f

correct polyhedra, any point that is contained in n − f polyhedra may be the true

state, and thus it is included in the fusion polyhedron; the convex hull is computed

since the output should be in the same format as the inputs (i.e., a polyhedron).

The algorithm is illustrated in Figure 4.2. The system consists of three sensors,

hence three polyhedra are obtained, and is assumed to have at most one attacked

sensor. Therefore, all regions contained in at least two polyhedra are found, and

their convex hull is the fusion polyhedron (shaded).

Proposition 6. The fusion polyhedron computed by Algorithm 1 will always contain
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Figure 4.2: An illustration of the proposed sensor fusion algorithm.

the true state.

Proposition 7. The fusion polyhedron computed by Algorithm 1 is the smallest

convex set that is guaranteed to contain the true state.

Having shown the desired properties of the proposed algorithm, we comment on

its complexity. There are two subprocedures with exponential complexity. First,

finding all combinations of n− f polyhedra is exponential in the number of polyhe-

dra. Second, computing the convex hull of a set of polyhedra requires finding their

vertices; this problem, known in the literature as vertex enumeration, is not known

to have a polynomial algorithm in the number of hyperplanes defining the polyhedra

(hence in their dimension) [20].

We now provide some bounds on the volume the fusion polyhedron. To prove

the first bound, for completeness we first provide the following lemma that will be

useful in showing the final result.

Lemma 2. The vertices of the convex hull of a set of polyhedra are a subset of the

union of the vertices of the polyhedra.

Before formulating the theorem, we introduce the following notation. Let minp B

denote the pth smallest number in the set of real numbers B with size r = |B|.
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Figure 4.3: An example showing that the bound specified in Theorem 4 is tight.

Similarly, we use maxp B to denote the pth largest number in B. We note that

minp B = maxr−p+1 B (e.g., if B = {14, 15, 16},min1 B = 14 = max3 B). Finally, let

vP be the number of vertices in the fusion polyhedron.

Theorem 4. If f < n/vP then

|SNk,f | ≤ minfvP +1{|P | : P ∈ Nk}.

Theorem 4 suggests that if f < n/vP then the volume of the fusion polyhedron

is bounded by the volume of some polyhedron. We note that this condition may

not always hold as the number of vertices of the fusion polyhedron may be the sum

of the number of vertices of the original polyhedra. However, the condition is tight

in the sense that if it does not hold, then the volume of the fusion polyhedron may

be larger than the volume of any of the individual polyhedra. This is illustrated in

Figure 4.3. In this case, each polyhedron (P1, P2, P3 or P4) is a triangle that is a half

of the big square, so n = 4, and f = 1 = n/vP . Hence the fusion polyhedron, i.e.,

square, is larger in area than any of the triangles. In cases like this one, we resort

to the following bound.

Theorem 5. If f < dn/2e, then |SNk,f | is bounded by the volume of conv(Ck)

(i.e., the convex hull of all correct polyhedra).
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In conclusion, three different upper bounds on the volume of the fusion polyhe-

dron exist based on different values of f . If f ≥ dn/2e, then the fusion polyhedron

can be arbitrarily large. This is due to the fact that there are now enough corrupted

sensors to include points not contained in any correct polyhedra in the fusion poly-

hedron (as opposed to Theorem 5). On the other hand, if f ≤ dn/2e − 1, then

|SNk,f | ≤ |conv(Ck)|. In addition, if f < n/vP , then the volume of SNk,f is bounded

from above by the volume of some polyhedron. Note that either of the last two

bounds may be tighter than the other depending on the scenario.

4.5 Sensor Fusion Using Historical Measurements

Having developed a sensor fusion algorithm that produces a minimal fusion polyhe-

dron from n polyhedra in a given time step, we now consider the problem of incorpo-

rating knowledge of system dynamics to reduce the volume of the fusion polyhedron

by using measurement history. In this section, we assume that state dynamics have

the following linear form:

xk+1 = Akxk + νpk , (4.6)

where xk ∈ Rd is the state as before, Ak ∈ Rd×d is the transition matrix and νpk ∈ Rd

is bounded noise such that ‖νpk‖ ≤ M , where ‖ · ‖ denotes the L∞ norm, and M is

a constant.

Note that in this setting we are still assuming that non-attacked sensors provide

correct measurements at all times. We relax this assumption in Section 4.7.

In order to use historical measurements, one needs to first of all develop a tech-

nique for mapping previous measurements to the current time using the dynamics

model (similar to the prediction stage of the Kalman filter). For each polyhedron

Pi,k, this can be done using the following map m:

m(Pi,k) = {z ∈ Rd | z = Akp+ q,∀p ∈ Pi,k, ‖q‖ ≤M}.
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Thus, m(Pi,k) is once again a polyhedron (due to the linear mapping and the bounds

on νpk) that describes the prediction of Pi,k one step in the future.

For simplicity, we also introduce the notation ∩p, referred to as pairwise inter-

section. In particular, if m(Nk) is the mapping of all n polyhedra to the next time

step, i.e.,

m(Nk) = {m(Pi,k), i = 1, . . . , n},

then let m(Nk) ∩p Nk+1 denote the intersection of each sensor si’s measurement in

time k + 1 with the mapping of si’s measurement from time k, i.e.,

m(Nk) ∩p Nk+1 = {P ′i | P ′i = m(Pi,k) ∩ Pi,k+1, i = 1, . . . , n}.

Note that this set again contains n polyhedra, some of which may be empty.

It is worth noting here that our assumptions impose a restriction on the number

of ways in which history can be used. In particular, we only assume an upper bound

on the number of attacked sensors; thus, it is not possible to map subsets of the

polyhedra while guaranteeing that the fusion polyhedron contains the true value. In

other words, such mappings would require additional assumptions on the number of

corrupted sensors in certain subsets of Nk; hence, all permitted actions in this work

are:

1. computing fusion polyhedra for all n polyhedra in a given time step;

2. mapping this fusion polyhedron to the next time step;

3. mapping all polyhedra to the next time step, thus doubling both n and f .

Based on these permitted actions, we can now enumerate different ways of historical

measurements. While it is challenging to exhaustively list all possibilities, following

are the ways of using past measurements considered in this work:

1. map n: In this approach we map all polyhedra in Nk to time k+ 1, and obtain

a total of 2n polyhedra in time k+1. We then compute their fusion polyhedron
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with 2f as the bound on the number of corrupted polyhedra. This is illustrated

in Figure 4.4a. Formally the fusion polyhedron can be described as

Sm(Nk)∪Nk+1,2f .

2. map S and intersect : This algorithm computes the fusion polyhedron at time

k, maps it to time k + 1, and then intersects it with the fusion polyhedron at

time k + 1, as illustrated in Figure 4.4b. Formally we specify this as

m(SNk,f ) ∩ SNk+1,f .

3. map S and fuse: Here the fusion polyhedron from time k is mapped to time

k + 1, thus obtaining a total of n + 1 polyhedra at time k + 1, as presented

in Figure 4.4c. Note that f is still the same because SNk,f is guaranteed to

contain the true value by Proposition 6. Formally this is captured by

Sm(SNk,f )∪Nk+1,f .

4. map R and intersect : This is similar to map S and intersect, but instead we

map RNk,f to time k + 1, intersect with RNk+1,f , and compute the convex hull

as illustrated in Figure 4.4d. Formally we describe this as

conv(m(RNk,f ) ∩RNk+1,f ).

5. pairwise intersect : This algorithm performs pairwise intersection as shown in

Figure 4.4e. Formally we capture this as

Sm(Nk)∩pNk,f .
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(a) map n (b) map S and intersect

(c) map S and fuse (d) map R and intersect

(e) pairwise intersect

Figure 4.4: Illustrations of the different methods of using history. For simplicity
Ak = I, the identity matrix, and νpk = 0.
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The obvious way to compare these algorithms is through the volume of the fusion

polyhedra. We provide below a series of results that relate the sizes of the fusion

polyhedra for the aforementioned methods of incorporating measurement history.

Note that all methods are compared over two time steps only – one can use induction

to show the same results hold over the entire timeframe of system operation.

Theorem 6. The region obtained using map R and intersect is a subset of the region

derived by map n.

Theorem 7. The polyhedron derived by map R and intersect is a subset of the poly-

hedron obtained by map S and intersect.

Theorem 8. The polyhedron obtained by map R and intersect is a subset of the

polyhedron derived using map S and fuse.

Theorems 6, 7 and 8 suggest that map R and intersect is the best of the first

four methods enumerated above as can also be seen in Figure 4.4. This intuitively

makes sense since it is only keeping enough information from previous measurements

to guarantee that the true value is preserved. In particular, it is not computing the

convex hull at time k as map S and intersect and map S and fuse do (and poten-

tially introduce additional points to the fused region), nor is it mapping potentially

corrupted polyhedra as does map n.

We note, however, that without additional assumptions about the rank of Ak,

map R and intersect and pairwise intersect are not subsets of each other. Counter-

examples are presented in Figure 4.5. In Figure 4.5a, RNk,f is a single point that is

projected onto the x axis. Hence map R and intersect is a subset of pairwise intersect,

which produces an interval of points. Conversely, Figure 4.5b shows an example

where pairwise intersect is a point, and map R and intersect is an interval contain-

ing that point. It is worth noting, however, that regardless of which of the two

approaches is used, pairwise intersect can be used as a preliminary step to detect
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attacked sensors – if the two polyhedra of a certain sensor have an empty intersec-

tion, then the sensor must be attacked in one of the rounds; thus, it can be discarded

from both, effectively reducing n and f by one.

(a) map R and intersect is not a subset of pair-
wise intersect.

(b) pairwise intersect is not a subset of
map R and intersect.

Figure 4.5: Examples showing that, in general, polyhedra obtained using
map R and intersect and pairwise intersect are not subsets of each other if Ak is
not full rank.

Finally, we note that if Ak is a full rank matrix and νpk = 0, then pairwise intersect

is the best of all five methods, as shown in the following theorem.4

Theorem 9. If Ak is full rank and νpk = 0, the polyhedron obtained by pairwise intersect

is a subset of the polyhedron derived using map R and intersect.

Therefore, we argue that systems that incorporate past measurements in their

sensor fusion algorithms should use the pairwise intersect method. We now show

that it satisfies the worst-case requirements, same as the no-history case. In addition,

we show that adding historical measurements is always beneficial for the system.

Proposition 8. The fusion polyhedron computed using pairwise intersect will always

contain the true state.

Proposition 9. The fusion polyhedron computed using pairwise intersect is never

larger than the fusion polyhedron computed without using history.

4A similar counter-example to Figure 4.5 can be found in the case when νpk 6= 0.
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Note that pairwise intersect and map R and intersect do not add significant com-

putational complexity to the no-history sensor fusion algorithm described in Sec-

tion 4.4. While they still suffer from the exponential procedure of computing the

fusion polyhedron at each time, each of the two methods requires storing at most

n polyhedra to represent historical measurements – intuitively they are the “inter-

section” of all past measurements. Thus, implementing any of these methods will

not add substantial computational or memory cost for the system. The algorithm’s

implementation is discussed in greater detail in the evaluation section.

4.5.1 Evaluation

Given our results in Section 4.5, we argue that systems with linear dynamics should

use the pairwise intersect method. This section provides an algorithm that imple-

ments this method and a case study to illustrate its usefulness.

Implementation

The implementation is shown in Algorithm 2. In essence, at each point in time n

polyhedra (the pairwise intersections) are stored. Thus, past meas represents the

“pairwise intersection” of all previous measurements of each sensor. In addition to

being more efficient in terms of the size of the fusion polyhedron, the algorithm also

needs very little memory – the required memory is linear in the number of sensors

irrespective of how long the system runs.

An important detail that is hidden inside the pair inter function is how attacked

sensors are dealt with. If a sensor si’s two polyhedra have an empty intersection

then that sensor must be attacked. In this case, both polyhedra are discarded and n

and f are reduced by one. Furthermore, the system has the option of discarding all

future measurements provided by the sensor si; alternatively, the system may update

past meas with si’s measurement in the next round. Which choice is made depends

on the system’s trust in the sensor – if it is believed to be continuously under attack,
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Algorithm 2 Implementation of the pairwise intersect algorithm

Input: f , the number of attacked sensors
1: past meas← ∅
2: for each step k do
3: cur meas← get meas(k)
4: if past meas == ∅ then
5: past meas← cur meas
6: else
7: past meas = pair inter(cur meas, past meas)
8: end if
9: S ← fuse polyhedra(past meas, f)

10: send polyhedron to controller(S)
11: end for

then discarding all or some of its future measurements is the better option. However,

if it is attacked only in certain conditions (e.g., on certain territory), then its future

measurements should be kept and incorporated in the algorithm. Quantification of

sensor trust, however, is not within the scope of this paper, hence we take this choice

as a design-time decision (input) and leave its analysis for future work.

Case Study

To show the effectiveness of the pairwise intersect approach, we use the sensors

available to the LandShark. In this section, we use four of the LandShark’s sensors

that can be used to estimate velocity – GPS, camera and two encoders. In addition,

GPS and the camera can be used to estimate the vehicle’s position. Therefore, the

encoders provide the controller with interval estimations of the vehicle’s velocity only,

whereas GPS and the camera send two-dimensional polyhedra as estimates of the

velocity and position.5 The sizes of the encoders’ intervals were obtained based on

the manufacturer’s specification, whereas the shapes and sizes of GPS and camera’s

polyhedra were determined empirically – the LandShark was driven in the open,

and largest deviations from the true values (as measured by a high-precision laser

5For this case study we only require one-dimensional position as will become clear in the next
paragraph. However, our approach could easily be applied to multidimensional measurements.
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(a) GPS under attack. (b) Camera under attack. (c) Encoder under attack.

Figure 4.6: Sizes of velocity (ONLY) fusion intervals for each of the three simu-
lated scenarios; Dashed line – volume of the fusion polyhedra when measurement
history is not considered, Solid line – volume of the fusion polyhedra obtained using
pairwise intersect.

tachometer) were collected.

Given this information, the following three scenarios were simulated. The Land-

Shark is moving in a straight line at a constant speed of 10 mph. In each scenario, a

different sensor was attacked such that a constant offset of 1 mph was introduced to

the sensor’s speed estimate. The sensors’ speed tolerances were as follows: 0.2 mph

for the encoders, 1 mph for GPS and 2 mph for the camera. GPS’s tolerance for

position was 30 feet, whereas the camera’s tolerance varies with speed (hence its

polyhedron is a trapezoid) and was 100 feet at 10 mph. At each point in time,

we compute the fusion polyhedron in two ways – using only current measurements

and using the pairwise intersect method. Finally, we record the differences and the

improvement achieved by using history.

To illustrate consistence with earlier one-dimensional works (e.g., [136]), for each

of the three scenarios we first computed the size of the fusion interval in one di-

mension. Figure 4.6 presents the results. For each scenario, the size of the fusion

interval was never larger when using pairwise intersect, while the gain was significant

at certain times. This is particularly apparent when the encoder was under attack.

The reason for this, as we explain in Section 4.6, is that it is in general beneficial for

the attacker to corrupt the most precise sensors.
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(a) GPS under attack. (b) Camera under attack. (c) Encoder under attack.

Figure 4.7: Sizes of fusion polyhedra of velocity and position for each of the three
scenarios simulated; Dashed line – volume of the fusion polyhedra when measurement
history is not considered, Solid line – volume of the fusion polyhedra obtained using
pairwise intersect.

Figure 4.7 presents the results when two-dimensional polyhedra are considered.

Note that in this case there are only two sensors estimating the robot’s position

– when one is attacked, the size of the fusion polyhedron can grow dramatically.

Consequently, pairwise intersect is greatly beneficial for the system as it identifies

the attacked sensors and discards their measurements when their polyhedra do not

intersect. It is worth noting here that in all simulated scenarios if a sensor is found

corrupted in any step we do not disregard its measurement in the next step. Note

also that the volumes in Figure 4.7 are much larger than those in Figure 4.6 – this

is a result of the fact that position tolerances are measured in feet and are larger

than 10. (i.e., 30 feet for GPS). Finally, as consistent with Proposition 8, all fusion

polyhedra contained the actual value of velocity (i.e., 10 mph).

