Infinity
 – Chapter 22
Summary of Our Stroll Through Discrete Math

- Precise statements, proofs and logic.
- **INDUCTION.**
- Recursively defined structures and Induction. (Data structures; PL)
- Sums and asymptotics. (Algorithm analysis)
- Number theory. (Cryptography; probability; fun)
- Graphs. (Relationships/conflicts; resource allocation; routing; scheduling, . . .)
- Counting. (Enumeration and brute force algorithms)
- Probability. (Real world algorithms involve randomness/uncertainty)
 - Inputs arrive in a random order;
 - Randomized algorithms (primality testing, machine learning, routing, conflict resolution . . .)
 - Expected value is a summary of what happens. Variance tells you how good the summary is.
Today: Infinity

- Comparing “sizes” of sets: countable.
 - Rationals are countable.
- Uncountable
 - Infinite binary strings.
- What does Infinity have to do with computing?
“Size” of a Set: Cardinality

• There’s a reason why small kids use fingers to count
 – They map their intuitive knowledge of 2-fingers to 2 of another object

• You have an equal number of fingers on each hand
 – You can map your left hand’s fingers to your right hand’s fingers

• Recall some types of such maps

1-1, but not onto. (injection, $A \rightarrow B$) $|A| \leq |B|$

onto; not 1-1 (surjection, $A \rightarrow B$) $|A| \geq |B|$

onto and 1-1 (bijection, $A \rightarrow B$) $|A| = |B|$

not a function
“Size” of a Set: Cardinality

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>![1-1, but not onto.](injection, $A \rightarrow B$)</td>
<td>![onto; not 1-1](surjection, $A \rightarrow B$)</td>
</tr>
<tr>
<td>$</td>
<td>A</td>
</tr>
</tbody>
</table>

- **Cardinality** $|A|$ (“size”), read “cardinality of A,” is the number of elements for finite sets
- In general, we can define the following relations between sets:

 $|A| \leq |B|$ iff there is an injection (1-to-1) from A to B, i.e., $f: A \rightarrow B^{\text{INJ}}$

 $|A| > |B|$ iff there is no injection (1-to-1) from A to B

 $|A| \geq |B|$ iff there is a surjection (onto) from A to B, i.e., $f: A \rightarrow B^{\text{SUR}}$

 $|A| = |B|$ iff there is a bijection (1-1 and onto) from A to B, i.e., $f: A \rightarrow B^{\text{BIJ}}$

 $|A| \leq |B|$ and $|B| \leq |A|$ \rightarrow $|A| = |B|$ \quad \text{[Cantor-Bernstein Theorem]}
A Countable Set’s Cardinality is at most $|\mathbb{N}|$

- Suppose we have a finite set $A = \{a_1, \ldots, a_n\}$
 - Cardinality is $|A| = n$ if and only if there is a bijection from A to $\{1, \ldots, n\}$
 - Can you come up with such a function?
 $$f(a_i) = i$$

- For infinite sets: the set A is countable if $|A| \leq |\mathbb{N}|$.
 - Intuitively, A is “smaller than” \mathbb{N}
 - Sometimes we say A is at most countable to include both finite and infinite sets that are “smaller than” \mathbb{N}

- To show that A is countable you must find a 1-to-1 mapping from A to \mathbb{N}

- You cannot skip over any elements of A, but you might not use every element of \mathbb{N}
A Countable Set’s Cardinality is at most $|\mathbb{N}|$, cont’d

- To prove that a function $f: A \mapsto \mathbb{N}$ is an injection:
 - Assume f is not an injection. (Proof by contradiction.)
 - This means there is a pair $x, y \in A$ for which $x \neq y$ and $f(x) = f(y)$
 - Use $f(x) = f(y)$ to prove that $x = y$, a contradiction. Hence, f is an injection
All Finite Sets are Countable

• Suppose $A = \{3, 6, 8\}$

 – To show $|A| \leq |\mathbb{N}|$, we give an injection from A to \mathbb{N}
 $\begin{align*}
 3 &\mapsto 1, \quad 6 \mapsto 23134, \quad 8 \mapsto 8
 \end{align*}$

• For an arbitrary set $A = \{a_1, \ldots, a_n\}$
 $\begin{align*}
 a_1 &\mapsto 1, \quad a_2 \mapsto 2, \ldots, \quad a_n \mapsto n
 \end{align*}$
Non-negative integers $\mathbb{N}_0 = \{0, 1, 2, \ldots \}$ are countable

- How can this be??
 - I know for a fact that \mathbb{N}_0 contains every element in \mathbb{N}, plus an extra 0
 - It’s clearly bigger!!

- Well, if they were finite sets, I would agree. But let’s recall the definition.

