FINAL: 180 Minutes

Last Name: _Solutions_
First Name:
RIN:
Section:

Answer **ALL** questions. You may use **two** double sided $8\frac{1}{2} \times 11$ crib sheets.
You **MUST** show **CORRECT** work (even for multiple choice) to receive full credit.
NO **COLLABORATION** or electronic devices. Any violations result in an F.
NO questions allowed during the test. Interpret and do the best you can.

GOOD LUCK!

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>350</td>
</tr>
</tbody>
</table>
INSTRUCTIONS

1. This is a **closed book** test. No electronics, books, notes, internet, etc.
2. You can have two double sided \(8\frac{1}{2} \times 11\) crib-sheets (handed in separately).
3. The test will become available in Submitty at 8am on the test date. Your PDF is due in Submitty by 8am the next day. You have 3 hours to do the exam and 3 additional hours to type your answers and submit a PDF.
4. By submitting the test you attest that the work is entirely your own and you obeyed the time limits of the exam.
5. Your submission *must* be typed PDF. The 3 hour test time for solving the problems must be continuous. The extra 3 hours is to type your answers and explanations: you may take breaks, but not change answers.
6. You *must* show your work for *every* answer immediately after the answer. The format for what you hand in is something like:

 Problem 1

 (1) A
 Because \(x\) is even, therefore …

 (2) B
 Because \(\sqrt{2}\) is irrational, therefore …

 (4) D
 By the law of total expectation, \(E[X] = \ldots\)

 …

 (20) A
 We proved in class that \(\ell = n - 1\). Therefore …

 Problem 2

 …

 - Start each long-answer question on a new page.
 - Some problems may be “easy”, so give a short explanation.
 - Some problems may require a detailed reasoning.
 - \(3*3+1+3=13\) is *not* an explanation. Everyone knows that \(3*3+1+3=13\). Why this equation? Where do the numbers come from?

7. **If you don’t show correct work, you won’t get credit.**

8. Be especially careful in the multiple choice.
 - Correct answers get 10 points.
 - Wrong answers or correct answers without correct justification get 0.

9. Submit with plenty of time to spare. A late test won’t be accepted.
1. Circle at most one answer per question. 10 points for each correct answer.

(1) "For a constant $c > 0$, $1 + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}} > c\sqrt{n}$, where n is any natural number." Which claim is this?

A $\exists c > 0 : (\exists n \in \mathbb{N} : 1 + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}} > c\sqrt{n})$.

B $\exists c > 0 : (\forall n \in \mathbb{N} : 1 + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}} > c\sqrt{n})$.

C $\exists n \in \mathbb{N} : (\forall c > 0 : 1 + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}} > c\sqrt{n})$.

D $\forall n \in \mathbb{N} : (\exists c > 0 : 1 + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}} > c\sqrt{n})$.

E None of the above.

(2) You will pick a constant $C > 0$ such that no matter which $n \in \mathbb{N}$ I pick, $\sum_{i=1}^{n} i \leq Cn$. Which is true?

A You can pick a C satisfying $C \leq 10$.

B You can pick a C satisfying $10 < C < 100$.

C You can pick a C satisfying $100 < C < 1000$.

D You can pick a C satisfying $1000 < C$.

E There is no constant $C > 0$ that you can pick.

\[\sum_{i=1}^{n} i = \frac{1}{2} n(n+1) \leq Cn \rightarrow C \geq \frac{1}{2}(n+1) \quad \forall n \]

\[C \text{ can't be a constant} \]

(3) $T_1 = 2$ and $T_n = T_{n-1} + 2n$ for $n > 1$. What is T_{100}?

A 5050.

B 10100.

C 20200.

D 40400.

E None of the above.

(4) $T_1 = 1$ and $T_n = n \times T_{n-1}$ for $n > 1$. Which is true?

A $T(n) \in O(n^2)$.

B $T(n) \in o(2^n)$.

C $T(n) \in \Theta(2^n)$.

