Final Exam

170 Minutes

First Name: ____________________

Last Name: ____________________

RIN: _________________________

NO COLLABORATION or electronic devices.
Any violations will result in an F.
No questions allowed during the test unless you think there is a mistake.

GOOD LUCK!

10 points per correct multiple-choice answer. Circle exactly one answer.
20 points per correct answer to Problems 2-6.
You MUST show CORRECT work to get credit.
Correct answers with no explanation will get a 0.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
</tr>
</tbody>
</table>

200 20 20 20 20 20 300
1. What is the asymptotic behavior of the sum $S(n) = \sum_{i=1}^{n} i^9 + 100i^8$?

A. $O(n^9)$
B. $O(n^8)$
C. $O(100n^9)$
D. $O(n^{10})$
E. None of the above.

2. What can we say about this statement: $\exists C > 0 : \forall n \geq 1 : n^2 < \frac{1}{2}Cn^2 + n$?

A. True
B. False
C. Depends on C
D. Depends on n
E. None of the above.

3. What can we say about this statement: $\exists C > 0 : \forall n \geq 1 : n^3 < \frac{1}{2}Cn^2 + n$?

A. True
B. False
C. Depends on C
D. Depends on n
E. None of the above.

4. Consider the recurrence $T_1 = 1, T_n = T_{n-1} + n^3$. Estimate T_{10}:

A. 250
B. 2500
C. 25000
D. 250000
E. None of the above.

5. Calculate the sum $\sum_{i=1}^{5} \sum_{j=0}^{3} i2^j$.

A. 200
B. 225
C. 250
D. 275
E. None of the above.
6. What is the last digit of 3^{100}?

A 1
B 3
C 5
D 7
E 20

7. Consider a graph G where every vertex has degree 2. What do we know?

A G must have at least 3 vertices.
B G can be a cycle (i.e., the entire graph can be a single cycle).
C G must have a cycle.
D G is not a tree.
E All of the above.

8. Consider a graph G where every vertex has degree 3. What do we know?

A G must have an even number of vertices.
B G can be a tree.
C G cannot have any cycles.
D G cannot exist.
E All of the above.

9. How many graphs with 5 vertices are there?

A 32
B 128
C 256
D 1024
E None of the above.

10. Suppose FOCS has 300 students, and I split them in 3 sections with 100 students each. How many ways to split the students are there?

A $\binom{300}{100}$
B $\binom{300}{200}$
C $\binom{300}{100,100,100}$
D $300!$
E None of the above.
11. You flipped 4 fair coins. What is the probability of exactly 3 heads?

A 1/16
B 2/16
C 3/16
D 4/16
E None of the above.

12. You flipped 4 fair coins. What is the probability of exactly 3 heads, given that the first coin was H?

A 1/8
B 2/8
C 3/8
D 4/8
E None of the above.

A 10
B 16
C 22
D 28
E None of the above.

14. Let X be a positive random variable. If $\sigma^2(X) = 3$ and $E[X^2] = 5$, what is $E[X]$?

A $\sqrt{2}$
B 2
C 3
D 4
E None of the above.

15. On any day, with probability 0.5 I go to the cafeteria at noon: if I go at noon, I get my food at 12:10pm with probability 0.2 and at 12:30pm with probability 0.8; with probability 0.5, I go to the cafeteria at 12:30pm and get my food at 12:30pm. How many days am I expected to wait until I get my food at 12:10pm (start counting from 1)?

A 5
B 10
C 15
D 20
E None of the above.
16. What do we know about the language $L = \{w\#w \mid w \in \{0,1\}^*\}$?

 A. It is regular.
 B. It is context-free.
 C. It is decidable.
 D. It is undecidable.
 E. None of the above.

17. What do we know about the language $L = \{w\#w^R \mid w \in \{0,1\}^*\}$?

 A. It is regular.
 B. It is context-free.
 C. It is decidable.
 D. It is undecidable.
 E. None of the above.

18. Can a pushdown automaton (PDA) solve the language $L = \{ww^R \mid w \in \{0,1\}^*\}$?

 A. No, the language is not context-free.
 B. Yes, a deterministic PDA can solve L.
 C. Yes, a non-deterministic PDA can solve L.
 D. No, the language is not decidable.
 E. None of the above.

19. Which of the following problems is decidable?

 A. The halting problem.
 B. Deciding whether a given program will print “Hello World”.
 C. Deciding whether a given program will terminate.
 D. Deciding whether a given C program is well-formatted.
 E. None of the above.

20. What do we know about the traveling salesman problem?

 A. It is known to be in the class P.
 B. I can solve it by listing all possible trajectories.
 C. It is undecidable.
 D. I can always list all trajectories in linear time.
 E. None of the above.
Problem 2. Prove that \(\forall n \geq 1, \log_2(n) \leq n \).
Problem 3. Suppose you are determined to flip a fair coin until you get the sequence HHH. What is the expected number of flips?
Problem 4. Prove that for any $n \geq 3$, there exists a set of n distinct natural numbers x_1, \ldots, x_n such that each x_i divides the sum $s = x_1 + \cdots + x_n$, i.e., $s = x_i k_i$ for some $k_i \in \mathbb{N}$. Tinker, tinker, tinker.
Problem 5. Consider the language of all odd-length zero strings \(L_O = \{0, 00, 0000, \ldots \} \). Prove that \(L_O \) has an undecidable subset.
Problem 6. Consider the language $\mathcal{L}_{AddTwo} = \{0^n 1^{n+2} \}$. Give pseudocode for a Turing Machine that decides this language.

[Your pseudocode needs to be detailed enough so it is clear that each step can indeed be performed using a Turing Machine.]
Scratch
Scratch