4.6 Attack-Resilient Sensor Transmission Schedul-

ing

In this section we present another approach for improving the performance of sensor

fusion, namely the introduction of a sensor transmission schedule in order to limit

the attacker’s information. As described in the introduction of this chapter and as
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illustrated in Figure 1.1, many modern CPS use a shared bus for communication

between different components (e.g., a CAN bus in automotive CPS). This allows the

attacker to inspect other sensors’ measurements before sending the spoofed measure-

ments in order to maximize the impact on sensor fusion. At the same time, modern

CPS usually operate in a time-triggered fashion such that each sensor transmits each

measurement during a pre-allocated time slot; this effectively creates a schedule of

sending measurements at each round. Thus, in this section we analyze how differ-

ent schedules (based on sensor precisions) affect the attacker’s impact (for different

attack strategies) and compare these schedules in terms of the size of the resulting

fusion interval.

Note that only the one-dimensional case is considered in this section since the

concept of sensor precision (which is crucial when analyzing transmission schedules)

does not extend to multiple dimensions in an obvious fashion (e.g., a sensor might be

very precise in one dimension and very imprecise in another). In fact, the analysis

presented in this section does not hold in multiple dimensions if sensor precision

is measured by the volume of the fusion polyhedron. Thus, the multidimensional

scheduling analysis for systems with different precision metrics (and possibly different

measurement sets such as balls instead of polyhedra) is left for future work as well.

4.6.1 System Model

As noted above, in this section we assume a single-state system. We assume a linear

bounded-noise system (similar to the one in Section 4.5):

xk+1 = akxk + νpk , (4.7)

where xk ∈ R is the state, ak ∈ R is the transition “matrix” and νpk ∈ R is bounded

noise such that |νpk | ≤M , and M is a constant.

The observation model is once again grounded in the abstract sensor framework
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– each sensor si provides a direct measurement of the state at time k of the form

yi,k = xk + νmi,k, (4.8)

which is then converted to an interval, denoted by Ii,k (note that we use the notation

Ii,k instead of Pi,k in order to highlight the fact that each measurement is now an

interval instead of a polyhedron). Note that, once again, in this setting non-attacked

sensors are assumed to provide intervals that contain the true state.6

Finally, note that the time-triggered design of the system ensures that each sensor

(attacked or not) sends its measurement during its allotted time slot at each time

step.

4.6.2 Attack Model

This section focuses solely on stealthy attacks that are designed to disrupt system

performance while remaining undetected. We define “disrupt system performance”

as maximizing the size of the fusion interval – since larger fusion intervals mean

higher uncertainty (potentially followed by more frequent emergency responses, such

as system shutdowns, due to safety concerns), such an attack might have a severe

effect on system performance. Thus, the attacker’s goal is to maximize the size of

the fusion interval while remaining undetected; the detection algorithm used by the

system is a conservative attack detection algorithm, in which a sensor is declared

attacked if its interval does not intersect the fusion interval, in which case it is

guaranteed not to contain the true state (Chapter 6 presents a more sophisticated

detection approach that also considers transient sensor faults).

Note that, similar to the rest of this chapter, we assume that the number of

attacked sensors, fa, is less than half of the total number of sensors.

6Extending the analysis presented in this section to the case with transient faults is left for
future work. One of the main challenges with such an extension would be formulating a reasonable
attack strategy (that also considers transient faults), which is one of the main contributions of this
section.
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Assumption. We assume that the (assumed) upper bound on the number of attacked

sensors is always larger than the actual number of attacked sensors, and that the

number of attacked sensors fa is less than half of all sensors, i.e.,

fa ≤ f ≤ dn/2e − 1, (4.9)

where n is the total number of sensors.

4.6.3 Problem Statement

Given the above model, we note that the attacker’s impact depends on the position

of his sensors in the transmission schedule. In particular, if his sensors are last in

the schedule, the attacker can examine all other measurements before sending his

intervals. This would allow him to place his interval(s) in the way that maximizes

damage while not being detected. Therefore, the problem considered in this section

is the following:

Problem. How does the sensor communication schedule affect the attacker’s impact

on the performance of sensor fusion (as measured by the size of the fusion interval)

in a given round and over time? Find the schedule that minimizes this impact.

4.6.4 Notation

The notation used in this section is the same as before, with some additions. In

particular, let Nk denote all n intervals at time k, and let SNk,f denote the fusion

interval given the set Nk and a fixed f , as before. The main difference is that

instead of Pi,k we now use Ii,k to denote sensor i’s interval at time k. Finally, let li,k

and ui,k be the lower and upper bound of sensor i’s interval, respectively, such that

|Ii,k| = ui,k− li,k. Note that all time indices are dropped in Section 4.6.5, where only

one round is considered in isolation.
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4.6.5 Attack Strategy and Worst-Case Analysis

Note that the attack strategy, as stated in Section 4.6.2, is not fully specified. In

particular, while it may be easy to see what is the best strategy from the attacker’s

point of view when the attacked sensors are last in the transmission schedule, se-

lecting the best placement for the attacked intervals from other slots in the schedule

is not trivial. Therefore, this section formalizes the attack strategy considered in

this work and illustrates how the attacker’s capabilities vary with the utilized trans-

mission schedule. Given this strategy, the second part of the subsection provides

worst-case results to suggest which sensors would be most beneficial for the attacker

to corrupt and for the system to defend, respectively. We denote the strategy with

AS1; to illustrate its effectiveness from the attacker’s point of view, we compare it

with another viable strategy in Section 4.6.6. Note that this section does not consider

the use of previous sensor readings, hence a single round is analyzed in isolation. We

introduce the use of measurement history in Section 4.6.7.

As described in Section 4.6.2, the attacker has a goal, maximize the size of the fu-

sion interval, and constraints, stay undetected. We now formalize the two, beginning

with the latter.

Constraints: Staying Undetected

Formally, the attacker has two modes: passive and active, as defined below. When in

passive mode, the attacker’s constraints are tighter, and thus his impact is limited. In

active mode, on the other hand, the constraints on the placement of the compromised

intervals are looser, hence the attacker can send intervals that would greatly increase

the uncertainty in the system.

The attacker begins in passive mode, in which the main goal is to stay undetected.

The detection mechanism used in this section is to check whether each interval has a

nonempty intersection with the fusion interval;7 since the fusion interval is guaran-

7In Section 4.6.7, we use historical measurements to improve the system’s detection capabilities.
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teed to contain the true state, any interval that does not intersect the fusion interval

must be compromised. Thus, in passive mode, the attacker computes the intersection

of all seen measurements, including his own sensors’, which is the smallest interval

from the attacker’s perspective that is guaranteed to contain the true state. We

denote this intersection by ∆. Therefore, in passive mode the attacker must include

∆ in his interval (any point that is not contained may be the true state) and has no

restrictions on how to place the interval around ∆ (if the interval is larger than ∆8).

The attacker may switch to active mode when at least n− f − far measurements

have been transmitted, where far is the number of unsent compromised intervals.

At this point, the attacker may send an interval that does not contain ∆ because

he is aware of enough sent measurements, i.e., he can prevent his sensor from being

detected because he has exactly far remaining intervals to send and can guarantee

each interval overlaps with n−f−1 sensors and with the fusion interval, consequently.

When in active mode, the attacker is not constrained when sending his intervals as

long as overlap with the fusion interval is guaranteed.

Goal: Maximizing the size of the fusion interval

When maximizing the size of the fusion interval, the attacker’s strategy consists

of two different cases depending on the position of the attacker’s intervals in the

transmission schedule: one to target the largest interval and another to target the

largest expected interval.

Specifically, if all the attacker’s sensors are scheduled to transmit last, meaning

that the attacker will be aware of all measurements prior to sending his, his strategy

can be stated through the following optimization problem, where variables a1, . . . , afa

8Note that it cannot be smaller than ∆ since ∆ includes the intersection of all measurements of
the corrupted sensors.
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represent the attacked intervals:

max
a1,...,afa

|SN ,f |

s.t. SN ,f ∩ ai 6= ∅, i = 1, . . . , fa.

(4.10)

Since the solution to this problem can be obtained with full information about the

correct sensors’ measurements, we call this solution and the strategy that led to it,

respectively, optimal.

Definition. The attack strategy obtained as a solution to the optimization problem

(4.10) (i.e., the placements of the attacked intervals that achieve the solution) is called

optimal (from the attacker’s point of view) given the correct sensors’ measurements.

Any attack strategy that achieves this solution is also referred to as optimal.

Note that the attack strategy described by optimization problem (4.10) is optimal

by definition. However, there are scenarios in which there exists no optimal strategy

for the attacker if his sensors are not last in the schedule. For example, consider

the scenario depicted in Figure 4.8, where out of three sensors, a1 is under attack.

Suppose that the attacker transmits second in the schedule so that he is aware of I1

and his own sensor’s measurement but not of I2. Given the measurements shown in

the figure, the attacker cannot guarantee that the fusion interval will be maximized

regardless of the interval that he sends. In particular, if a1 is sent to the left of I1

(a1(1) in the figure) then I2 could appear as shown, in which case a1(2) would have

resulted in a larger fusion interval. Other attacks could be similarly shown to not

be optimal for any possible placement of I2.

While the attacker may be able to choose which sensors to attack, as argued in

Chapter 1, certain sensors may not be compromised without detection or at all, with

the resources available to the attacker. Thus, the attacker may not always ensure

that his sensors would be last in the transmission schedule. Consequently, in cases

such as the one in Figure 4.8, a reasonable strategy for the attacker is to maximize
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Figure 4.8: An example showing that if attacker (sinusoid) has not seen all intervals
then he has no strategy that guarantees the fusion interval is maximized.

the expected size of the fusion interval. The expectation is computed over all possible

placements of the unseen correct and compromised intervals.9 Formally, for each

compromised interval am (where m is an index in {1, . . . , fa}) the attack strategy

can be described with the following optimization problem

max
am,...,afa

E
CRm
|SN ,f |

s.t. SN ,f ∩ ai 6= ∅ i = m, . . . , fa,

(4.11)

where CRm is the set of all possible placements of the correct intervals that will be

transmitted after am, and E is the expectation operator.

As shown in Figure 4.8, there are scenarios in which no optimal strategy exists;

yet, there do exist cases in which there is an optimal solution even if the attacker is

not last in the schedule (and the strategy obtained as a solution to the optimization

problem (4.11) leads to that solution). In particular, there exist scenarios in which

if the unseen intervals are small enough it is possible for the attacker to obtain an

optimal strategy.

To formalize this statement, we introduce the following notation. Let CS be the

set of seen correct intervals and let CR be the set of correct sensors that have not

9To compute the expectation, the attacker is implicitly assuming intervals are uniformly dis-
tributed around ∆. If additional information is available about the distribution of sensor measure-
ments, it can be incorporated in the optimization problem (4.11).
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(a) Attacker has seen I1 and I2,
while the unseen I3 is small enough.

(b) Attacker has seen I1 and
I2, while the unseen I3 is small
enough.

Figure 4.9: Examples of the two cases of Theorem 10. Attacked intervals are indi-
cated by sinusoids.

transmitted yet. Let ln−f−fa be the (n − f − fa)th smallest seen lower bound and

let un−f−fa be the (n− f − fa)th largest seen upper bound. Finally, let amin be the

attacked sensor with smallest width.

Theorem 10. Suppose n− f − fa ≤ |CS| < n− fa. There exists an optimal attack

strategy if one of the following is true:

(a) ∀Ii, Ij ∈ CS, li = lj, ui = uj and ∀Il ∈ CR, |Il| ≤ (|amin| − |SCS∪∆,0|)/2

(b) |amin| ≥ un−f−fa − ln−f−fa and

∀Il ∈ CR, |Il| ≤ min {lSCS∪∆,0
− ln−f−fa , un−f−fa − uSCS∪∆,0

}

Remark. Note that the conditions in the theorem state that either all seen correct

intervals coincide with one another, and the attacker can attack around them (a);

or that the unseen correct intervals are small enough so that they cannot change the

extreme points contained in at least n−f−fa seen correct intervals (b), in which case

the attacker can attack around these points. Both cases are illustrated in Figure 4.9.

Worst-Case Analysis

Given the attack strategy described above, we now analyze worst-case results based

on the sizes of the attacked and correct sensors. The first result puts the problem in
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perspective – it provides an absolute upper bound on the size of the fusion interval.

Theorem 11. Let Ic1 and Ic2 be the two largest-width correct sensors. Then |SN ,f | ≤

|Ic1|+ |Ic2|.

Theorem 11 provides a conservative upper bound on the size of the fusion interval

because it does not directly take into account the sizes of the attacked intervals. The

following results analyze how the worst case varies with different attacked intervals.

To formulate the theorems, we use the following notation. Let L be the set of

predefined lengths of all intervals. We use Sna to denote the worst-case (largest

width) fusion interval when no sensor is attacked. Similarly, let SF be the worst-

case fusion interval for a fixed set of attacked sensors F , |F| = fa, whereas Swcfa is

the worst-case fusion interval for a given number of attacked sensors, fa. Finally, we

refer to the set of n fixed (i.e., specific) measurement intervals as a “configuration”.

Note that |Sna| ≤ |SF | ≤ |Swcfa | by definition. The first inequality is true since when

there are no attacks, all intervals must contain the true value, which is not the case

in the presence of attacks, hence the worst-case is at least the same. The second

inequality is true since the worst-case with fa attacks may not be achieved for any

F with |F| = fa.

Theorem 12. If the fa largest intervals are under attack, then |Sna| = |SF |.

The theorem is illustrated in Figure 4.10a. The attacked intervals a1 and a2 both

do not contain the true value, which is at the intersection of the other sensors. Since

a1 and a2 are the largest intervals, they can be moved and can be made correct while

preserving the size of the fusion interval. Hence, the same worst case can be achieved

with correct intervals.

Theorem 13. |Swcfa | is achievable if the fa smallest intervals are under attack.

Figure 4.10b illustrates the theorem. The worst-case for the setup can be achieved

when either Ia or Ismall is attacked.
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(a) Attacking the biggest inter-
vals does not change the worst
case in the system.

(b) Attacking the smallest in-
tervals can achieve the absolute
worst case.

Figure 4.10: Illustrations of Theorems 12 and 13.

A few conclusions can be drawn from the worst-case results shown in this subsec-

tion. First of all, from Theorem 11, the smaller the correct intervals are, the smaller

the fusion interval will be in the worst case, regardless of the attacker’s actions. In

addition, as shown in Theorems 12 and 13, the attacker benefits more from compro-

mising precise sensors as opposed to less precise ones. Intuitively, this is true because

imprecise sensors produce large intervals even when correct; attacking precise sen-

sors, however, and moving their intervals on one side of large correct intervals, with

the true value on the other, may significantly increase the uncertainty in the system.

Therefore, one may conclude that it is better for system designers to prioritize the

protection of the most precise sensors.

4.6.6 One-Round Schedule Comparison and Analysis

In this subsection, we analyze the schedule design for communication over the shared

bus in Figure 1.1. It builds on the analysis in Section 4.6.5 by considering how

different schedules affect the capabilities of the attacker. In particular, we examine

the effect of each schedule on the size of the fusion interval.

We first note that the only information available a priori to system designers is

the sensors’ accuracy and their intervals’ sizes, consequently. Thus, any investigated
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(a) An example where the Ascending schedule
is better for the system.

(b) An example where the Descending sched-
ule is better for the system.

Figure 4.11: Two examples that show that neither the Ascending nor the Descending
schedule is better for the system in all situations. The first column shows the mea-
surements by the sensors, including the attacked one. The other columns contain
the intervals sent to the controller, and the corresponding fusion interval.

schedule must be based on interval lengths alone. We focus on the two schedules,

named Ascending and Descending, which schedule sensor transmissions in order

starting from the most and least precise, respectively.

We first note that neither schedule is better than the other in all scenarios.

Figure 4.11 shows two examples in which different schedules are better, i.e., they

produce smaller fusion intervals. In Figure 4.11a the fusion interval obtained with

the Descending schedule is larger because the attacker is aware of the position of

the largest interval. Figure 4.11b, however, shows that knowing the largest interval

does not necessarily bring the attacker any useful information because he can only

increase the fusion interval by overlapping with I1 and I2. Hence, if he is aware of I3

when sending his interval he would send aD but that would be worse for the attacker

than sending aA which would be the case if the attacker had seen I1 and I2 instead.

Since the two schedules cannot be compared in the absolute sense, we consider

the average case over all possible sensor measurements. In particular, we investigate

the expected size of the fusion interval for a fixed set of sensors with fixed precisions.

One may consider all possible measurements of these sensors and all possible attack

combinations (with fa < dn/2e), and compute the average length of the fusion

interval over all combinations. Note that there are two main considerations when

computing this expectation: (1) what is the distribution of sensor measurements
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around the true state (e.g., uniform over the interval? normal?) and (2) what is the

likelihood of different sensors being attacked.