D $T(n) \in \omega(2^n)$.

E None of the above.

\[T_n = n \times T_{n-1} = n(n-1) \times n(n-2) = \cdots \times n \times n = n! \]

\[T_1 = 2.1 \times 1.2 = 10100. \]

(5) You divide 2^{2016} candies evenly among 11 kids. How many candies are left over?

A 0.

B 3.

C 0.

D 0.

E None of the above.

\[2^2 = 2 \quad 2^4 = 4 \quad 2^8 = 8 \quad 2^{16} = 5 \quad 2^{32} = -1 \]

\[2^{64} = -1 \quad 2^{2015} = -1 \quad 2^{2016} = 2 \times -1 = -2 = 4. \]
(6) Estimate the sum \(S = \sum_{i=1}^{\infty} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots \).

A \(0 < S \leq 2 \).
B \(2 < S \leq 2000 \).
C \(2000 < S \leq 20000 \).
D \(20000 < S \leq 200000 \).
E \(\frac{1}{n} \) None of the above.

Harmonic sum \(\to \infty\)
\[\therefore \text{ No upper bound.} \]

(7) How many of the numbers \(100, 101, 102, \ldots, 999\) do not contain the digit 2?

A \(100\).
B \(504\).
C \(648\).
D \(729\).
E \(\frac{1}{n-1} \) None of the above.

\(n\)-digit
- 1st digit: 8 choices \((1, 3, 4, \ldots, 9)\)
- 2nd digit: 9 choices \((0, 1, 3, \ldots, 9)\)
- Product rule \(8 \times 9 \times \cdots \times 9 = 8 \times 9^{n-1}\)
\[n = 3 \Rightarrow 8 \times 9^2 = 8 \times 81 = 648. \]

(8) Let \(S \) be the sum of the reciprocals of all natural numbers not containing the digit 2. Estimate \(S \).

A \(0 < S \leq 2\).
B \(2 < S \leq 2000\).
C \(2000 < S \leq 20000\).
D \(20000 < S \leq 200000\).
E \(\frac{1}{n} \) None of the above.

\[S = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \frac{1}{16} + \frac{1}{17} + \frac{1}{18} + \frac{1}{19} + \frac{1}{30} + \frac{1}{31} + \frac{1}{33} + \frac{1}{34} + \frac{1}{35} + \cdots \]
Consider reciprocals of \(n \)-digits: there are \(8 \cdot 9^{n-1}\) such.
\[\frac{1}{x} \leq \frac{8}{10^{n-1}} \Rightarrow \text{ contribution from reciprocals of } n \text{-digit } \leq 8 \cdot \frac{9^{n-1}}{10^{n-1}} \]
\[S < \sum_{n=1}^{\infty} 8 \cdot \frac{9^{n-1}}{10^{n-1}} = 8 \cdot \sum_{n=1}^{\infty} \left(\frac{9}{10} \right)^{n-1} = 8 \cdot \left(\frac{1}{1 - \frac{9}{10}} \right) = 8 \cdot \frac{10}{1} = 80 \]
\[S < 80 \]

(9) Shirts come in 3 colors R, G or B. In how many ways can you distribute shirts to 7 students?

A \(7^7\).
B \(7^3\).
C \(3^7\).
D \(7 \times 7\).
E \(\frac{1}{n} \) None of the above.

Each student has 3 choices \(\Rightarrow\) Product rule \(3 \times 3 \times \cdots \times 3 = 3^7\).

(10) Repeat the previous problem if the number of each color shirt is at least two.

A 570.
B 600.
C 630.
D 660.
E \(\frac{1}{n} \) None of the above.

Anagrams of RRGBRRB and RRRBGBB and RRRGBBB
\[\frac{7 \cdot 7 \times 5 \times 4 \times 3 \times 2 \times 1}{2 \times 1} = \frac{3 \times 7 \times 3 \times 2 \times 2 \times 1}{2 \times 1} = 630. \]
(11) Every vertex in a graph G has degree 1. Which is true?