- To prove that $|\mathbb{N}_0| \leq |\mathbb{N}|$, we need an injection $f: \mathbb{N}_0 \rightarrow \mathbb{N}$
 - Ideas?
 - Let’s try $f(x) = x + 1$, $\forall x \in \mathbb{N}_0$

- **Proof.**
 - Assume f is not an injection. So, there are $x \neq y$ in \mathbb{N}_0 with $f(x) = f(y)$:
 $$x + 1 = f(x) = f(y) = y + 1$$
 - But that means $x + 1 = y + 1$, i.e., $x = y$. Contradiction.

- Also, we know that $|\mathbb{N}| \leq |\mathbb{N}_0|$ since $\mathbb{N} \subseteq \mathbb{N}_0$

- By the Cantor-Bernstein Theorem, $\mathbb{N} = \mathbb{N}_0$

\[
\begin{array}{cccccccccc}
\mathbb{N}_0 & : & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \ldots \\
\mathbb{N} & : & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \ldots \\
\end{array}
\]
• Huh? The even numbers are exactly half of all natural numbers!!

\[E = \{2, 4, 6, \ldots \}, \text{ so surely } |E| = \frac{1}{2} \mathbb{N}!! \]

• Turns out, not quite. Can you see a bijection?
 – The bijection \(f(x) = \frac{1}{2} x \) proves \(|E| = |\mathbb{N}|\)

\[
\begin{array}{cccccccccccccc}
E & : & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & \cdots \\
\downarrow & & \\
\mathbb{N} & : & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \cdots \\
\end{array}
\]

• OK, fine, but all integers?? It has to be the case that \(|\mathbb{Z}| = 2|\mathbb{N}|!!\)
 – Is there a bijection? ☺
 – Recall the integers are \(\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots \} \)

\[
\begin{array}{cccccccccccccccc}
\mathbb{N} & : & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \cdots \\
\downarrow & & \\
\end{array}
\]

• **Exercise.** What is a mathematical formula for the bijection?
Every Countable Set Can Be “Listed”

• What does it mean for a set to be “listed”?
 – You know the exact position of each element in the set
 – Regardless of whether the set is finite or infinite

• For example:
 – \{3, 6, 8\} is a list (why?)
 • (because it’s a finite set)
 – \(E = \{2, 4, 6, \ldots\}\) is a list (why?)
 • element \(i\) is just \(2i\)
 – What about \(\mathbb{Z}\)?
 • Suppose I represent it as \{..., −3, −2, −1, 0, 1, 2, 3, ...\}
 – Unclear what the indices are
 • Suppose I represent it as \{0, −1, 1, −2, 2, ...\}
 – Element 1 is 0, o.w. it is \(-i/2\) (if is even), \((i − 1)/2\) (if \(i\) is odd)
Every Countable Set Can Be “Listed”, cont’d

• Suppose I give you the following mapping between sets A and \mathbb{N}

$$
\begin{align*}
A &: \quad \bullet \quad \star \quad \odot \quad \times \quad \circ \quad \diamond \quad \triangle \quad \square \quad \vdots \\
\mathbb{N} &: \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad 13 \quad 14 \quad 15 \quad 16 \quad 17 \quad 18 \quad 19 \quad 20 \quad \cdots
\end{align*}
$$

– How do I “list” A?
– Order elements according to their assigned value

• In general, a set can be “listed” if
 – Different elements are assigned to different list-positions.
 – We can determine the list-position of any element in the set.
Union of Two Countable Sets is Countable

• Consider two countable sets, A and B
 – They are countable, so I can write $A = \{a_1, a_2, a_3, \ldots \}$ and $B = \{b_1, b_2, b_3, \ldots \}$

• Now, let’s look at the union
 \[A \cup B = \{a_1, a_2, a_3, \ldots, b_1, b_2, b_3, \ldots \} \]
 – Hm, how do I show this is countable?
 – Can’t use “…” twice
 – How do I reorder terms?
 – Need to know the position of each b_i

• Here’s a better reordering:
 \[A \cup B = \{a_1, b_1, a_2, b_2, a_3, b_3, \ldots \} \]
 – Now I know the position of each element
 – List-position of a_i is $2i - 1$
 – List-position of b_i is $2i$

• **Exercise.** Get a list of \mathbb{Z} with $A = \{0, -1, -2, -3, \ldots \}$ and $B = \{1, 2, 3, \ldots \}$ using union.
Rationals are Countable: \(|\mathbb{Q}| = |\mathbb{N}|\)

- OK, this one is very surprising!
 - There are **infinitely** many rationals between every two integers!
 - The rationals are dense (there is a rational between any two rationals)!
 - Natural numbers are not!
 - Also, the set of rationals can be expressed as the product of integers and natural numbers:
 - \(|\mathbb{Q}| = |\mathbb{N}| \times |\mathbb{Z}|\), so of course \(|\mathbb{Q}| \gg |\mathbb{N}|\)??
- Well, let’s see...
Rationals are Countable: \(|\mathbb{Q}| = |\mathbb{N}|\), cont’d

How do I “list” all rationals?