In the following analysis we investigate two possible distributions, uniform and

normal,10 and assume that all sensors are equally likely to be compromised. Since

obtaining closed-form formulas for the expected sizes of the fusion intervals under

the two schedules was not possible, we computed the values for specific systems. In

particular, we varied the number of sensors from 3 to 5, the sensor lengths from

5 to 20 with increments of 3, and the number of attack sensors from 1 to dn/2e.

For each setup, we generated all possible measurement configurations11 and for each

computed the size of the fusion interval under the two schedules; finally, we computed

their weighted sum (depending on the distribution and likelihood of obtaining each

configuration), i.e., our best estimate of the real expected size of the fusion interval

for a given schedule and system. For all setups, we used f = dn/2e − 1 as input to

the sensor fusion algorithm.

Table 4.1 presents the obtained results. Due to the very large number of setups

tried, only a small subset is listed in this work. During simulations, it was noticed

that the schedules produce similar-size expected intervals when the interval lengths

are close to one another. The schedules differed greatly, however, in systems with a

mixture of very precise sensors and very imprecise sensors. Hence, setups in Table 4.1

were chosen such that they represent classes of combinations according to these

observations. As the table shows, for all analyzed systems, the expected fusion

interval under the Ascending schedule was never larger than that under Descending.

In addition, the gains were significant in some cases. This is also true of all other

setups that are not shown in this paper. We note that while these results are not

sufficient to conclude that the Ascending schedule produces a smaller fusion interval

for any sensor configuration, the same framework can be used for any particular

10To approximate a normal distribution, we assumed the length of the interval is equal to six
standard deviations, i.e., about 99% of the values of a normal distribution.

11We discretized the real line with sufficient precision in order to enumerate the possible mea-
surements.
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Table 4.1: Comparison of the two sensor communication schedules. Subscript U
denotes the uniform distribution, and N denotes the normal distribution.

EU |SN ,f |
Asc.

EU |SN ,f |
Desc.

EN |SN ,f |
Asc.

EN |SN ,f |
Desc.

n = 3, fa = 1,
L = {5, 11, 17} 10.77 13.58 10.87 13.18

n = 3, fa = 1,
L = {5, 11, 11} 9.43 10.16 9.89 10.39

n = 4, fa = 1,
L = {5, 8, 17, 20} 7.66 9.44 8.07 10.17

n = 4, fa = 1,
L = {5, 8, 8, 11} 6.32 6.53 6.99 7.23

n = 5, fa = 1,
L = {5, 5, 5, 5, 20} 6.13 6.15 5.66 5.7

n = 5, fa = 1,
L = {5, 5, 5, 14, 20} 7.22 9.18 6.86 9.09

n = 5, fa = 2,
L = {5, 5, 5, 5, 20} 6.71 10.32 6.43 9.77

n = 5, fa = 2,
L = {5, 5, 5, 14, 17} 8.17 11.85 8.11 11.04

system to compare impacts of communication schedules (based on sensors’ precisions

when no other information is available a priori) on the performance of attack-resilient

sensor fusion.

To conclude this subsection, we analyze another possible attack strategy, denoted

by AS2, and show that the optimization strategy AS1 is worse for the system, i.e., it

is a more powerful attack. In AS2, a constant positive offset is added to the attacked

sensors’ measurements. Once again, the attacker has to guarantee overlap with the

fusion interval to avoid detection. Therefore, the schedule and the seen intervals

determine if introducing the whole offset would lead to detection, in which case the

offset is reduced to the maximal one that would not result in detection.

To compare the two strategies, we note that they can only be compared when the

attacker is not last in the schedule, in which case he always has an optimal strategy

(specified by AS1). Thus, we only investigate cases in which the attacker has control

of the sensors in the middle of the schedule. Similar to the above results, we compute
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Table 4.2: Comparison of the two attack strategies when Ascending schedule is used
– AS1 is the expectation optimization strategy; AS2 is the constant offset strategy.

E |SN ,f |
Asc., AS1

E |SN ,f |
Asc., AS2

n = 3, fa = 1,
L = {5, 11, 17} 10.17 9.79

n = 3, fa = 1,
L = {5, 11, 11} 8.65 8.44

n = 4, fa = 1,
L = {5, 8, 17, 20} 7.54 7.16

n = 4, fa = 1,
L = {5, 8, 8, 11} 6.17 5.66

n = 5, fa = 1,
L = {5, 5, 5, 5, 20} 6.61 5.92

n = 5, fa = 1,
L = {5, 5, 5, 14, 20} 7.35 6.92

n = 5, fa = 2,
L = {5, 5, 5, 5, 20} 7.35 5.99

n = 5, fa = 2,
L = {5, 5, 5, 14, 17} 8.78 6.96

the expected size of the fusion interval for each strategy for different setups. The

results are shown in Table 4.2, where a maximal offset of 3 was introduced and

the strategies are compared using the Ascending schedule (the results using the

Descending schedule are similar but not shown in the interest of clarity). Note that

strategy AS1 always produces a larger expected fusion interval than the AS2, which

means it is expected to lead to more powerful attacks.

4.6.7 Schedule Comparison Over Time

In this section, we analyze how the use of an optimal transmission schedule and

measurement history in sensor fusion can be combined to complement each other

and further improve the performance of the sensor fusion algorithm.

In order to use historical measurements, we reintroduce some of the notation and

terminology from Section 4.5. In particular, recall that we use the function m to
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Table 4.3: Comparison of the two sensor communication schedules when histori-
cal measurements are used. Subscript U denotes the uniform distribution, and N
denotes the normal distribution.

EU |Sp i|
Asc.

EU |Sp i|
Desc.

EN |Sp i|
Asc.

EN |Sp i|
Desc.

n = 3, fa = 1,
L = {5, 11, 17} 8.59 9.65 10.03 11.37

n = 3, fa = 1,
L = {5, 11, 11} 7.77 8.05 9.19 9.61

n = 4, fa = 1,
L = {5, 8, 8, 11} 4.9 5 6.61 6.79

map previous intervals to the current time:

m(Ii,k) = {z ∈ R | z = akp+ q,∀p ∈ Ii,k, |q| ≤M}. (4.12)

Furthermore, we use the pairwise intersect method to map previous measure-

ments to the current time; the fusion interval obtained from pairwise intersect is

then used in the following comparisons. We assume that the attacker does not have

any limitations, i.e., he is aware of all previous sensor measurements and is able to

implement pairwise intersect as well (or any other algorithm).

Similar to the one-round comparison of schedules, we note that no schedule is

better than the other in the absolute sense. Therefore, we compare them using

the expected size of the fusion interval. As no closed-form solution for this size is

available, we compute the value for the same setups as the ones described in Table 4.1.

The system dynamics were assumed to be xk+1 = xk + νpk , with |νpk | ≤ 1. Table 4.3

presents the results. Two things are worth noting. Firstly, once again the Ascending

schedule produces smaller-size fusion intervals for all setups. Secondly, as compared

with the same setups in Table 4.1, by adding history the system can further reduce

the expected sizes for all setups, even when the attacker also has access to historical

measurements.
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4.6.8 Evaluation

To evaluate the sensor transmission scheduling technique proposed in this section, we

illustrate how it can be implemented on an unmanned ground vehicle. We provide

both simulation and experimental results using the LandShark.

Simulations

For our simulations, we used four of the LandShark’s velocity sensors, namely the

two wheel encoders, the GPS and the camera. The encoders’ intervals were deter-

mined based on the measurement error and sampling jitter provided by the man-

ufacturer, whereas the GPS and camera intervals were determined empirically, i.e.,

the LandShark was driven in the open and largest deviations from the actual speed

(as measured by a high-precision tachometer) were recorded for each sensor. The

interval sizes (at a speed of 10 mph) were computed to be 0.2 mph for the encoder,

1 mph for the GPS, and 2 mph for the camera.

To illustrate the advantages of the Ascending schedule, the following scenario was

simulated – three LandSharks are moving away from enemy territory in a straight

line. The leader sets a target speed of v mph, and the two vehicles behind it try

to maintain it for safety reasons. Each vehicle’s velocity must not exceed v + δ1 as

that may cause the leader to crash in an unseen obstacle or one of the other two

LandSharks to collide with the one in front. Speed must also not drop below v − δ2

as that may cause the front two vehicles to collide with the one behind. If either

of these conditions occurs, a high-level algorithm takes control, switching to manual

control of the vehicles. These constraints were encoded via the size of the fusion

interval – if the fusion interval contains a point less than or equal to v−δ2 or greater

than or equal to v + δ1, then a critical violation flag is raised.

We simulated multiple runs of this scenario, each consisting of two rounds. The

same sensor (randomly chosen at each run) was assumed attacked during the two

rounds. In each round random (but correct) measurements were generated for each
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Table 4.4: Simulation results for each of the three schedules used in combination
with pairwise intersect. Each entry denotes the proportion of time that the corre-
sponding schedule generated a critical violation when there was none.

Ascending Descending Random
History Used

More than 10.5 mph 0% 2.98% 4.9%
Less than 9.5 mph 0% 2.63% 4.8%
No History Used
More than 10.5 mph 0% 15.29% 5.22%
Less than 9.5 mph 0% 16.8% 5.61%

sensor and then fusion intervals were computed at the end of the second round under

the Ascending and Descending schedules (using strategy AS1). For completeness, a

different Random schedule was used during each round in order to investigate other

schedules that were not analyzed in depth. For each schedule, the fraction of runs

was computed that led to a critical violation, as defined in the previous paragraph.

The target speed was set to be 10 mph, with δ1 = 0.5 and δ2 = 0.5, and system

dynamics were assumed to be xk+1 = xk + νpk , with |νpk | ≤ 10. The results are

shown in Table 4.4. As can be seen, no critical violations were recorded under the

Ascending Schedule, whereas the Descending and Random schedules both produced

some.12 In addition, adding history has greatly reduced the number of violations,

both for the Descending and the Random schedules.

Experimental Validation

In addition to the simulations shown above, experiments were performed using the

LandShark robot. They were used to compare the two attack strategies described in

the paper as well as to illustrate the advantages of the Ascending schedule regardless

of the attack strategy used.

As argued in Section 4.6.6, attack strategies can only be compared when the

12Note that all critical violations recorded under the Descending and Random schedules are false
alarms, i.e., the system is not in an unsafe state but is led to believe it is in one due to the attack.
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Table 4.5: Average size of the fusion interval for each of the four scenarios.

Ascending schedule Descending schedule
Optimization strategy 0.399m/s 0.652m/s
Offset strategy 0.395m/s 0.483m/s

compromised sensors are not at the beginning or end of the communication schedule

but in the middle instead. Thus, in the experiments only the mid-schedule sensors

were compromised. In the experiments, the LandShark was driven straight and the

size of the fusion interval for each scenario was computed as soon as measurements

were obtained from all sensors. Note that three sensors were used in the experiments

(GPS and two encoders), with the right encoder being in the middle of the schedule,

i.e., under attack.

Figure 4.12 presents the results of the experiments.13 During the run of the

LandShark, the attack (as computed by AS1 and AS2) on the right encoder was

turned on and off several times, and we only recorded the fusion interval sizes at the

rounds with an attack. Since the rounds were independent, they were concatenated

in Figure 4.12 as if the system was always under attack. The four curves represent

the size of the fusion interval for each scenario. As is apparent from the figure, the

Ascending curves are almost invariably below, but never above, the Descending. This

confirms our results that the use of the Ascending communication schedule reduces

the attacker’s impact on the performance of sensor fusion. In addition, it is clear that

the optimization attack strategy (i.e., AS1) outperforms the offset one (i.e., AS2) at

virtually every round and with both schedules. Finally, Table 4.5 summarizes the

results by providing the average size of the fusion interval for each scenario.

13A video with the experiments is available at https://www.youtube.com/watch?v=C8jvo3xe5XU.

121



Figure 4.12: Comparison of the sizes of the fusion intervals as obtained with the two
attack strategies, optimization (AS1) and offset (AS2), and two schedules.

4.7 Sensor Fusion in the Presence of Transient

Faults

Having developed in the previos sections the sensor fusion framework for nominal

systems, in this chapter we note that sensors sometimes experience faults during

their operation and do not conform to the nominal observation model. Thus, the

classical sensor fusion approach developed in the previous sections loses its worst-

case guarantees since it might be possible for all sensors to experience transient

faults at the same time. Therefore, in this section we develop a modified sensor

fusion algorithm whose output is still guaranteed to contain the true value even in

the case of transient faults.

It is important to note that transient faults may occur during the systems normal

operation and disappear shortly after. In fact, most sensors exhibit a transient fault

model that bounds the amount of time in which they provide wrong measurements.

For example, it is not uncommon for GPS to temporarily lose connection to its satel-
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lites (or receive noisy signals), especially in cities with high-rise buildings. Similarly,

a sensor transmitting data using an over-utilized network (e.g., with the TCP/IP

protocol with retransmissions) may fail to deliver its measurements on time, thus

providing irrelevant information when the messages do arrive. Due to their short

duration, however, transient faults should not be considered as a security threat to

the system.

In contrast, permanent faults are sensor defects that persist for a longer period

of time and may seriously affect the systems operation. For instance, a sensor may

suffer physical damage that introduces a permanent bias in its measurements. In

such a scenario, unless the fault can be corrected for in the software, the system

would benefit from discarding this sensor altogether.

Sensor attacks can manifest as either transient or non-transient (possibly Byzan-

tine) faults, depending on the attacker’s goals and capabilities. Masking a sensor’s

measurements as a transient fault may prevent the attacker from being discovered

but limits his capabilities. On the other hand, if the attacked measurements are

consistently wrong and resemble a permanent fault, they may inflict more damage

but may be detected quickly. We analyze both kinds of attacks and guard against

their possible effects: in Chapter 6, we propose 1) a detector for the more dangerous,

but easier to detect, kind of attacks, whereas in this section we develop 2) a mod-

ified sensor fusion algorithm whose output is guaranteed to contain the true state

regardless of the manifestation of transient faults (or attacks that appear as transient

faults).

In order to formalize the notion of a transient fault, we make use of sensor tran-

sient fault models (TFMs) that are now being provided by some manufacturers [82].

Such a model consists of three dimensions: (1) polyhedron size, (2) window size, and

(3) number of allowed faulty measurements per window. At the same time, such

specifications are not always available, so one of the contributions of this section is

a method for selecting the three parameters based on observed training data. We
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illustrate this with a real-data case study using the LandShark.

Once a TFM is developed for each sensor, we propose a modified sensor fusion

algorithm whose ouput, the filtered fusion polyhedron, is guaranteed to contain

the true state even in the presence of transient fautls (or attacks that manifest

as transient faults). The performance of the modified sensor fusion algorithm is

evaluated using real data collected from the LandShark robot.

4.7.1 Problem Statement

In this section, we formalize the problem of sensor fusion in the presence of transient

faults and emphasize the differences from the no-fault case.

System Model

Similar to the classical sensor fusion alorithm in Section 4.4, we note that the tech-

niques developed here are independent of system dynamics, hence no assumptions

on dynamics are made:

xk+1 = f(xk, uk) + νpk . (4.13)

The nominal sensor model is also the same as in Section 4.4, i.e., each sensor i

provides a direct measurement of the state at time k of the form

yi,k = xk + vi,k, (4.14)

which is then converted to a polyhedron Pi,k such that

Pi,k = {yi,k + z ∈ Rd | Biz ≤ bi}. (4.15)

The main difference between the two models is that non-attacked sensors can

now provide faulty measurements as well, i.e., they can experience transient faults.

Definition (Faulty measurement). A sensor si provides a faulty measurement Pi,k
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at time k, if the true state is not included in the polyhedron, i.e.,

xk /∈ Pi,k.

The measurement is considered correct otherwise.

Transient Fault Model

By their nature, faulty measurements occur infrequently and usually do not indicate

a permanent problem with the sensor. To reflect this feature and motivated by recent

manufacturer trends to provide faulty-measurements-per-window specifications [82],

we introduce the notion of a sensor’s transient fault model (TFM). A TFM for a

sensor si is a triple (Ei, ei, wi), where Ei represents the linear inequalities specifying

the size of the polyhedron (i.e., the values Bi and bi in (6.3)) and (ei, wi) is a transient

threshold specifying that si can output at most ei faulty measurements in any window

of wi measurements. To relate the TFM to the original sensor fusion framework, in

the conservative case the error bounds Ei would be specified large enough so that

no faults are ever observed, i.e., ei = 0 for any wi. The TFM formulation, on the

other hand, allows more flexibility by allowing tighter error bounds at the expense

of declaring some sensor measurements “faults”.