A. The graph G must be disconnected. $x
ightarrow$ is connected
B. The graph G could have 5 vertices. $x
ightarrow 5$ vertices degree sum is $5(odd)$ \rightarrow not possible
C. The graph G must have a cycle.
D. The graph G is not possible.
E. None of the above

(12) You rolled a pair of dice. What are the chances you rolled exactly one 5?

A. $9/36$.
B. $10/36$.
C. $11/36$.
D. $12/36$.
E. None of the above.

(13) You rolled a pair of dice. What are the chances you rolled exactly one 5 if the sum is even?

A. $4/10$.
B. $5/10$.
C. $4/11$.
D. $5/11$.
E. None of the above.

(14) Which of the following random variables X is not a binomial random variable.

A. Randomly throw 100 darts at a dart board. X is the number of darts hitting the bulls-eye.
B. Randomly answer 100 5-choice multiple choice questions. X is the number of questions correct.
C. Randomly answer 100 5-choice multiple choice questions. X is the number of questions wrong.
D. 1000 students randomly line up, 500 are boys. X is the number of boys in the first 100 students.
E. They are all binomial random variables.

(15) A social network (graph) is a tree with 20 people. The edges are friendships. Each person randomly picks red or blue. Friends compare to see if they match. What is the expected number of matches.

A. 4.75.
B. 5.
C. 4.5
D. 10.
E. None of the above or not enough information.

19 edges each edge matches $w.p. \frac{1}{2}$

$X_i = \{1 \text{ if edge matches}, 0 \text{ otherwise} \}$

$X = X_1 + \ldots + X_{19}$

$E[X] = 19 \cdot EC[X_i] = 19 \cdot \frac{1}{2} = 9.5$
(16) On BlueTox, your first child is equally likely to be a boy or girl. From then on, the sex of a child is the same as the previous child with probability 2/3. What is the expected number of kids to get a girl?

\[E[X] = E[X|B]P(B) + E[X|G]P(G) \]
\[= \frac{1}{2} \cdot \left(1 + \frac{1}{3} \cdot \text{Exp \ Wait} \right) \cdot \frac{1}{2} \]
\[= \frac{1}{2} + \left(\frac{1}{3} \cdot 3 \right) \cdot \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = 1 \]

A 1.5
B 2
C 3.5
D 3
E None of the above.

(17) On BlueTox, your first child is equally likely to be a boy or girl. From then on, the sex of a child is the same as the previous child with probability 2/3. What is the expected number of kids to two girls?

\[E[X] = E[X|B] \cdot \frac{2}{3} + E[X|G] \cdot \frac{1}{3} = (1 + 2) \cdot \frac{2}{3} + (1 + 9) \cdot \frac{1}{3} \]
\[= \frac{2}{3} \cdot 3 + \frac{1}{3} \cdot 10 = 2 + \frac{10}{3} = \frac{6 + 10}{3} = \frac{16}{3} \]

A 3.25
B 4
C 4.5
D 5.25
E None of the above.

(18) Estimate the number of DFA you can draw with 4 states, \(q_0, q_1, q_2, q_3\). Tinker!

A About a hundred.
B About a thousand.
C About a million.
D About a billion.
E About a trillion.

(19) Which string can be generated by the CFG \(S \rightarrow 0|1|SSS\)?

A 1111
B 0000
C 000111
D 111000
E None of the above.

