Making Precise Statements
Reading

 - Chapter 3
Today

• Making a precise statement: the proposition
• Complicated precise statements: the compound proposition
 – Truth tables
• Claims about many things
 – Predicates
 – Quantifiers
 – Proofs with quantifiers
Statements can be ambiguous

• Precise statements
 \[2 + 2 = 4 \] (True)
 \[2 + 2 = 5 \] (False)

• Not-so-precise statements
 – You can have ice cream or cake
 • Can I have both?
 • Exclusive or Inclusive Or?
 – If pigs can fly, then you get an A
 • Pigs can’t fly, so do you still get an A?
 • False \(\rightarrow\) Anything
 – There is a room for every student
 • Do all students share the same room?
 • Does each student get an individual room?
Why is ambiguity bad?

• We want to **prove** things!
• Need to know when and if computers implement correct algorithms!
• Beware of ambiguous statements
 – Natural language is ambiguous by design
 – That’s why we have math
Propositions are True (T) or False (F)

- Propositions are represented using lowercase letters $p, q, r, s, ...$
- Piglet can fly
 - False
- You got an A
 - Hmm.. T?
- 4^2 is even
 - True

- There are actually many types of logics out there
 - E.g., fuzzy logic includes probabilities
 - There are logics that also include a third value, Maybe/Don’t know
 - We are only going to focus on classical logic
 - If something is not T, then it must be F
Compound Statements

• Piglet can fly OR 4^2 is even
 – True

• Piglet can fly \rightarrow You got an A
 – True
 – False \rightarrow anything

• Piglet cannot fly \rightarrow You got an A
 – ?
 – Depends on the value of “You got an A”
Notation

- Conjunction
 \[p \land q \]
 \[p \text{ AND } q \]
- Disjunction
 \[p \lor q \]
 \[p \text{ OR } q \]
- Negation
 \[\neg p \]
 \[\text{NOT } p \]
- Implication
 \[p \rightarrow q \]
 \[p \text{ IMPLIES } q \]
Negation

• The negation $\neg p$ is F when p is T
• The negation $\neg p$ is T when p is F
• Piglet can fly is F
• \neg(Piglet can fly) is T
• Notice how English quickly becomes redundant/ambiguous
 – Piglet cannot fly
 – It is not the case that Piglet can fly
Conjunction

- Both p and q must be T for $p \land q$ to be T
 - Otherwise $p \land q$ is F
- Piglet can fly AND You got an A
 - F(alse)
 - (Piglet can fly) \land (You got an A) = F
- Piglet cannot fly AND You got an A
 - $?$
 - Depends on the value of (You got an A)
Disjunction

• Both p and q must be F for $p \lor q$ to be F
 – Otherwise it is T

• (Piglet cannot fly) \lor (You got an A)
 – Depends on the value of (You got an A)

• \neg(Piglet cannot fly) \lor (You got an A) = T
 – Why?
 – Because \neg(Piglet cannot fly) = T

• (You can have cake) \lor (You can have ice-cream)
 – Can you have both?
 – Yes, this is Inclusive OR
 – Exclusive OR is true when exactly one is true
Truth Table

- Essentially a function that maps the value of p and q to the statement we’re trying to make
- Defines the meaning of these operators

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$\neg p$</th>
<th>$p \land q$</th>
<th>$p \lor q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

- Can also use this in the case of any logic formula
Implication

• Piglet can fly → You got an A
 – IF Piglet can fly THEN You got an A
• IF n^2 is even, THEN n is even
 – Is every even square the square of an even number?
• IF (it rained last night) THEN (the grass is wet)
 $p = \text{(it rained last night)}$
 $q = \text{(the grass is wet)}$
 – In logic notation: $p \rightarrow q$
 – What does it *mean* for this common-sense implication to be true?
 • We have built a model of the world
 • Whenever we observe p, we can make conclusions about q
 • If we don’t observe p, our model tells us nothing about q
 • If only observe q, can’t conclude anything about p
 – What can you conclude? Did it rain last night? Is the grass wet?
Implication, cont’d

• IF (it rained last night) THEN (the grass is wet)
 – What does it mean for this common-sense implication to be true?
 – What can you conclude? Did it rain last night? Is the grass wet?

• Suppose you look at the weather report for last night, and it indeed rained

• Is the grass wet?
 – YES

• For a true implication $p \rightarrow q$, you can conclude $q = T$ when $p = T$
Implication, cont’d

• IF (it rained last night) THEN (the grass is wet)
 – What does it mean for this common-sense implication to be true?
 – What can you conclude? Did it rain last night? Is the grass wet?