With this in mind, if si complies with its TFM, then any faulty measurements

are deemed transient faults. Otherwise, it is non-transiently faulty.

Definition (Non-transiently faulty sensor). A sensor si is non-transiently faulty at

time k if it has produced more than ei faulty measurements in the last window of wi

measurements, i.e., (
k∑

k′=k−wi+1

F (i, k′)

)
> ei, (4.16)

where F (i, k) = 1 if si outputs a faulty measurement at time k, and F (i, t) = 0,

otherwise.
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Attack Model

Note that formalizing attacks in a way that would distinguish them from faults is

challenging. The reason for this is that for any definition of a fault, it is possible for

an attacker to mask his measurements as a fault in order to avoid detection; it is

even possible for the attacker to just relay the actual sensor measurements. Thus, in

order to scope the problem, we split our approach in two: 1) we develop in Chapter 6

a detector for attacks that manifest as the most disruptive kind of faults, namely

non-transient faults; 2) for attacks that manifest as transient faults, we develop the

modified sensor fusion algorithm presented in this section.

Thus, in this section we assume that all attacks that manifest as non-transient

faults have been detected and discarded. The remaining attacked sensors are there-

fore assumed to comply to their transient fault models, i.e., all sensors are assumed

to produce only a bounded number of faulty measurements. At the same, no as-

sumptions about each individual faulty measurement is made (e.g., when it might

occur or what the measurement might be).

Problem Statements

There are two problems addressed in this chapter. The first one arises from the fact

that TFM’s are not widely available for current sensors and are not straightforward

to obtain.

Problem. Given a system with n sensors and a set of training measurement data,

develop a transient fault model for each sensor si.

Once TFMs are available, we consider the problem of finding a bounded fusion

polyhedron that is guaranteed to contain the true value at each time.

Problem. Given a system with n sensors and a transient fault model (Ei, ei, wi) for

each sensor, develop a sensor fusion algorithm that produces a fusion polyhedron that

is guaranteed to contain the true value at each time.
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4.7.2 Transient Fault Model Parameter Selection

Before presenting the sensor fusion algorithm in the presence of transient faults,

in this section we first outline a framework to choose the TFM parameters. As

mentioned earlier, manufacturers are transitioning towards providing transient fault

specifications for their sensors to allow for more realistic analysis [82]. However, when

the TFM of a sensor is not provided, it is necessary to identify the TFM parameters

from empirical data. Note that we focus on the one-dimensional case only (i.e., each

sensor provides an interval); the approach could be straightforwardly extended to

d-rectangles by repeating the same procedure for all dimensions. At the same time,

developing such parameters for multidimensional polyhedra is more challenging and

is left for future work.

Due to the fact that it is used for worst-case analysis, the abstract model we

obtain for each sensor must ensure that the sensor’s interval contain the ground truth

except in the case of a faulty measurement. In contrast, probabilistic sensor models

construct a probability distribution of the sensor’s possible measurements and are not

naturally suited for worst-case analysis.14 Thus, statistical approaches to parameter

selection (e.g., the best-fit Poisson process) are unsuitable because they estimate

parameters to maximally explain the data, without providing worst-case bounds.

Therefore, we provide a new method for selecting the TFM parameters from empirical

data. It is important to note that while the training data is assumed to contain no

attacks, no assumptions are made about the presence of faulty measurements.

To empirically identify the TFM parameters, we apply the following procedure.

First, we gather sensor measurements with known true state as training data (e.g.,

by applying a constant input to an automotive CPS and adjusting for the bias in

the input-output speed relation). Next, we examine the data and identify the set of

feasible parameters (ε, e, w) (to simplify notation, the set of error bounds E is now

14Note that it might be possible to use probabilistic models for worst-case analysis by constructing
bounds around all measurements with non-zero probability of occurring. This approach, however,
reduces to the abstract model, hence we do not consider it in this dissertation.
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Figure 4.13: Sample plots of the proportion of faults in a window (e/w) against the
error bound (ε).

merged into a single parameter ε, which denotes the size of the sensor’s interval) by

sliding a window of size w and finding the worst-case number of faulty measurements

e in a window for different values of ε.

For a fixed window size w, intuitively, there exists a relation between ε and e.

Suppose that we plot the proportion of the number of faulty measurements in a

window (e/w) against ε (Figure 4.13 shows possible examples of such curves for

different window sizes). Then, there can be observed a few interesting patterns.

To begin with, there is a large enough ε such that no faulty measurements can

ever be observed (i.e., e = 0). As ε is decreased from that point, the number of

faulty measurements should slowly increase. The increase rate should be relatively

moderate while ε is in the range of underlying true TFM. In other words, e increases

in a relatively constant rate as ε decreases, because ε gradually excludes more faulty

measurements that occur transiently. Once ε passes a certain threshold, it enters

the range of the underlying noise model where most of the sensor measurements
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lie. Thus, as ε decreases from this threshold, the number of measurements that are

deemed faulty increases rapidly. We refer to the threshold as a “knee point”.

We argue that the knee points should be selected as the values for the TFM.

On the one hand, they are outside of the sensor’s underlying noise model, thus not

making noisy measurements be flagged as faulty. On the other, they are smaller

than the sensor’s underlying TFM, thus forcing most faulty measurements to be

declared as such. Consequently, the knee points govern the choice of ε and e for any

window size w. Note that the right window size depends on the purpose for which

it is used; a larger window size will better capture the true TFM; at the same time,

larger window sizes might result in greater uncertainty (i.e., larger fusion intervals)

as historical measurements need to be mapped to the present time using system

dynamics (with corresponding process noise). Section 4.7.4 provides a real-data

evaluation of the process of obtaining a sensor’s TFM.

4.7.3 The Filtered Fusion Polyhedron: A Modified Sensor

Fusion Algorithm

In this subsection we describe an algorithm that outputs a filtered fusion polyhedron

that is guaranteed to contain the true state and is bounded in size. The filtered

fusion polyhedron can be thought of as the system’s conservative, but correct, guess

of its current state – since it does not trust its last fusion polyhedron, it examines

the historical fusion polyhedra to improve this estimate.

We begin the analysis by noting that the assumption of at most f faulty mea-

surements per round that is required in the original sensor fusion algorithm no longer

holds. This is due to the fact that each TFM only quantifies one sensor’s output

in isolation from the others. Thus, it is possible that all sensors15 provide faulty

measurements in a single round or that all are correct in a single round. Therefore,

f can now be considered as an input parameter to the fusion algorithm as opposed

15Only possible if all sensors have ei > 0.
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to a preliminary assumption. Note that if f is smaller than the actual number of

faulty measurements per round, the resulting fusion polyhedron may not contain the

true value.

The chosen value of f introduces a trade-off between accuracy and precision of

the fusion polyhedron. In particular, decreasing f will result in a smaller (i.e., more

precise) fusion polyhedron in any given round. On the other hand, it may increase

the proportion of rounds where the fusion polyhedron does not contain the true value

(i.e., less accurate), in which case a more conservative value of f would be required.

Therefore, in this section we provide a way of quantifying the effect of the value of

f on the performance of sensor fusion.

To formalize these statements, suppose that we are given a TFM for each sensor.

Since we consider a periodic system in which sensors are sampled at the same rate,

in this section we assume that window sizes are the same for all sensors, i.e., the

TFM’s have the form (Ei, ei, w). Define a global fault as a round in which there are

more than f faulty measurements. Recall that in such a case the fusion polyhedron

is not guaranteed to contain the true value.

Definition (Global Fault). Given an upper bound f on the number of faulty mea-

surements in a given round, a global fault occurs if more than f sensors provide

faulty measurements in that round.

The goal is to find a global fault model (E,W )f for the entire system in which

there are at most E rounds with a global fault in any window of W rounds. The

fault model will determine how robust (and consequently, conservative) any filtering

algorithm has to be in order to produce a meaningful output. Note that the values

of (E,W )f depend on the sensors’ TFM but not on the actual sensor measurements,

even if they are faulty; hence, this result holds even in the presence of stealthy attacks

that comply with the sensors’ TFMs.

Obtaining a closed-form solution for the values of E andW is made difficult by the

combinatorial nature of the problem. Therefore, we have derived an algorithm that,

130



Algorithm 3 Computing the Global Fault Model of Sensor Fusion

Input: n transient fault models of the form (Ei, ei, w) and sensor fusion parameter
f

1: WR ← w
2: ES ← order descending(

⋃
ei)

3: E ← 0
4: while WR > 0 and ES(f + 1) > 0 do
5: for {i← 1; i ≤ f + 1; i← i+ 1} do
6: ES(i)← ES(i)− 1
7: end for
8: ES ← order descending(ES)
9: WR ← WR − 1

10: E ← E + 1
11: end while
12: W ← w
13: return (E,W )

given the TFMs and f as input, outputs E and W . As formalized in Algorithm 3,

it computes the largest possible number of rounds in which at least f + 1 faulty

measurements can occur; this is the largest number of rounds in which the fusion

polyhedron is not guaranteed to contain the true value. Intuitively, at each round

the algorithm “schedules” faulty measurements for the sensors that have the largest

number of “allowed” faulty measurements until the end of the window.

Theorem 14. The output, E, of Algorithm 3 is the largest number of global faults

possible in a window of size W .

Note that Algorithm 3 is polynomial in the number of sensors, n, and is pseudo-

polynomial in the window size, w. At the same time, we note that it is executed

offline, at design stage, hence the execution time will not be prohibitive even for very

large window sizes. To inspect which choice of f is best suited for a given system,

designers need to take into account Algorithm 3 and its output. Comparing different

pairs (E,W )f may not always be possible in a quantitative way but an analysis

similar to that of Figure 4.13 may be performed so that the best combination of

accuracy vs. precision is chosen.
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Algorithm 4 Filtered Fusion Polyhedron

Input: mapping functionm, an array FP containingW fusion polyhedra (in chrono-
logical order) and a bound E on the number of global faults

1: FPC ← ∅
2: for {i← 1; i ≤ W − 1; i← i+ 1} do
3: mapped P ← m(m(· · ·m(FP (i)))) // map i times
4: FPC .add(mapped P )
5: end for
6: FPC .add(FP (W ))
7: return sensor fusion(FPC , E)

Using the intuition of Algorithm 3 (i.e., mapping historical sensor measurements

to the current time and arguing about how many of them could be faulty in the worst

case), it is now possible to derive a bounded fusion polyhedron that is guaranteed to

contain the true value. To do this, we once again make use of the function m that

maps past polyhedra to the current time:

m(Pi,k) = {z ∈ Rd | z = Ap+ q,∀p ∈ Pi,k, ‖q‖ ≤M}.

It is now possible to design an algorithm to compute the filtered fusion interval at

time k using the last W fusion intervals.

The proposed algorithm is formalized in Algorithm 4. Essentially, all fusion

polyhedra are mapped, using m, to the current time k, thus obtaining W polyhedra

at k. Then we apply the original sensor fusion algorithm – since at most E mapped

polyhedra are faulty, we output the smallest polyhedron that contains all points

that lie in at least W − E mapped polyhedra. Thus, a filtered fusion polyhedron

is computed that is a conservative, but bounded, estimate of the system’s current

state. Note that Algorithm 4 is polynomial both in the number of sensors and the

window size.

Proposition 10. The complexity of Algorithm 4 is O(CW 2 + W logW ) where

C is the cost of the mapping function m. Constructing the input array FP is

132



O((n log n)W ) where n is the number of sensors.

It is important to note that Algorithm 4 can be computed even more efficiently

by noting that when calculating the filtered fusion polyhedron at a given round, we

can reuse the result of the calculations of the previous round, i.e., only one round of

polyhedron mappings needs to be performed.

We note that Algorithm 4 does not always produce the smallest possible polyhe-

dron that is guaranteed to contain the true value. On other hand, as shown in the

above Proposition, it is efficient and can be implemented in real time whereas it is

difficult to obtain an algorithm that outputs such a polyhedron and is not exponen-

tial in the number of sensors and rounds. Finally, Algorithm 4’s output is guaranteed

to contain the true state and is bounded (provided E < dW/2e), so it is still in the

spirit of worst-case analysis.

4.7.4 Evaluation

In this section, we evaluate the performance of the modified sensor fusion algorithm

as well as the selection of the TFM parameters through a case study on the Land-

Shark. For this case study, three of the LandShark’s velocity sensors were used – the

two wheel encoders and the GPS. Each of these sensors can be filtered to provide a

velocity measurement at a rate of 10 Hz. Thus, we use the redundancy of velocity

measurements (i.e., one-dimensional intervals) to evaluate the proposed techniques

in the presence of transient faults (e.g., tire slip).

Transient Fault Model Parameter Selection

This subsection illustrates the selection of the TFM parameters following the method

described in Section 4.7.2. First, we collect the training data by driving the Land-

Shark straight at a constant speed of 1 m/s on different surfaces such as grass,

asphalt and snow, where the environment may cause transient faults (e.g., slipping
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(a) Sensor 1: Left Encoder

0 0.1 0.2 0.3 0.4 0.5
ϵ

0

0.2

0.4

0.6

0.8

1

e 
/ w

w=10
w=30
w=50
w=100
w=200

(b) Sensor 2: Right Encoder

0 0.1 0.2 0.3 0.4 0.5
ϵ

0

0.2

0.4

0.6

0.8

1

e 
/ w

w=10
w=30
w=50
w=100
w=200

(c) Sensor 3: GPS

Figure 4.14: Empirical plots of the proportion of faults in a window (e/w) against
the error bound (ε).

Table 4.6: Transient fault models for the sensors on the LandShark.

Window Size
L. Encoder R. Encoder GPS
ε e ε e ε e

w = 1 0.26 n.a. 0.32 n.a. 0.48 n.a.
w = 10 0.229 2 0.234 2 0.295 2
w = 30 0.195 6 0.207 6 0.19 9
w = 50 0.195 11 0.199 11 0.19 9
w = 100 0.131 26 0.168 22 0.19 9
w = 200 0.117 36 0.126 37 0.19 10

tires would mean encoders provide higher-than-actual velocity). The gathered train-

ing data corresponds to 2400 velocity measurements by each sensor at 10 Hz (i.e.,

about four minutes). By examining the training data, we obtain Figure 4.14, which

is the real-data equivalent of Figure 4.13.

Table 4.6 summarizes the chosen parameters, where the window size w is varied

between 10, 30, 50, 100 and 200. For example, for w = 50 in GPS (Figure 4.14c),

the knee point appears around ε = 0.19 and e/w = 0.18, corresponding to e = 9.

Note that the knee points are more clearly visible as the window size increases.

Finally, we note that the original sensor fusion (SF) approach would use the most

conservative error bounds (interval sizes) because it is designed for the worst case.

Specifically, in Figure 4.14, we select the smallest ε such that no faulty measurements
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can be observed (e.g., 0.48 for GPS). Note that the parameters for SF would be

equivalent to w = 1. We observe that one benefit of using TFM is that as the

window size increases, the size of error bounds is generally reduced, thus allowing

more precise sensor fusion (e.g., with w = 200, the interval sizes are more than twice

smaller than those with w = 1).

Evaluation of Filtered Fusion Polyhedron

To evaluate the usefulness of the filtered fusion polyhedron (note that it is just a one-

dimensional interval in this case study), we once again use three of the LandShark

velocity sensors, namely the two encoders and GPS. As discussed in Section 4.7.3,

there exists a trade-off between the precision and the accuracy of the fusion poly-

hedron depending on the choice of f . Thus, we evaluate these metrics using the

LandShark data; note that we use the same TFM parameters as the ones shown in

Table 4.6.

To do this, we proceed as follows: we first collect data from 17 runs of the

LandShark, each consisting of about 500 velocity measurements by each sensor at

10 Hz. The true state is obtained in the same way as in TFM case study. Varying

f between 0 and 1,16 we perform sensor fusion at each round and check whether

the fusion interval contains the true state (i.e., there is a global fault). Then we

compute the worst number of rounds (denoted by Ê) with global faults in a window

and compare that with the theoretical bound E computed by Algorithm 3 given the

TFM parameters for each sensor. In addition, we calculate the average size of the

correct fusion intervals for each setup (denoted by FI).

Table 4.7 shows the performance results, where in addition to the absolute values

of E and Ê, we show their proportion of the window size in a percentage. Ê is never

larger than E but is sometimes equal, hence the worst case is indeed observed in

reality. At the same time, as the window size increases, the analytical worst-case

16The case of f = 2 is excluded because n = 3, and, in that case, the fusion interval cannot be
bounded in general.
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Table 4.7: Sensor fusion performance for different f . E (Ê) is the theoretical (em-
pirical) worst-case number of rounds with global faults.