(20) If \(L_A\) is decidable, then \(L_B\) is decidable. We know that \(L_B\) is undecidable. Therefore:

A \(L_A\) must be finite.
B \(L_A\) must be infinite.
C \(|L_A| > |L_B|\)
D \(|L_B| < |L_A|\)
E None of the above.
Determine the Type of Proof and Prove

Prove that there is a constant $c > 0$ for which, no matter which $n \in \mathbb{N}$ you pick,

$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{n}} > c\sqrt{n}.$$

Tinker

\[
\begin{array}{c}
1 + \frac{1}{\sqrt{2}} > 1 \\
1 + \frac{1}{\sqrt{3}} > \frac{1}{\sqrt{2}} \\
\text{guess} \quad 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{n}} > \sqrt{n} \\
\end{array}
\]

Proof by induction

Base Case

\[1 \geq \sqrt{1} \quad \checkmark\]

Induction Step

Assume

\[1 + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{n}} > \sqrt{n} \]

Prove

\[1 + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n+1}} > \sqrt{n+1} \]

\[1 + \frac{1}{\sqrt{n+1}} \geq \sqrt{n} + \frac{1}{\sqrt{n+1}}, \quad \text{(induction hypothesis)} \]

To conclude, we show

\[n \sqrt{n} + \frac{1}{\sqrt{n+1}} > \sqrt{n+1} \]

Lemma

\[\sqrt{n} + \frac{1}{\sqrt{n+1}} > \sqrt{n+1} \]

Suppose not (Contradiction)

\[\sqrt{n} + \frac{1}{\sqrt{n+1}} < \sqrt{n+1} \]

\[\left(\sqrt{n+1} - \frac{1}{\sqrt{n+1}}\right) < n+1 \]

\[\frac{1}{\sqrt{n+1}} < n \quad \text{fisly} \]

\[n(n+1) < n^2 \]

\[n^2 + n < n^2 \]

\[n < 0 \quad \text{fisly} \]

50% Tinkered and understood.

80% Made guess and started proof.

100% Proof by induction correct.

Can also be proved by integration method.

Needs Care.
3 Product of 5 Consecutive Numbers.

Prove that the product of any 5 consecutive natural numbers is divisible by 5! (e.g., 5!|3 × 4 × 5 × 6 × 7).

Quick Proof

\[
\frac{(n+1)(n+2)(n+3)(n+4)(n+5)}{5!} = \frac{(n+5)!}{n! \cdot 5!} = \binom{n+5}{5} = \text{# ways to choose 5 from } n+5 \text{ must be an integer.}
\]

Induction

\[P(n) : n(n+1)(n+2)(n+3)(n+4) \text{ is divisible by } 5! \]

We prove \(P(n) \) for all \(n \geq 1 \).

\(P(1) : 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 5! \) is div by \(5! \) \(\checkmark \)

\[P(n) \rightarrow P(n+1) \]

Suppose 5! \(| n(n+1)(n+2)(n+3)(n+4) \)

Consider \(P(n+1) \)

\[\frac{(n+1)(n+2)(n+3)(n+4)(n+5)}{5!(n+1)(n+2)(n+3)(n+4)} \]

\[\text{div by } 5! \]

\[\text{Done} \]

Some problems:

- 4! divides product of 4 consecutive numbers.
 - True by induction if 3! divides product of 3 consecutive
 - True if 2! divides product of 2 consecutive
 - True since one must be even
4 Expected Waiting Time to All Colors of Starburst.

Starburst is sold in 2-packs, and there are 3 colors of starburst. What is the expected number of 2-packs you will buy if your goal is to get all colors?

Let the colors be A, B, C. In the first pack you can get one color or two colors.

\[p(1) = \frac{1}{3}, \quad p(2) = \frac{2}{3} \]

\[E[X] = E[X|1]p(1) + E[X|2]p(2) \]

\[= E[X|1] \cdot \frac{1}{3} + E[X|2] \cdot \frac{2}{3} \]

\[E[X|1] \rightarrow \text{waiting for one color. Success probability} = 1 - \left(\frac{2}{3}\right)^2 = \frac{5}{9} \]

\[\therefore E[X|1] = 1 + \frac{9}{5} \]

Compute \(E[X|1] \): let us say the color you get is A. \(E[X|1] = 1 + x \).