- I need a list that visits each rational \textit{exactly} once!
- I need to know each rational’s position \textit{exactly}

\[
\mathbb{Q} = \left\{ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ \frac{1}{1'} \ \frac{1}{2'} \ \frac{2}{2'} \ \frac{3}{3'} \ \frac{3}{3'} \ldots \right\}
\]

\(|\{\text{Rational Values}\}| \leq |\mathbb{Q}| \leq |\mathbb{N}|\)

Exercise.
What is a mathematical formula for the list-position of \(z/n \in \mathbb{Q}\)?
Programs are Countable

• Programs are finite binary strings. We show that all finite binary strings \(\mathcal{B} \) are countable
 – How do I list them?
 • Start with the empty string (duh…)
 • Then list all strings of length 1, length 2, etc.

\[
\mathcal{B} = \{ \varepsilon, 0, 01, 00, 010, 1, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, \ldots \}
\]

• I now know the exact position of every string!

• Exercise. What is the list-position of 0110?

• Exercise. For the \((k + 1)\)-bit string \(b = b_k b_{k-1} \cdots b_1 b_0 \), define the string’s numerical value:

\[
value(b) = b_0 \cdot 2^0 + b_1 \cdot 2^1 + \cdots + b_{k-1} \cdot 2^{k-1} + b_k \cdot 2^k
\]

 – Show:

\[
\text{list-position of } b = 2^{\text{length}(b)} + value(b)
\]

• Wait a second… We keep seeing larger and larger sets that are countable!!

\(\mathbb{N}, \mathbb{N}_0, \mathbb{Z}, \mathbb{Q}, \mathcal{B} \)

 – SURELY EVERYTHING IS COUNTABLE!?!
Infinite Binary Strings Are Uncountable!

• One of the most cool results in computational theory

• Cantor’s Diagonal Argument: Assume there is a list of all infinite binary strings

\[
\begin{align*}
 b_1 & : 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \cdot \\
 b_2 & : 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \cdot \\
 b_3 & : 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \cdot \\
 b_4 & : 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \cdot \\
 b_5 & : 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \cdot \\
 b_6 & : 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \cdot \\
 b_7 & : 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \cdot \\
 b_8 & : 0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \cdot \\
 b_9 & : 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \cdot \\
 b_{10} & : 1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \cdot \\
 \vdots
\end{align*}
\]

• We’ll now show that there exists a string that cannot be in that list!

• Look at the (red) diagonal string:
 \[b = 0000100101 \cdot \]

• What’s so special about this string?
 – Let’s flip the bits
 \[\bar{b} = 1111011010 \cdot \]
 – This string is not in the list!
 – Differs from each string \(b_i \) in position \(i \)
The Real Numbers are Uncountable

• Every real between 0 and 1 has an infinite binary representation and every infinite binary string evaluates to a real number

 \[0.0011111111111111 \cdots = \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^6} + \cdots = \frac{1}{4} \]

• This means

 \[|\{\text{reals in [0,1]}\}| = |\{\text{infinite binary strings}\}| > |\mathbb{N}| \]

• Aha, found one!

• **Brain-breaking exercise (Continuum Hypothesis).** Prove that there is no set \(\mathcal{R} \) s.t.

 \[|\{\text{reals in [0,1]}\}| > |\mathcal{R}| > |\mathbb{N}| \]
• Cantor took on the abstract beast Infinity. (1874)
• ~60 years later, Alan Turing asked the abstract question: What can we compute? (1936)
• For example, consider the set of binary functions \(f \) defined on \(\mathbb{N} \)

\[
\begin{array}{cccccccccccc}
n: & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \cdots \\
f(n): & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & \cdots \\
\end{array}
\]

– Turns out the set of all such functions is uncountable
 • Corresponds to the set of all infinite binary strings
• Every program is a finite binary string. For example:

```c
int main();    // a program that does nothing
```

– This program corresponds to the finite binary string (ASCII code)

\[
0110100101101110011101000010110100001011101001001000100100111011
\]

• So, the number of programs is countable
 – But the number of functions is uncountable!
• There are many more functions than we can write/compute!
• There are MANY MANY functions that cannot be computed by programs!
• Are there interesting, useful functions that cannot be computed by programs?