Window Size
f = 0 f = 1

E Ê E Ê
w = 10 6 (60%) 6 (60%) 3 (30%) 2 (20%)
w = 30 21 (70%) 9 (30%) 10 (33%) 3 (10%)
w = 50 31 (62%) 9 (18%) 15 (30%) 3 (6%)
w = 100 57 (57%) 36 (36%) 28 (28%) 8 (8%)
w = 200 83 (42%) 68 (34%) 41 (21%) 27 (14%)

Table 4.8: Average size of filtered fusion interval for different values for f and noise
bound M .

Window Size
f = 0 f = 1

M = 0.005 M = 0.001 M = 0.005 M = 0.001
w = 10 0.504 0.466 0.499 0.466
w = 30 0.545 0.400 0.493 0.397
w = 50 0.635 0.403 0.540 0.399
w = 100 0.815 0.366 0.598 0.358
w = 200 1.036 0.371 0.673 0.334

becomes less tight. Furthermore, as f increases, the number of worst-case global

faults decreases. Regardless of the choice of f , both metrics generally improve with

window size. The reason is that the TFM for a bigger window tends to have a smaller

(e/w) ratio (resulting in better accuracy).

In addition, we also computed the filtered fusion interval at each round for the

different setups. Since a constant input was used to drive the LandShark, the ve-

hicle’s state does not change except for process noise. Since the noise is not known

exactly, we used two different bounds to compute the filtered fusion interval. Ta-

ble 4.8 presents the average size of the filtered fusion interval for the two values of f

and for noise bounds equal to either 0.005 m/s or 0.001 m/s. For larger values of the

noise, the proposed filtering algorithm does not perform very well with large win-
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Table 4.9: Average running time (in microsecond) of filtered fusion for different
values for f and noise bound M .

Window Size
f = 0 f = 1

M = 0.005 M = 0.001 M = 0.005 M = 0.001
w = 10 33 35 34 35
w = 30 38 39 44 43
w = 50 43 47 43 48
w = 100 57 54 50 56
w = 200 72 87 72 86

dows due to the increased uncertainty that it introduces. Yet, for the smaller noise

bound using larger windows is still more beneficial for the system. Since the filtered

fusion interval always contains the true value and its size is not significantly larger

than the average size of the fusion interval in a given round, we argue that systems

with small noise should utilize the filtered fusion interval as a correct conservative

estimate of their state.

Lastly, to analyze the time overhead of Algorithm 4 which calculates the filtered

fusion interval, we measured the average running time of one round of the filter fusion

for the different setups.17 Table 4.9 shows that although the running time increases

with the window size W , the time overhead is negligible overall (considering that

the sensors’ sampling frequency is 10Hz).

17The running time was measured on a machine with a 2.8 GHz Intel Core i7 processor.
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Chapter 5

Context-Aware Sensor Fusion

Having developed the sensor fusion framework for safety detection with guarantees

in Chapter 4, in this chapter, we present an approach for incorporating context mea-

surements in order to further strengthen the guarantees of sensor fusion. As argued

extensively in Chapters 1 and 3, context measurements are high-level representa-

tions of data collected from the system’s environment sensors; as such, these discrete

measurements can be used to provide (rough) information about the system state

as well. Similar to the context-aware estimation case, context measurements can

be incorporated into the sensor fusion framework as well. Context measurements

are especially useful in scenarios where standard continuous sensors might be faulty

or attacked (e.g., in a scenario with a perfectly attackable system that is unable to

detect an attack on its continuous sensors [147]).

Similar to Chapter 3, in this chapter we focus on binary measurements as a

rich subclass of all context measurements. In particular, each measurement ybi,k is

equal to 1 if a context element is detected and -1 otherwise. As argued in Chapter 3,

examples of binary measurements include building detection scenarios (implying that

the system must be close to the detected building) as well as threshold medical alarms

(meaning that the patient might be in a critical state).

Contrary to the nominal case discussed in Chapter 3, where we model context
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measurements in a probabilistic setting, in this framework we employ worst-case

analysis since we would like to provide safety guarantees about the system’s state.

Specifically, when a context measurement of 1 is received, it is mapped to a bounded

set of possible values of the system state. Similar to the attack-resilient sensor

fusion setting, we assume each set is a bounded polyhedron. Modeling context

measurements as polyhedra captures a wide class of context measurements. For

example, if a building is detected using image processing, a polyhedron (e.g., a

trapezoid) in front of the building could be constructed in order to indicate the

system can only detect the building from within that set. Similarly, if a radio beacon

is detected, a rectangle around the beacon is constructed so as to indicate the system

is close to that beacon.

Given this interpretation of context measurements, it is now possible to extend

the continuous-sensor fusion algorithm (Algorithm 1) to the context-aware case.

Note that context measurements can also be faulty/attacked, similar to continuous

measurements. Thus, once again we make the same assumption that less than half

of all sensors (continuous and binary) are attacked at any given time. With this

in mind, the resulting algorithm is similar to the original sensor fusion algorithm,

which essentially constructs all sets that might contain the true state.

We evaluate the context-aware sensor fusion algorithm in a case-study simulation

using the LandShark robot. In this scenario, the LandShark only has access to GPS

for estimation and control purposes. At the same time, an undetectable attack is

performed on GPS such that the system believes it is safe when it is in fact heading

towards an obstacle. By incorporating context measurements obtained from nearby

buildings, however, the system can detect it is in an unsafe state and apply an

emergency control response (e.g., shutdown).
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5.1 Problem Statement

This section formulates the system and attack models used in this chapter before

formulating the context-aware sensor fusion problem statement.

5.1.1 System Model

The system model is the same as the standard sensor fusion model, with the im-

portant addition of context measurements. In particular, no assumptions are made

about system dynamics (since the technique is applied independently at each time

step):

xk+1 = f(xk, uk) + νpk . (5.1)

The nominal plant sensor model is also the standard abstract sensor model, i.e.,

each plant sensor si provides a direct measurement of the state at time k of the form

yci,k = xk + νmi,k, (5.2)

which is then converted to a polyhedron Pi,k such that

Pi,k = {yci,k + z ∈ Rd | Biz ≤ bi}. (5.3)

In addition to continuous plant measurements, we also consider context mea-

surements in this chapter. As noted in the introduction of this chapter, we focus

on binary context measurements, such that each measurement ybi,k is either 1 or -1

depending on whether a context element is detected. When a measurement of 1 is

received, the measurement is mapped to a bounded polyhedron Qi,k similar to the

continuous abstract sensor model, i.e.,

ybi,k = 1⇒ xk ∈ Qi,k

ybi,k = −1⇒ xk ∈ Q̄i,k,
(5.4)
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where

Qi,k = {z ∈ Rn | Diz ≤ di},

for some matrix Di and vector di, and Q̄i,k is the complement of Qi,k. As men-

tioned above, such polyhedra can capture a wide variety of context detections, e.g.,

a building recognition scenario.

In this chapter, we develop approaches for the nominal sensor fusion framework,

i.e., we assume that all non-attacked sensors (both continuous and binary) provide

correct measurements. We leave context-aware sensor fusion with transient faults

for future work.

5.1.2 Attack Model

The attack model for continuous sensors is also the same as in the standard sensor

fusion setting, i.e., if a sensor is attacked then no assumptions are made about what

measurements it sends. The attack model for context measurements has several

aspects, as described below.

There are two ways in which an attack on a context measurement can manifest

– it can indicate the state is in Qi,k when it is not (i.e., a false positive) or it can

fail to indicate the state is in Qi,k when it is in fact there (i.e., a false negative). In

this chapter, we focus on false positives only – in fact, as will become apparent in

Section 5.2, the context-aware sensor fusion algorithm only considers positive context

measurements in order to keep the worst-cases guarantees of sensor fusion. Thus,

an attacked context measurement is assumed to provide false positives only (thereby

wrongly implying the state is in the corresponding set Qi,k). Incorporating false

negatives in the fusion algorithm is left for future work (as discussed in Chapter 7).

Similar to the standard sensor fusion setup, in order to be able to provide worst-

case guarantees, we assume that less than half of all sensors (continuous and binary)
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are attacked.

5.1.3 Problem Statement

Given the above system and attack models, respectively, the context-aware sensor

fusion problem is as follows.

Problem. Given a system with n sensors (both continuous and binary), the context-

aware sensor fusion problem is how to obtain a fusion polyhedron in a single time

step, i.e., a minimal-volume polyhedron that is guaranteed to contain the true state.

5.2 Approach

Given the system and attack models in Section 5.1, the context-aware sensor fusion

procedure is similar to the standard sensor fusion algorithm presented in Algorithm 1.

The modified approach is shown in Algorithm 5. Let P denote the set of all n

measurements, with f again denoting an upper-bound on the number of corrupted

measurements (i.e., not containing the true value). Let there be nc polyhedra from

continuous sensors in P and nb polyhedra from context measurements such that

n = nc + nb. In order to find a fusion polyhedron that is guaranteed to contain the

true value and is minimal in size, we find all intersections of n − f measurements

and take their convex hull.

Thus, the fusion polyhedron is once again the minimal polyhedron that is guaran-

teed to contain the true value. Note that no comparison can be made with the fusion

polyhedron using only the continuous sensors because even computing such a fusion

polyhedron would require assuming an upper bound on the number of attacked con-

tinuous sensors. The benefit of adding context measurements is that sensor fusion

can provide worst-case guarantees in the presence of more (or all) continuous sen-

sor attacks than in the no-context setting as long as a sufficient number of correct
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Algorithm 5 Context-Aware Sensor Fusion Algorithm

Input: An array of sets P of size n (n = nc+nb) and an upper bound on the number
of corrupted measurements f

1: C ← combinations n choose n minus f(P )
2: RNk,f ← ∅
3: for each K in C do
4: add(RNk,f , intersection(K))
5: end for
6: return conv(RNk,f )

context sensors are used (such that the total number of attacked sensors is less than

half).

Note that Algorithm 5 makes no use of the sets Q̄i,k, i.e., it ignores context

measurements when they are not received. The reason for this is that if these sets

are incorporated in the algorithm, it would not be possible to provide a bounded

polyhedron in the worst-case because the sets Q̄i,k are unbounded (as complements

of the bounded Qi,k sets). Thus, although some information is lost while ignoring

context measurements of -1, we do so at the benefit of being able to maintain our

worst-case guarantees. Providing guarantees while incorporating negative context

measurements is left for future work.

5.3 Case-Study Evaluation

This section presents a case-study evaluation of the context-aware sensor fusion

technique. We simulate an example of a so called perfectly attackable system [147],

i.e., a system whose continuous sensor is under attack such that the estimation error

can grow unbounded but the system cannot detect the attack. We show that the

system can use context measurements in such a case in order to detect when it is in

an unsafe state.

In particular, we simulate a scenario in which the LandShark is moving in an

urban environment and trying to avoid an obstacle. The entire scenario is shown in
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Figure 5.1: Perfectly attackable system using context measurements. Kalman filter
estimates lead the system to believe it is safe whereas the context-aware sensor fusion
bounds indicate that the system is unsafe.

Figure 5.1; the LandShark tries to avoid the wall on the East side, so it initially goes

North until it believes it is safe. However, the LandShark’s only position sensor, a

GPS, is attacked such that the Kalman filter estimates fool the system in believing

it is safe – the GPS attacks are also carried out in such a way so as to avoid detection

by standard anomaly detectors (e.g., a chi-squared detector [147]). As a result, the

system starts heading East too early and crashes into the wall.

On the other hand, we note that since the LandShark is going through an urban

environment, it can use image processing to recognize nearby buildings and obtain

context measurements from them. Thus, for each building on the map, the Land-

Shark receives a context measurement (in the form of a square around the building)

if it is in the proximity of that building. At each time step, all context measure-

ments are used together with the GPS measurement in the context-aware sensor

fusion algorithm; the upper and lower bounds of the resulting fusion polyhedron are

also shown in Figure 5.1. As can be seen in the figure, the fusion polyhedron always
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contains the true value and, more importantly, indicates that the system is not safe,

i.e., it is not North of the obstacle. Thus, this is an example in which the system can

greatly benefit from context measurements and can avoid the obstacle (e.g., by going

North until the fusion polyhedron contains no points that are inside the obstacle).
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Chapter 6

Attack Detection in the Presence

of Transient Sensor Faults

Having developed multiple techniques for estimation and safety detection in the

previous chapters, in this chapter we note that all these techniques rely on sensors

providing accurate information. In particular, although the sensor fusion approaches

are indeed robust to attacks on half of the system’s sensors, their performance could

be improved if attacked sensors are identified and discarded. Thus, in this chapter

we provide a general technique for sensor attack detection and identification.

One of the main requirements of such a detection algorithm is that it accounts

for the fact that sensors might sometimes provide faulty measurements. As argued

in Chapter 4, sensors often experience transient faults that usually do not last long

and recover on their own (e.g., GPS losing connection in a tunnel and regaining

it afterwards); thus, one can design controllers that are robust to such scenarios.

Since transient faults are not a security threat for CPS, in this chapter we develop

an attack detection algorithm that does not raise false alarms due to temporarily

wrong sensor measurements and instead only flags actual sensor attacks.

As argued in Chapters 1 and 2, standard detection techniques either assume 1)

the system is in a known nominal state, i.e., known initial condition, such that a
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change detection approach could be employed [25, 52, 94, 130, 138, 221] or 2) that

a specific fault/attack is present such that specific detectors for that fault/attack

could be developed, e.g., generalized likelihood ratio tests or sequential probability

ratio tests [23, 24, 177, 178]. At the same time, these two assumptions are not

justified in modern CPS that may never have a known nominal state (e.g., perfectly

attackable systems [147]) and may not know in advance what faults/attacks they

might experience.

Redundancy-based approaches eliminate the need for the above unrealistic as-

sumptions by adding more sensors and assuming that less than half are under at-

tack [78, 211]. A major shortcoming of existing redundancy-based attack detection

works [109, 136] is that they conservatively treat transient faults as attacks. While

there exist papers distinguishing attacks from faults [21], they make specific as-

sumptions about the form or direction of faults/attacks, thus being unsuitable for

our problem.

Different from existing works, in this dissertation we address the problem of sensor

attack detection in the presence of transient sensor faults. Similar to Chapter 4, we

use the abstract sensor model (in which each sensor provides a polyhedron) – this

model is well suited for worst-case analysis due to the noise bounds it provides.

In order to distinguish between attacks and faults, similar to Chapter 4, we make

use of sensor transient fault models (TFMs) that are now being provided by some

manufacturers [82]. Such a model consists of three dimensions: (1) polyhedron size,

(2) window size, and (3) number of allowed faulty measurements per window. In

the case when such TFMs are not available, one may refer to Section 4.7.2 for an

approach to obtain such models from sensor data.

As noted in Section 4.7, depending on the attacker’s goals and capabilities sensor

attacks can manifest as either transient or non-transient faults. Masking a sensor’s

measurements as a transient fault may prevent the attacker from being discovered

but limits his capabilities. On the other hand, if the attacked measurements are
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consistently wrong and resemble a permanent fault, they may inflict more damage

but may be detected quickly. In this dissertation, we provide resilience to both kinds

of attacks: in this section, we present 1) a detector for attacks that manifest as

non-transient faults, whereas in Section 4.7 we developed 2) a modified sensor fusion

algorithm whose output is guaranteed to contain the true state even in the presence

of sensor attacks that might appear as transient faults.

In order to develop a detector for attacks that manifest as non-transient sensor

faults, we assume there exists a TFM for each sensor and propose a detection and

identification algorithm for sensors that do not comply with their TFMs. The al-

gorithm uses pairwise relationships between sensors – if two sensors’ measurements

are too distant from each other, then one of them must be wrong. By accumulating

this information over time, we develop a sound algorithm for attack detection and

identification.

Finally, we evaluate the performance of the detection algorithm (in terms of false

alarm and detection rates) using real data collected from the LandShark robot. In

particular, we collected measurement data from several runs of the LandShark; this

data was then retrospectively augmented with several kinds of attacks. The proposed

detector (configured with a large enough TFM window) is able to eventually detect

all sensor attacks, thus illustrating the usefulness of this approach.

6.1 Problem Statement

This section presents the system and attack models considered in this chapter before

formulating the problem of sensor attack detection in the presence of transient faults.