Compute \(E[X|1] \):

\[E[X|1] = 0 \text{ new colors} \]

\[\begin{cases} 1 \text{ new colors} \\ 2 \text{ new colors} \end{cases} \]

\[x = E[(1+\text{wait}) \cdot p(0) + (1+\text{wait}) \cdot p(1) + (1+\text{wait}) \cdot p(2)] \]

\[= (1 + x) \cdot p(0) + (1 + \text{wait to 1}) \cdot p(1) + (1 + \text{wait}) \cdot p(2) \]

\[= \frac{1}{9} + \frac{6}{9} + \frac{2}{9} = \frac{10}{9} \]

\[x = \frac{1 + \frac{9}{5}}{9} = \frac{1 + 6 + \frac{2}{5}}{9} = \frac{25}{9} \]

\[E[X|2] = 1 + 6 \cdot \frac{9}{5} = 1 + \frac{54}{5} = \frac{61}{5} \]

\[E[X|2] = \frac{61}{5} \]

\[E[X] = \frac{139}{40} \]

\[E[X] = 14 \cdot \frac{2}{3} + \frac{139}{40} \cdot \frac{1}{3} = \frac{28}{15} + \frac{139}{40} = \frac{365}{120} = \frac{3}{40} \]

\[= 3.025 \]
DFA or no DFA

Give a DFA for \(\mathcal{L} = \{0^n \mid n \geq 1\} = \{0, 0000, 00000000, \ldots\} \), or prove that \(\mathcal{L} \) can't be solved with DFA.

Can't be done.

Proof by contradiction suppose a DFA with \(k \) states solves \(\mathcal{L} \).

Consider

\[
\text{state } (0^0) \quad \text{state } (0^2) \quad \text{state } (0^3) \quad \ldots \quad \text{state } (0^{k+1})
\]

by pigeonhole two states match.

\[
\text{state } (0^i) = \text{state } (0^j) = q \quad \text{if } i < j
\]

So from \(q \), \(j-i \) 0's take you back to \(q \).

That means \(q = \text{state } (0^i + m(j-i)) \) and \(1 \leq j-i \leq k \).

\[
\text{state } (0^i + n^2 - i) \neq \text{state } (0^i)
\]

must be a yes state for \(n \geq i \)

\[
\text{state } (0^i + m(j-i) + n^2 - i)
\]

must be a yes state

\[
\text{process same } q \text{ \# of } 0 \text{'s}
\]

\[
\text{ } n^2 + m(j-i) \text{ is a square for all } m \geq 0
\]

Choose \(n = k \). Then

\[
k^2 \text{ and } k^2 + (j-i) \text{ are both squares}
\]

but the next square after \(k^2 \) is \((k+1)^2 = k^2 + 2k + 1 \).

This means \(j-i \geq 2k+1 \)

but \(j-i \leq k \) \(\{ \text{fishty} \} \)

\[
50\% \text{ Tinkering to show understanding or attempt to construct.}
\]

\[
80\% \text{ Reasonable attempt to prove}
\]

\[
100\% \text{ Correct proof}
\]
Transducer Turing Machine for Reversal.

Give a high level pseudo-code description of a transducer Turing Machine for reversal. The input on the tape is any binary string \(w \). When the Turing Machine halts, the reversal of \(w \) should have replaced \(w \). E.g:

\[
\begin{array}{c}
\text{Start} \\
* 1 0 1 0 0 1 1 -
\end{array} \quad \begin{array}{c}
\text{End} \\
* 1 1 0 0 1 0 1 -
\end{array}
\]

(Don’t give machine level details, but you should make it clear how the Turing Machine moves back and forth. Tinker.)

1. From *
 2. Move right to first unmarked bit
 - Come to 1 — done
 - Come to unmarked bit
 → remember bit
 → mark it
 → move right to 1
 3. Move left to first unmarked bit
 - Come to * — done
 - Come to unmarked bit
 → remember bit
 → mark and replace with previously remembered bit in step 2
 4. Move left to first marked bit
 - replace with remembered bit in step 3
 - Go back to *

DONE

50% tinker with picture
80% reasonable Idea.
100% reasonable solution