6.1.1 System Model

The system model used in this Section is the general abstract sensor model used in

Chapter 4. Similar to Chapter 4, we note that the techniques developed here are
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Sensor 
Measurement 

s1 
s2 
s3 
s4 

Fusion 
Interval 

t = 1 t = 2 t = 3 

Figure 6.1: Illustration of the benefit of the transient fault model. Each of s2, s3

and s4 provide one faulty measurement, but their other measurements are correct.

independent of system dynamics, hence no assumptions on dynamics are made:

xk+1 = f(xk, uk) + νpk . (6.1)

The sensor model is also the same model as in Chapter 4, where each sensor si

provides a direct measurement of the state at time k of the form1

yi,k = xk + νmi,k, (6.2)

which is then converted to a polyhedron Pi,k such that

Pi,k = {yi,k + z ∈ Rd | Biz ≤ bi}. (6.3)

In addition, similar to Section 4.7, each sensor has a corresponding TFM (Ei, ei, wi)

that specifies an upper bound ei on the number of faulty measurements in any win-

dow of size wi. For sensor si, the set Ei contains the pair (Bi, bi) that specifies the

shape of the corresponding polyhedron Pi,k.

To illustrate the benefit of the TFM, consider Figure 6.1. If one were to treat all

transient faults as attacks, then each of s2, s3 and s4 would be declared as attacked

because they each produce a faulty measurement in rounds 3, 2, and 1, respectively

(these faulty measurements can be detected because they do not overlap with the

1Note that measurements are not explicitly treated as continuous or binary in this chapter since
the technique treats them in the same way, i.e., by considering their corresponding polyhedra.
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fusion interval at the respective times); however, it is more beneficial for the system

to just discard the faulty measurements and continue the use the sensors at the times

when they do provide correct measurements.

6.1.2 Attack Model

As mentioned to the introduction of this chapter, we focus on detecting attacks that

manifest as non-transient sensor faults, i.e., the attacked sensor measurements do

not conform to their corresponding TFMs. Thus, in this chapter we treat all non-

transiently faulty sensors as attacked (even if an alarm is raised due to an actual

non-transient fault, we argue that this is not a false alarm since such a sensor might

compromise the system’s operation).

Definition (Attacked Sensor). A sensor is considered attacked if it is non-transiently

faulty.

Once again, we emphasize that attacks that manifest as transient faults are han-

dled in Section 4.7, where we developed a sensor fusion algorithm that provides

guarantees even in the presence of attacks that manifest as transient faults.

Finally, no assumptions are made on the number of attacked sensors. As long as

there is one non-attacked sensor in the system, attack detection is possible. Stronger

assumptions are needed for attack identification, as noted in the following sections.

6.1.3 Problem Statements

The problem addressed in this chapter is sensor attack detection in the presence of

transient sensor faults.

Problem. Given a system with n sensors and a transient fault model (Ei, ei, wi) for

each sensor, develop an algorithm to detect the existence of an attacked sensor and

possibly identify which sensor is under attack.
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6.2 A Sound Algorithm for Attack Detection and

Identification

In this Section we describe our approach to sensor attack detection and identification,

which aims to differentiate sensor attacks from mere transient faults given each

sensor’s TFM. This section assumes that a TFM has already been identified for each

sensor; one way of developing such models is presented in Section 4.7.2.

The detection algorithm developed in this chapter is based on Pairwise Inconsis-

tencies (PI’s) between two sensors. Two types of PI’s are the key concepts of our

approach: weak inconsistency and strong inconsistency. At a high level, we accumu-

late information about inconsistencies between sensor measurements over time and

utilize it for attack detection and identification. In the following subsections, we first

define each type of inconsistency and then present the attack detection/identification

method. We conclude with a discussion on the conditions on the TFM parameters

under which our approach can operate.

6.2.1 Weak and Strong Inconsistency

As usual, this section is built on the premise that the true state is unknown in general.

Thus, it is not always known which sensors have provided correct measurements.

However, we know how correct sensor measurements should relate to each other,

and mainly use this mutual information in our approach. The first relation between

two sensors, si and sj, is weak inconsistency. Two sensors are weakly inconsistent

at a given time if one of them provides a faulty measurement.

Definition (Weak Inconsistency). We say that sensors si and sj are weakly incon-

sistent at time k if one of them provides a faulty measurement at time k.

Since weak inconsistency is defined upon the unknown true state, it is impossible

to decide weak inconsistency in general. However, there exists a useful sufficient
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condition. If the intervals of two sensors do not overlap each other, one of them

must have provided a faulty measurement because the true value cannot lie in both

intervals. This condition is formally stated in the following lemma:

Lemma 3. If two sensors, si and sj, provide polyhedra that do not overlap at time

k, i.e.,

Pi,k ∩ Pj,k = ∅,

then at least one of the two sensors provided a faulty measurement at time k.

Note that both transient faults and attacks can cause weak inconsistency in a

round. Thus, to disambiguate between transient faults and attacks, we introduce

another relation between two sensors, namely strong inconsistency. Two sensors are

strongly inconsistent if and only if one of them is non-transiently faulty (i.e., it does

not comply with its transient fault model).

Definition (Strong Inconsistency). We say that sensors si and sj are strongly in-

consistent at time k if one of them is non-transiently faulty at time k.

Similar to weak inconsistency, strong inconsistency cannot be decided in general.

However, once again there exists a sufficient condition. If two sensors are weakly

inconsistent more times than a certain threshold in a window, they become strongly

inconsistent.

Lemma 4. Two sensors, si and sj, are strongly inconsistent at time k if the following

condition is true:  k′=k∑
k′=k−min(wi,wj)+1

WI(i, j, k′)

 > ei + ej (6.4)

where WI(i, j, k) = 1 if si and sj are weakly inconsistent at time k, and WI(i, j, k) = 0

otherwise.
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The notions of pairwise inconsistency in this subsection form a basis for the attack

detection and identification techniques to be explained in the following subsection.

6.2.2 Attack Detection and Identification

In this subsection, we describe our approach to attack detection and identification

using the notions of weak and strong inconsistency. An attack is detected when

there exist two sensors which are strongly inconsistent because one of them must be

non-transiently faulty. An attacked sensor is identified if it is strongly inconsistent

with multiple sensors. To propagate the strong inconsistencies over time, we use

a sequential detection approach (motivated by sequential detection theory [212])

and accumulate the information over time. These statements are formalized in the

remainder of this subsection.

Theorem 15. If two sensors, si and sj, are strongly inconsistent at any time k,

then one of them must be attacked.

Theorem 15 is the main result of this chapter. It says that the existence of a

strong inconsistency between two sensors is sufficient for the existence of an attack.

Thus, the attack detection algorithm developed in this chapter works by detecting

strong inconsistencies between sensors using the sufficient condition in Lemma 4.

As the existence of strong inconsistency between two sensors cannot determine

which sensor is attacked, we now address the attack identification problem. Note that

it is necessary to assume that at most a sensors are attacked such that a < n−1. To

explain the need for the assumption, suppose that sensor si is strongly inconsistent

with all other sensors. Without the assumption on a, it is impossible to declare that

si is attacked because si could be correct and all other sensors could be attacked,

or vice versa. For this reason, when a ≥ n − 1, there can exist no detector which

correctly identifies attacks based on pairwise comparisons alone.

When a < n− 1, there is a sufficient condition for identifying attacked sensors.
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Theorem 16. Assume a < n − 1 and let d(i) denote the number of sensors that

have been strongly inconsistent with si during the system’s operation. Then, si can

be identified as attacked if d(i) > a.

Next, we note that there exists a constraint on the TFM parameters governing

the feasibility of our PI-based approach. The following lemma provides a sufficient

condition for the impossibility of attack detection by the PI-based method:

Lemma 5. If ei + ej ≥ min(wi, wj) for all distinct i and j, then no attack can be

detected by our approach.

Finally, it is important to emphasize the soundness of the developed attack de-

tection/identification approach.

Proposition 11. The attack detection/identification methods proposed in Theo-

rems 15 and 16 are sound. In other words, the algorithms raise no false alarm

(assuming the transient fault model parameters are correctly specified).

6.3 Case Study

In this section, we evaluate the performance of the attack detection/identification

algorithm. For this case study, the same data as in Section 4.7.4 was used, i.e., three

of the LandShark’s velocity sensors were used – the two wheel encoders and the

GPS. The gathered data corresponds to 2400 velocity measurements by each sensor

at 10 Hz (i.e., about four minutes). The LandShark was driven on different surfaces

(namely, grass, asphalt and snow) such that different types of faults might occur.

Thus, we use the redundancy of velocity measurements (i.e., one-dimensional

intervals) to evaluate the proposed techniques in the presence of transient faults

(e.g., tire slip).
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Table 6.1: False alarm rate

Detector SF PI10 PI50 PI200

False Alarm
Rate(%)

0.06 0.64 0.00 0.00

6.3.1 Attack Detection Performance

To evaluate the performance of the attack detectors, we use the TFM parameters

obtained in Section 4.7.4 and employ various attack scenarios as explained below.

We first evaluate the false alarm rates of the attack detectors; the false alarm

rate is calculated as the number of incorrect alarms over the total number of tests.

Note that all raised alarms are considered to be incorrect because no attacks are

present yet. We perform the first test as soon as w measurements are available;

consequently, whenever a new measurement arrives from each sensor, a new test is

performed using the last w measurements. Table 6.1 shows the false alarm rates for

the TFM parameters of Table 4.6; note that we use PIw to indicate the proposed

Pairwise-Inconsistency-based approach using a window of length w.2 The results

show that for window sizes 200 and 50, the false alarm rate is zero, but it is non-zero

for window sizes 10 and 1 (note that PI1 is referred to as the sensor fusion (SF)-based

detector since the interval sizes would be conservatively set large enough so that no

faulty measurements are observed). The reason is that the false alarms result from

transient faults and they do not appear too often in larger windows. On the other

hand, the SF-based approach has a low false alarm rate because it uses conservative

error bounds; it raises some false alarms because the largest faulty measurement

observed in the training data was less than the one in the test data.

We now evaluate the attack detection rate assuming that only one (unknown to

us) out of the three sensors is attacked. We consider three different attack scenarios:

(1) bias attack; (2) random attack; (3) greedy attack. The bias attack adds a constant

2PI30 and PI100 are excluded for the rest of the Chapter to avoid clutter.
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Table 6.2: Detection rate

Detector SF PI10 PI50 PI200

Biased Attack 62.74 99.74 100 100
Random Attack 4.91 36.10 93.30 100
Greedy Attack 0 0.4817 0 0

of 0.8 m/s to the attacked sensor. The random attack adds a uniformly distributed

random noise between 0 and 0.8 m/s.3. The greedy attack replaces the measurement

of the attacked sensor with a specially crafted measurement designed to maximize

the uncertainty (i.e., the fusion interval size) in the system; this is also the stealthy

attack discussed in Section 4.6.4 Note that the attack is present in every round in

the detection rate test, thus all raised alarms are true alarms.

To evaluate the attack detection rate, we employ the same test data as above and

augment it by simulating each attack scenario described above. Table 6.2 summarizes

the detection rates for each detector and attack scenario. The detection rate improves

in general as the window size increases. The only exception is greedy attack, where

most of the detectors raise no alarms. This indicates that given enough knowledge

and computational power, the attacked sensor can pretend as if it is a correct one

while it negatively affects the system. Note that the SF-based approach’s detection

rate is lower than the PI-based one’s because it uses conservative error bounds.

Note that the false alarm rate improves with window size, whereas, for the same

reason, the attack detectors with a large window size may be slow to detect attacks.

Therefore, we also evaluate the detection rate vs. the elapsed time since the attack

begins. The results for the various TFM parameters are shown in Figure 6.2, where

the steady-state detection rates correspond to the detection rates in Table 6.2. Fig-

ure 6.2c shows that all detectors rarely detect any greedy attacks. From the cases

3The magnitudes of the bias and random attacks are selected to be roughly as large as the
interval size of the most imprecise sensor (i.e., GPS).

4We assume the greedy attack knows the other abstract measurements, as possible if sensor
communication occurs on a shared medium, e.g., CAN bus.
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(c) Greedy attack.

Figure 6.2: Time to detection plots under the three classes of attacks.

of biased and random attacks, Figure 6.2 shows that the steady-state detection rate

improves with window size, and the time needed to reach the steady-state detection

level increases only marginally.

To compare the attack detectors in greater depth and to examine their robust-

ness to the choice of the TFM parameters, we vary the error bounds of the TFM

parameters selected in Section 4.7.4. Specifically, varying ε of each sensor from 50%

to 150% of their magnitudes, we calculate the false alarm rate and detection rate

for each setup. By examining the robustness of attack detector regarding the TFM

parameters, we can qualitatively demonstrate the importance of accurate parameter

selection. The results for the varied TFM parameters for each window size are de-

picted as the receiver operator characteristic (ROC) curve in Figure 6.3, which is a

classical way to measure a detector’s performance. Note that the 45◦ line is a dotted

line and is moved lower to make comparative performance clear.5

Note that data points which trend towards the upper left corner indicate a better

detector because the detector would have a larger detection rate and a smaller false

alarm rate [212]. We can qualitatively evaluate that one detector is more robust than

another if the ROC data points cluster nearer to the upper left corner when varying

its parameters [212]. Therefore, the robustness of the PI-based detectors improves

with window size in general. Note that PI10 performs marginally better than the

5Only 13 points are used to show the general trend and avoid overcrowding.
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Figure 6.3: Detection Rate vs. False Alarm Rate under the three classes of at-
tacks. Dotted black lines denote 45◦ lines. Solid lines connect points for a clearer
presentation. Note the scale is different in the greedy attack case.

SF-based detector, and PI200 and PI50 apparently outperform the others. Lastly,

the ROC curves for the greedy attack scenario lie on the 45◦ line, which implies that

when the most powerful attacker is present, the performance of the attack detectors

is not better than a coin flip.

The results presented in this section suggest that the false alarm rate, the detec-

tion rate and the robustness of PI-based detectors improve with window size, at a

cost of a marginal increase of time-to-detection. In addition, the PI-based detector

outperforms the SF-based one as the window size increases.

Finally, we only briefly highlight the attack identification performance because

it shows almost identical results to the detection one. Note that in general, the

identification rate also improves with window size, experiencing only a marginal

increase in time-to-identification.
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Chapter 7

Conclusion

In conclusion, this dissertation addressed the problem of providing detection and

estimation techniques in order to ensure the safety and security of modern CPS.

In addition, all of these techniques provide guarantees about their performance, in

expectation or in the worst case depending on the application. Our main contribution

lies in the generality of the proposed approaches – while most existing works address

safety/security problems by making unreasonable assumptions (either the system is

in a known nominal state or the class of fault/attack is known), we make use of sensor

redundancy and context information in order to avoid making such assumptions. In

summary, we make contributions to three fields of this problem space: 1) nominal

context-aware estimation, 2) safety detection and 3) sensor attack detection.

In Chapter 3, we note that incorporating context information for the purposes

of estimation and detection is a novel idea in itself. Context measurements can be

extracted from the system’s environment data and are essentially high-level repre-

sentations of low-level measurements (e.g., a recognized building in an image). Thus,

they can be used for state estimation purposes, in addition to (or in lieu of) stan-

dard linear continuous measurements. In Chapter 3, we model context measurements

probabilistically (i.e., each measurement has a known probability of occurring given

the system’s state) and develop a context-aware filter using two different types of
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measurement models. In particular, the specific contributions of Chapter 3 are:

• Formulation of the context-aware filtering problem for linear systems. Two

classes of probability of context detection functions were investigated, namely

inverse-exponential functions and sigmoid functions.

• Development of a Gaussian-Mixture-based filter and a sigmoid-based filter us-

ing the two proposed classes of probability of detection functions, respectively.

• Asymptotic analysis of the sigmoid-based filter. We provided sufficient condi-

tions on the number of available context measurements under which the filter’s

uncertainty is bounded. In addition, we argued that the filter converges to a

Newton Method in the limit (after repeated updates), thus providing evidence

that it is likely asymptotically unbiased.

• Evaluation in simulation of both filters. Different features of the filters were

explored in multiple case studies. The probit-based filter’s evaluation also

suggests the filter is likely asymptotically unbiased.

• Real-patient data evaluation of the sigmoid-based filter. We applied the fil-

ter to the problem of estimation of blood oxygen content using non-invasive

measurements only.

Chapter 4 addresses the main problem considered in this dissertation, namely

safety detection in the presence of arbitrary faults and attacks in sensors. We develop

sensor fusion techniques to take advantage of the inherent sensor redundancy in

modern CPS. We then provide multiple ways of improving the output of sensor

fusion by using historical measurements and by analyzing different schedules of sensor

measurement transmissions in order to minimize the attacker’s impact on the system.

In summary, the contributions of Chapter 4 are:

• Development of multidimensional sensor fusion algorithm where each sensor

measurement is converted to a polyhedron. The output of sensor fusion, the

160



fusion polyhedron, is guaranteed to contain the true state assuming less than

half of all sensors are attacked.

• A modified sensor fusion algorithm incorporating measurement history. System

dynamics are used in order to map previous measurements to the current time.

We showed that the fusion polyhedron using history is always a subset of the

one computed without history.

• Comparison of different sensor transmission schedules in terms of the expected

size of the fusion interval. We provided both theoretical and simulation results

in favor of the Ascending schedule, the one in which most precise sensors

transmit first.

• Sensor fusion in the presence of transient faults. Since standard sensor fusion

loses its guarantees in the presence of sensor faults in addition to attacks, we

developed a modified algorithm whose output is still guaranteed to contain the

true state. In order to capture transient faults, we provide a transient fault

model (TFM) for each sensor limiting the number of faulty measurements in

a given window; we also showed how to obtain a TFM from available sensor

data.

• Evaluation of all proposed techniques both in simulation and in experiments

using the LandShark robot.

In order to further strengthen the guarantees of sensor fusion, in Chapter 5

we incorporated an additional piece of information, namely context measurements.

We developed a modified algorithm with both continuous and binary measurements

whose output is once again guaranteed to contain the true state. Context-aware

sensor fusion would be especially useful in scenarios where more than half of the

standard continuous measurements might be under attack, in which case the addition

of context measurements can allow the system to still provide worst-case guarantees
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about its safety. To evaluate this approach, we provided a case-study simulation of

a perfectly attackable system that cannot detect the attack on GPS, thus leading

to a crash; if context measurements (in the form of building detections) are used,

however, the system can detect that it is unsafe and avoid the collision.

Finally, in Chapter 6, we note that all of the above techniques’ performance could

be improved if better data is provided by the system’s sensors. Thus, we developed

a sensor attack detection technique in order to identify and discard attacked sensors,

thereby improving the performance of estimation and sensor fusion. The attack

detection algorithm was developed so that it does not raise unnecessary alarms in

the presence of transient faults, which are a normal part of system operation. This

approach was evaluated on real data collected from the LandShark and augmented

retrospectively with several kinds of attacks.

There are multiple potential avenues for future work based on the results in this

dissertation. In this chapter, we focus on two main classes of possible extensions,

namely generalizing the notion of context as well as investigating further the current

applications of context measurements in estimation and sensor fusion. Note that

both branches include context – this should be no surprise given the rising availability

of context measurements from improved machine learning and detection algorithms.

In particular, some questions one might ask in terms of formalizing context are:

• What is context in general? Can we formalize the difference between standard

sensors and context sensors (not just mathematically, but also conceptually)?

• When is context useful? If we assume context is always a high-level representa-

tion of other sensor data, then what is the benefit of using context as opposed

to the actual sensor data?

The more specific and immediate extensions of this dissertation concern directly

the approaches presented here:

• Extend Theorem 1 to the multidimensional case in order to provide more
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intuition about when the sigmoid-based context-aware filter’s uncertainty is

bounded.

• Provide conditions under which the sigmoid-based context-aware filter con-

verges to the true state.

• Develop context-aware estimation with discrete measurements that are not just

binary but come from a larger (possibly infinite) set. The main challenge with

such a problem is its combinatorial nature.

• Use historical context measurements in the context-aware sensor fusion algo-

rithm in the same way as standard continuous measurements, e.g., by using

pairwise intersection.

• Note that the proposed context-aware sensor fusion algorithm only makes use

of context measurements when they are equal to 1, i.e., measurements of -1

are not used explicitly in the algorithm. Adding the negative measurements

is challenging because it is not clear how to maintain a bounded fusion poly-

hedron. Thus, this is another possible extension of the context-aware sensor

fusion algorithm.

• Incorporate a transient fault model for context measurements, similar to sensor

fusion with transient sensor faults as presented in Section 4.7. This problem

presents a different type of challenge, namely the fact that it introduces po-

tential mode switches for the system. Since context measurements can only

be observed from certain states, for each received measurement one needs to

consider whether the system is in a state from which obtaining that context

measurement is possible or whether the measurement is just a false alarm.

Similarly, if a measurement is not received, it is possible that the system is not

in a state from which this context measurement can be obtained but it is also

possible that the context measurement was not received due to an imperfect
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detection or classification algorithm.
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Appendix A

Proofs

A.1 Proof of Proposition 2

First note that the update equation takes the form:

pk|k(x) =
p(ybk | x)φ(x;µk|k−1,Σk|k−1)∫
p(ybk | x′)φ(x′;µk|k−1,Σk|k−1)dx′

=
Φ(ybk(b

T
k x+ ak))φ(x;µk|k−1,Σk|k−1)

Zk
,

where

Zk =

∫
Φ(ybk(b

T
k x
′ + ak))φ(x′;µk|k−1,Σk|k−1)dx′.

The derivation for Zk is carried out as follows:

Zk =

∫
Φ(ybk(b

T
k x
′ + ak))φ(x′;µk|k−1,Σk|k−1)dx′ = Ex

[
Φ(ybk(b

T
k x+ ak))

]
= Ex

[
P(z1 ≤ ybk(b

T
k x+ ak))

]
= E(x,z1)

[
1z1≤ybk(bTk x+ak)

]
= P(ybk(b

T
k x+ ak)− z1 ≥ 0)

= P
(
ybk(b

T
k µk|k−1 + ak) + z2

√
bTkΣk|k−1bk + 1 ≥ 0

)
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= P(z2 ≥ −Mk) = 1− Φ(−Mk) = Φ(Mk),

where z1 and z2 are standard Normal random variables independent of each other

and of x.

A.2 Proof of Proposition 3

To show that the function

g(x) = ln(pk|k(x)) (A.1)

is concave, we need to show that its Hessian (with respect to x) is negative definite.

To see this, first note that

g(x) = − ln(Zk) + ln(Φ(ybk(b
T
k x+ ak)))− ln(

√
(2π)n|Σk|k−1|)

− 1

2
(x− µk|k−1)TΣ−1

k|k−1(x− µk|k−1).

The first derivative of g(x) is:

g′(x) = bky
b
kα(ybk(b

T
k x+ ak))− Σ−1

k|k−1(x− µk|k−1),

where α(x) = φ(x; 0, 1)/Φ(x). The Hessian of g(x) is:

g′′(x) = bkb
T
k (ybk)

2[−α(ybk(b
T
k x+ ak))(y

b
k(b

T
k x+ ak))− α2(ybk(b

T
k x+ ak))]− Σ−1

k|k−1

= −bkbTk h(ybk(b
T
k x+ ak))− Σ−1

k|k−1.

Since bkb
T
k is positive semidefinite and Σk|k−1 is positive definite, it remains to show

that the term h(ybk(b
T
k x+ ak)) is non-negative; but this is true as shown in Proposi-

tion 5.
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A.3 Proof of Proposition 4

First note that

µk|k =

∫
x′

Φ(ybk(b
T
k x
′ + ak))φ(x′;µk|k−1,Σk|k−1)

Zk
dx′.

One way to compute the mean in closed form is, similar to the derivation in Chapter

3.9 in [165], by first computing the gradient with respect to µk|k−1 of the following

two equivalent expressions for Zk:∫
Φ(ybk(b

T
k x
′ + ak))φ(x′;µk|k−1,Σk|k−1)dx′ = Φ(Mk). (A.2)

The corresponding derivatives are:

∂Zk
∂µk|k−1

=

∫
Σ−1
k|k−1(x′ − µk|k−1)Φ(ybk(b

T
k x
′ + ak)) · φ(x′;µk|k−1,Σk|k−1)dx′

= ybkbk
φ(Mk; 0, 1)√
bTkΣk|k−1bk + 1

,

where we used the fact that ∂Φ(x)/∂x = φ(x). Note that the first term in the integral

on the left-hand side is ZkΣ
−1
k|k−1µk|k. The second term is ZkΣ

−1
k|k−1µk|k−1. Therefore,

we get

ZkΣ
−1
k|k−1µk|k = ZkΣ

−1
k|k−1µk|k−1 + bk

ybkφ(Mk; 0, 1)√
bTkΣk|k−1bk + 1

.

Thus, we arrive at

µk|k = µk|k−1 + ybkΣk|k−1bk
α(Mk)√

bTkΣk|k−1bk + 1
,

where we used the second expression for Zk in order to get α. The final expression

for µk|k is obtained by solving for χk in the equation α(Mk)(b
T
kΣk|k−1bk + 1)−1/2 =
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(bTkΣk|k−1bk + χk)
−1.

The expression for the covariance matrix is:

Σk|k = Σ̂k|k − µk|kµTk|k, (A.3)

where

Σ̂k|k =

∫
x′x′T

Φ(ybk(b
T
k x
′ + ak))φ(x′;µk|k−1,Σk|k−1)

Zk
dx′.

Σ̂k|k can be computed in closed-form similar to the mean, by computing the Hessians

with respect to µk|k−1 of both sides of (A.2):

∫
Σ−1
k|k−1(x′ − µk|k−1)(x′ − µk|k−1)TΣ−1

k|k−1Φ(ybk(b
T
k x
′ + ak))φ(x′;µk|k−1,Σk|k−1)dx′

−
∫

Σ−1
k|k−1Φ(ybk(b

T
k x
′ + ak))φ(x′;µk|k−1,Σk|k−1)dx′

= −ybkbkbTk
φ(Mk; 0, 1)(bTk µk|k−1 + ak)

(bTkΣk|k−1bk + 1)3/2
.

Note that one of the terms in the integral on the left-hand side is ZkΣ
−1
k|k−1Σ̂k|kΣ

−1
k|k−1.

Therefore, we rearrange terms and divide by Zk to obtain the following:

Σ−1
k|k−1Σ̂k|kΣ

−1
k|k−1 = Σ−1

k|k−1 + Σ−1
k|k−1µk|kµ

T
k|k−1Σ−1

k|k−1 + Σ−1
k|k−1µk|k−1µ

T
k|kΣ

−1
k|k−1

− Σ−1
k|k−1µk|k−1µ

T
k|k−1Σ−1

k|k−1 − y
b
kbkb

T
k

α(Mk)(b
T
k µk|k−1 + ak)

(bTkΣk|k−1bk + 1)3/2
.

Finally, we arrive at the expression for Σ̂k|k:

Σ̂k|k = Σk|k−1 + µk|kµ
T
k|k−1 + µk|k−1µ

T
k|k − µk|k−1µ

T
k|k−1

− ybkΣk|k−1bkb
T
kΣk|k−1

α(Mk)(b
T
k µk|k−1 + ak)

(bTkΣk|k−1bk + 1)3/2
.

Thus, the covariance matrix can be computed by plugging in the expression for Σ̂k|k
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in (A.3). To simplify it to the final form shown in the Proposition statement, we

first plug in the expression for µk|k − µk|k−1 from (3.10) and then solve for γk.

A.4 Proof of Theorem 1

Consider the (scalar) modified algebraic Riccati equation (MARE) defined as:

gβ(x) = axa+ q − βaxb(bxb+ 1)−1bxa,

where b = mini |bi|, i.e., the minimum-in-magnitude of all context weights. Note that

if β = 1, then this becomes the standard algebraic Riccati equation, which converges

for any σ0. On the other hand if β = 0, the covariance matrix diverges for some σ0

if a is unstable. We use the MARE to bound the expected value of context-aware

filter’s variance and give conditions on β for which the expectation is bounded.

We first bound the expected variance of the filter using the MARE. From (3.14),

followed by applying the prediction step, we get (by using the simplified notation

σk = σk|k−1):

E[σk+1] = E[aσka+ q − τmaσkbk(bkσkbk + γmk )−1bkσka− τpaσkbk(bkσkbk + γpk)
−1bkσka]

≤ E[aσka+ q − ηaσkb(bσkb+ γmk )−1bσka− ηaσkb(bσkb+ γpk)
−1bσka]

≤ E[aσka+ q − ηaσkb(bσkb+ min{γmk , γ
p
k})
−1bσka]

≤ E[aσka+ q − ηaσkb
(
bσkb+

(1− h(0))(bσkb) + 1

h(0)

)−1

bσka]

= E[aσka+ q − ρaσkb(bσkb+ 1)−1bσka]

= E[gρ(σk)],

where ρ = ηh(0) < 1, τm is the probability of ybk = −1 (with resulting γmk ); τp and γpk

are their analogues when ybk = 1. The first equality is the expected value of σk+1 for

each possible value of ybk. The second inequality uses the fact that both τp, τm ≥ η.
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In the third inequality we simply discard one of the two negative terms, keeping the

one with smaller γk (i.e., the one that results in Mk < 0; note that 0 < h(x) < 1 and

h′(x) < 0, from Proposition 5). The last inequality is true because h(x) > h(0) for

any x < 0.

The rest of the proof mimics the proof of Theorem 3 in [190]. Consider the

sequence sk+1 = gρ(sk), with s0 = σ0. We show that E[σk] ≤ sk using induction.

Note that E[σk] ≤ sk implies:

E[σk+1] ≤ E[gρ(σk)] ≤ gρ(E[σk]) ≤ gρ(sk) = sk+1,

where the first inequality was shown above, and the second and third inequalities

are shown in Lemma 1 in [190]. Furthermore, as shown in Theorem 3 in [190], sk is

bounded from above, given that ρ > ρ (ρ ∈ [0, 1), as shown in [190]), i.e.,

E[σk] ≤ sk ≤Mσ0 , ∀k.

A.5 Proof of Lemma 1

The proof proceeds by induction on k. The base case is shown in (3.14). For the

induction step, we assume that K < N updates result in the form in (3.18), with

matrices Γk and Bk replaced by ΓK and BK , respectively. Given weights bk+K+1, the

next discrete update is

Σk+K+1 = Σk+K − Σk+Kbk+K+1β
−1bTk+K+1Σk+K (A.4)

where by induction

Σk+K = Σk − ΣkB
T
K(BKΣkB

T
K + ΓK)−1BKΣk,

β = bTk+K+1Σk+Kbk+K+1 + γk+K+1.
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By rearranging terms and using the block matrix inversion lemma, Equation (A.4)

can now be written as

Σk+K+1 = Σk −
[

ΣkB
T
K Σkbk+K+1

]
·

·

 BKΣkB
T
K + ΓK BKΣkbk+K+1

bTk+K+1ΣkB
T
K bTk+K+1Σkbk+K+1 + γk+K+1

−1

·

 BKΣk

bTk+K+1Σk

 ,
i.e.,

Σk+K+1 = Σk − Σk

[
BT
K bk+K+1

]
·

·

 BK

bk+K+1

Σk

[
BT
K bTk+K+1

]
+

 ΓK 0

0 γk+K+1

−1

·

 BK

bTk+K+1

Σk,

which has the desired form of the Riccati (update) equation.

A.6 Proof of Theorem 2

We first prove sufficiency (<=). Let B be the matrix of persistently exciting bi, i.e.,

B = [b1, . . . , bd]T . Note that B is square and invertible. Consider the sequence of

times k1, k2, . . . , where k1 = 1 and kt+1 = kt + lkt + 1; note that all bi in B occur in

between each pair of kt and kt+1 by construction. Thus, using Lemma 1, it suffices

to show that the eigenvalues of the covariance sequence

Σkt+1 = Σkt − ΣktB
T (BΣktB

T + Γkt)
−1BΣkt (A.5)
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converge to 0 in probability. Note from (3.14) that no binary update can increase the

eigenvalues of Σk, so any updates with weights and offsets not in P can be ignored

as they do not affect the convergence.

Diagonalizing Σkt = UDUT , we rewrite (A.5):

Σkt+1 = U(D −D(D +MΓktM
T )−1D)UT , (A.6)

where M = UTV −1. Diagonalizing MΓktM
T = PΛP T , we conclude that

Σkt+1 � U(D −D(D + δmaxI)−1D)UT , (A.7)

where δmax is the largest eigenvalue of MΓktM
T . Thus, each eigenvalue λikt is reduced

at least by (λikt)
2/(λikt + δmax). Therefore, λikt → 0 as long as δmax is bounded from

above. But δmax is bounded if γmaxkt
(the largest γk between times kt and kt+1) is

bounded. From (3.15), it can be seen that γk is bounded from above if the function

h is bounded from below. But for each k, Mk < 0 with probability at least

min
ybk∈{1,−1},(bi,ai)∈P

Φ(ybk((b
i)Tx∗ + ai)),

where x∗ is the true (non-moving) state. Thus, h has a non-zero probability of

having negative input, i.e., it is bounded from below by h(0) = α2(0) (note that

h′(x) < 0, from Proposition 5). Thus, the probability that h is never bounded from

below converges to 0, i.e., λikt
p−−→ 0.

To prove necessity (=>), note that if (bk, ak) is not persistently exciting, there

exists a time K, such that the set of context weights bk for k > K does not span Rd,

i.e., the matrix BK of all such weights is not full rank. We now show this implies

that there exists at least one λik that does not go to 0. Returning to (3.18), note

that there exists a rotation matrix U such that one eigenvector (call it p) of ΣkU
T
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is aligned with an eigenvector of B⊥K , the null space of BK . Consider the matrix

G = U(Σk − ΣkB
T
K(BKΣkB

T
K + Γk)

−1BKΣk)U
T .

G has the same eigenvalues as Σk+K but the eigenvalue corresponding to p is also an

eigenvalue of Σk, i.e., this eigenvalue remains unchanged when BK is not full rank.

A.7 Proof of Theorem 3

First note that applying the matrix inversion lemma to the covariance update in (3.14),

we get:

Ωk+1 = (Σk − Σkbk+1(bTk+1Σkbk+1 + γk+1)−1bTk+1Σk)
−1

= Σ−1
k + bk+1γ

−1
k+1b

T
k+1.

Therefore,

Ωs
k+1 = Ωk+1 − Ωk = bk+1γ

−1
k+1b

T
k+1.

The mean at time k + 1 is equal to (by using the mean update in (3.10)):

µk+1 = µk + Σkbk+1(bTk+1Σkbk+1 + χk+1)−1ybk+1

= µk + Σkbk+1N
−1
k+1y

b
k+1,

where Nk+1 = bTk+1Σkbk+1 + χk+1. Thus, the information mean of the “site” approx-

imation becomes

ωsk+1 = Ωk+1µk+1 − Ωkµk

= Ωk+1µk + (I + Lk+1)bk+1N
−1
k+1y

b
k+1 − Ωkµk
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= Ωs
k+1µk + Ωkµk + (I + Lk+1)bk+1N

−1
k+1y

b
k+1 − Ωkµk,

where Lk+1 = bk+1γ
−1
k+1b

T
k+1Σk, and we used the inverse-lemma expression for Ωk+1.

A.8 Proof of Corollary 3

As shown in Theorem 2, if bk is persistently exciting, then all eigenvalues of Σk

converge to 0 for large k. To analyze the convergence of the natural parameters of

the “site” approximations, first note that the first derivative of ψ is as follows:

ψ
′

k+1(x) = −bk+1α(ybk+1(bTk+1x+ ak+1))ybk+1. (A.8)

The second derivative of ψ is:

ψ
′′

k+1(x) = bk+1b
T
k+1h(ybk+1(bTk+1x+ ak+1)). (A.9)

We first show that Ωs
k+1 = bk+1γ

−1
k+1b

T
k+1 converges to ψ

′′

k+1(µk), i.e., that γ−1
k+1

converges to h(ybk+1(bTk+1µk +ak+1)). But this is clear from (3.15): as the eigenvalues

of Σk converge to 0, γ−1
k+1 converges to h(Mk+1), and Mk+1 converges to ybk+1(bTk+1µk+

ak+1).

As derived in (3.22), the information mean is ωsk+1 = Ωs
k+1µk+(I+Lk+1)bk+1N

−1
k+1y

b
k+1.

First note that N−1
k+1 converges to 1/χk+1, which in turn converges to α(ybk+1(bTk+1µk+

ak+1)), as can be seen from (3.11). Thus, in order to show that the second term of

ωsk+1 converges to −ψ′k+1(µk), it suffices to show that Lk+1 converges to 0. But this

is clear from the definition of Lk+1 in Theorem 3.
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A.9 Proof of Proposition 6

Since there are at least n − f correct polyhedra, the true state is contained in at

least n− f polyhedra, and hence it will be included in the fusion polyhedron.

A.10 Proof of Proposition 7

We first note that any set that is guaranteed to contain the true state must contain

RNk,f since any point that is excluded may be the true state. This proves the

proposition since conv(RNk,f ) is the smallest convex set that contains RNk,f .

A.11 Proof of Lemma 2

Let p be any vertex of the convex hull. Then p =
∑
θivi, where the vi are the vertices

of the polyhedra,
∑
θi = 1 and θi ≥ 0 (i.e., p is a convex combination of the vi’s).

This means that p lies on a hyperplane defined by some of the vi’s, hence it cannot

be a vertex, unless it is one of the vi’s.

A.12 Proof of Theorem 4

We use a counting argument. Let V be the set of vertices of SNk,f . By Lemma 2,

each vertex in V is a vertex of one of the polyhedra formed by the intersection of

n− f of the sensor polyhedra (in step 4 of Algorithm 1). Therefore, it is contained

in at least n− f polyhedra. For each p ∈ V , let Pp denote the number of polyhedra

containing p. Consequently, Pp ≥ n− f . Then

vP (n− f) ≤
∑
p∈V

Pp.
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The sum in the right-hand side can be split into two sums. One contains the number

of polyhedra where each of the polyhedra contains all vP vertices (we denote this

number by a). Then the number of the remaining polyhedra is n − a. The part of

the sum due to the polyhedra that contain fewer than vP vertices can be bounded

from above by (n− a)(vP − 1) since each of these polyhedra contains at most vP − 1

vertices. We then have

vP (n− f) ≤ avP + (n− a)(vP − 1),

which implies that a ≥ n−fvP , i.e., at least n−fvP polyhedra contain the vP vertices

of the fusion polyhedron. Since polyhedra, including the fusion polyhedron, are

convex, we conclude that at least n− fvP polyhedra contain the fusion polyhedron.

This completes the proof, since

|SNk,f | ≤ maxn−fvP {|P | : P ∈ Nk} = minfvP +1{|P | : P ∈ Nk}.

A.13 Proof of Theorem 5

Assume the opposite – that there exists a point xA ∈ SNk,f that is not in conv(Ck).

Then for any convex combination
∑
θivi = xA, where vi ∈ Pj for some j, at least

one vi must not be in any polyhedron in Ck, meaning that it is contained in at most

f polyhedra, where f < n− f . Therefore, there does not exist a convex combination∑
θivi = xA with all vi contained in at least n− f polyhedra, and hence xA cannot

be in SNk,f .

A.14 Proof of Theorem 6

Consider any point p ∈ m(RNk,f ) ∩ RNk+1,f . Then p lies in at least n − f polyhe-

dra in Nk+1, and there exists a q such that p ∈ m(q) that lies in at least n − f
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polyhedra in Nk. Thus, p lies in at least 2n − 2f polyhedra in m(Nk) ∪ Nk+1, i.e.,

p ∈ Rm(Nk)∪Nk+1,2f , implying

conv(m(RNk,f ) ∩RNk+1,f ) ⊆ conv(Rm(Nk)∪Nk+1,2f ) = Sm(Nk)∪Nk+1,2f .

A.15 Proof of Theorem 7

Note that for any sets A and B, conv(A ∩ B) ⊆ conv(A), and thus

conv(m(RNk,f ) ∩RNk+1,f ) ⊆ conv(RNk+1,f ) = SNk+1,f .

Furthermore, any point p ∈ conv(m(RNk,f ) ∩ RNk+1,f ) is a convex combination of

points qi in m(RNk,f ). But m(RNk,f ) ⊆ m(SNk,f ) (since RNk,f ⊆ SNk,f ) and the fact

that m(SNk,f ) is convex imply p ∈ m(SNk,f ). Accordingly,

conv(m(RNk,f ) ∩RNk,f ) ⊆ SNk,f and

conv(m(RNk,f ) ∩RNk+1,f ) ⊆ m(SNk,f )

implying

conv(m(RNk,f ) ∩RNk+1,f ) ⊆ m(SNk,f ) ∩ SNk+1,f .

A.16 Proof of Theorem 8

Note that, since the fusion interval is always guaranteed to contain the true value,

the number of corrupted polyhedra in map S and fuse is still at most f , but the

number of correct ones is now at least n+ 1− f . In addition, note that

m(RNk,f ) ∩RNk+1,f ⊆ m(SNk,f )
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since m(RNk,f ) ⊆ m(SNk,f ). Furthermore, any point p ∈ RNk+1,f is contained in

n − f polyhedra in Nk+1. Thus, all points in m(RNk,f ) ∩ RNk+1,f are contained in

n + 1 − f polyhedra in m(SNk,f ) ∪ Nk+1, and hence in Rm(SNk,f )∪Nk+1,f . Since the

fusion polyhedron is convex,

conv(m(RNk,f ) ∩RNk+1,f ) ⊆ Sm(SNk,f )∪Nk+1,f .

A.17 Proof of Theorem 9

Let p be any point in Rm(Nk)∩pNk+1,f . Then p lies in at least n − f polyhedra in

m(Nk) and at least n− f polyhedra in Nk+1. Hence,

Rm(Nk)∩pNk+1,f ⊆ RNk+1,f .

Furthermore, there exists a point q = A−1p that is contained in n − f intervals in

Nk. Therefore, p is also contained in m(RNk,f ). Then

Rm(Nk)∩pNk+1,f ⊆ m(RNk,f ) ∩RNk+1,f , i.e.,

Sm(Nk)∩pNk+1,f ⊆ conv(m(RNk,f ) ∩RNk+1,f ).

A.18 Proof of Proposition 8

Note that pairwise intersection does not increase the number of attacked polyhedra.

If a sensor is not attacked, then both of its polyhedra (in time k and k+1) contain the

true value; in addition, the map m preserves the correctness of polyhedra, hence any

pairwise intersection will also contain the true value. Thus, the number of attacked

and non-attacked sensors is the same, therefore Proposition 6 implies that the fusion

polyhedron contains the true value.
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A.19 Proof of Proposition 9

Each of the polyhedra computed after pairwise intersection (i.e., m(Pi,k) ∩ Pi,k+1)

is a subset of the corresponding polyhedron when no history is used (i.e., Pi,k+1).

Consequently, the fusion polyhedron will always be a subset of the fusion polyhedron

obtained when no history is used.

A.20 Proof of Theorem 10

First suppose the first statement is true. We argue that the optimal strategy for the

attacker is to attack on both sides of seen intervals. For any Il ∈ CR, Il must overlap

with at least one point in SCS∪∆,0 (the overlap must contain the true state) and since

|Il| ≤ (|amin|− |SCS∪∆,0|)/2 then Il will necessarily overlap with all malicious sensors

implementing the above strategy. Note that since f < dn/2e, the fusion interval

cannot be larger than the union of all correct intervals. Therefore, this strategy is

optimal because the attacker can guarantee that all her intervals contain all correct

intervals. Figure 4.9a illustrates this case. All seen correct intervals coincide, and

the attacker’s intervals are large enough to guarantee that attacking on both sides

will make sure all unseen intervals are included.

Now suppose the second case is true. Then the attacked intervals are large

enough to contain both ln−f−fa and un−f−fa , thus making sure the fusion interval

is [ln−f−fa , un−f−fa ]. This attack is optimal since the unseen intervals are all small

enough to not change the positions of points un−f−fa and ln−f−fa . Figure 4.9b

presents an example of this case. The unseen interval, I3, cannot change the largest

and smallest points contained in at least one correct interval.
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A.21 Proof of Theorem 11

Let Il and Iu be the two correct intervals with smallest lower bound and largest

upper bound, respectively. Since f < dn/2e, the lower bound of SN ,f cannot be

smaller than the lower bound of Il and its upper bound cannot be larger than the

upper bound of Iu. Thus, the width of SN ,f is bounded by the sum of the widths of

Il and Iu because any two correct intervals must intersect. Hence, the width of SN ,f

is bounded by the sum of the two largest correct intervals.

A.22 Proof of Theorem 12

Note that |SF | < |Sna| is impossible since the attacker can send the correct measure-

ments from her sensors. Thus, suppose |SF | > |Sna|. Let SC,0 be the intersection of

the correct intervals in the configuration that achieves SF . Suppose SF extends SC,0

on the right (note that the argument for the left side is symmetric) by some distance

d and let A be the rightmost point contained in SF . Since f < dn/2e, A must lie in

at least one correct interval Ic. Since Ic is correct it must contain SC,0, which implies

d + |SC,0| ≤ |Ic| ≤ |Imax|, where Imax is the largest correct interval. Let Ia be any

attacked interval that contains A. Because |Ia| ≥ |Imax|, Ia can be placed to contain

both A and SC,0. Since this can be done for all attacked intervals containing A, the

same worst-case fusion interval can be achieved if no intervals were attacked.

A.23 Proof of Theorem 13

Note that if |Swcfa | = |Sna|, the theorem follows trivially. Consider the case |Swcfa | >

|Sna|. Suppose |Swcfa | is not achievable if the fa smallest intervals are attacked. Let

S be the configuration with fa corrupted intervals that achieves |Swcfa | and let A be

the rightmost point in Swcfa . Since |Swcfa | > |Sna| there exists an interval Ia ∈ S that

does not contain the true state but contains A. Let Nsmall be the set of fa smallest
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intervals. If Ia ∈ Nsmall for all such Ia then Swcfa is achievable if Nsmall is under attack

and the theorem follows.

Now suppose there exists an Ia as above such that Ia /∈ Nsmall. Then there exists

an interval Ismall ∈ Nsmall that is not under attack. If we swap Ia and Ismall such

that Ismall now contains A and Ia contains the old interval Ismall, Ia is made correct

and Ismall corrupted while preserving the size of the fusion interval. Since we can do

the same for all such Ia, |Swcfa | can be achieved if Nsmall is under attack.

A.24 Proof of Theorem 14

The proof of optimality mirrors the proof of optimality of the Earliest Deadline

First (EDF) scheduling algorithm. Suppose there exists a schedule s that is better

than the proposed here. Then s contains a round k in which a sensor si produces

a faulty measurement and sensor sj does not, even though sj has more “unused”

faulty measurements.

Suppose sj’s next scheduled faulty measurement according to s is at time k′ > k.

Without loss of generality, we can assume si does not have a faulty measurement at

k′.1 Then by swapping sj and si’s faulty measurements, i.e. making si’s measure-

ment faulty at time k′ and sj’s faulty at time k, we do not affect the magnitude of E

(since the number of faulty measurements in each round remains the same). By re-

placing all such pairs we eventually transform s into a new schedule s′ that is exactly

the schedule suggested by the proposed algorithm here. Therefore, Algorithm 3 is

optimal.

1Since sj has more remaining faulty measurements, there exists a time k′ when sj provides a
faulty measurement and si does not. If no such time exists, then we can remove the “scheduled”
faulty measurement by si at time k and replace it with a faulty measurement by sj (still within its
TFM).
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A.25 Proof of Proposition 10

First note that the mapping function m is called O(W 2) times (line 3 inside the loop).

Additionally, computing the fusion polyhedron in FPC (line 6) requires O(W logW )

time (as shown in [136], the sensor fusion algorithm takes O(n log n) time, where n

is the number of sensors).

As for the second claim, note that the cost of obtaining one element of FP is

again O(n log n), i.e., one run of the sensor fusion algorithm. Since the size of FP

is W , the claim follows.

A.26 Proof of Lemma 3

Since the two polyhedra have an empty intersection, the true state can lie in at most

one of them, i.e., at least one of them cannot contain the true state.

A.27 Proof of Lemma 4

Note that a weak inconsistency at time k′ implies at least one sensor provides a

faulty measurement at k′, hence the premise implies that the number of faulty mea-

surements in both sensors combined is also greater than ei + ej. This means that,

in a window of size min(wi, wj), either si has at least ei faulty measurements or sj

has at least ej faulty measurements. In turn, this implies that one of them must be

non-transiently faulty.

A.28 Proof of Theorem 15

If two sensors are strongly inconsistent, then one of them must be non-transiently

faulty. Since non-transient faults are equivalent to attacks in this work, the Lemma

follows.
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A.29 Proof of Theorem 16

Suppose for a contradiction that si is not attacked. It follows that the d(i) > a sensors

which are strongly inconsistent with si must be attacked. This is a contradiction

because there are at most a attacks.

A.30 Proof of Lemma 5

Note that the premise implies that no strong inconsistency can be found between

any pair of sensors. This is true because even if si and sj are weakly inconsistent

in each round, it is possible that the measurements of si were faulty in the first ei

rounds and correct in the remaining ones, while the measurements of sj were correct

initially and faulty in the last ej rounds. In this way both sensors would be within

their TFMs, and one cannot conclude that an attack exists.

A.31 Proof of Proposition 11

The claim follows from the fact that both Theorems provide sufficient conditions for

the existence of an attack.
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