• Suppose you see wet grass in the morning
 – Did it rain?
 – Can’t tell

• For a true implication $p \rightarrow q$, when $q = T$ you cannot conclude $p = T$
Implication, cont’d

• IF (it rained last night) THEN (the grass is wet)
 – What does it mean for this common-sense implication to be true?
 – What can you conclude? Did it rain last night? Is the grass wet?

• Suppose you see dry grass in the morning
 – Did it rain?
 – No
 • Our model of the world assumes the grass MUST BE wet if it rained

• For a true implication $p \rightarrow q$, when q is F, you can conclude p is F
Implication, cont’d

• IF (it rained last night) THEN (the grass is wet)
 – What does it mean for this common-sense implication to be true?
 – What can you conclude? Did it rain last night? Is the grass wet?
• Suppose you see no rain in the weather report
 – Is the grass wet?
 – Can’t tell
• For a true implication $p \rightarrow q$, when p is F, you cannot conclude q is F
Implication: inferences when new information comes

For a true implication $p \rightarrow q$:

- When p is T, you can conclude that q is T.
- When q is T, you **cannot** conclude p is T.
- When p is F, you **cannot** conclude q is F.
- When q is F, you can conclude p is F.
Falsifying IF (it rained last night) THEN (the grass is wet)

• You are a scientist collecting data to verify that the implication is valid (true)

• One night it rained. That morning the grass was dry.
 – New information

• What do you think about the implication now?

• This is a falsifying scenario
 – IF (it rains) THEN (the grass is wet)
 – False

• Our model of the world was wrong

• \(p \rightarrow q \) is only F when \(p = T \) and \(q = F \)
 – In all other cases, \(p \rightarrow q = T \)
Implication is EXTREMELY important

• All these are $p \rightarrow q$ ($p =$ “it rained last night” and $q =$ “the grass is wet”):
 – If it rained last night then the grass is wet (IF p THEN q)
 – It rained last night implies the grass is wet (p IMPLIES q)
 – It rained last night only if the grass is wet (p ONLY IF q)
 – The grass is wet if it rained last night (q IF p)
 – The grass is wet whenever it rains (q WHenever p)

• Notice that there are multiple English descriptions the same logical statement
Implication Truth Table

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$\neg p$</th>
<th>$p \land q$</th>
<th>$p \lor q$</th>
<th>$p \rightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Example

- IF (you are hungry OR you are thirsty) THEN you visit the cafeteria
 - \((p \lor q) \rightarrow r\)
 - where \(p = \text{you are hungry}, q = \text{you are thirsty}, r = \text{you visit the cafeteria}\)
- You are thirsty: \(q\) is T.
 - There are two rows where \(q\) is T and \((p \lor q) \rightarrow r\) is T
 - In both cases \(r\) is T (you visit the cafeteria)

<table>
<thead>
<tr>
<th></th>
<th>(p)</th>
<th>(q)</th>
<th>(r)</th>
<th>((p \lor q))</th>
<th>((p \lor q) \rightarrow r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>2.</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>3.</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>4.</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>5.</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>6.</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>7.</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>8.</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Example

• IF (you are hungry OR you are thirsty) THEN you visit the cafeteria
• \((p \lor q) \rightarrow r\)
 – where \(p = \text{you are hungry, } q = \text{you are thirsty, } r = \text{you visit the cafeteria}\)
• You are thirsty: \(q\) is T.
 – There are two rows where \(q\) is T and \((p \lor q) \rightarrow r\) is T
 – In both cases \(r\) is T
 (you visit the cafeteria)

<table>
<thead>
<tr>
<th></th>
<th>(p)</th>
<th>(q)</th>
<th>(r)</th>
<th>((p \lor q))</th>
<th>((p \lor q) \rightarrow r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>2.</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>3.</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>4.</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>5.</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>6.</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>7.</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>8.</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Example

• IF (you are hungry OR you are thirsty) THEN you visit the cafeteria

• \((p \lor q) \rightarrow r\)
 – where \(p\) = you are hungry, \(q\) = you are thirsty, \(r\) = you visit the cafeteria

• You are thirsty: \(q\) is T.
 – There are two rows where \(q\) is T and \((p \lor q) \rightarrow r\) is T
 – In both cases \(r\) is T
 (you visit the cafeteria)

• You did visit the cafeteria: \(r\) is T.
 – Are you hungry?
 • We don’t know.
 – Are you thirsty?
 • We don’t know.
 – (You accompanied your hungry friend)

<table>
<thead>
<tr>
<th></th>
<th>(p)</th>
<th>(q)</th>
<th>(r)</th>
<th>((p \lor q))</th>
<th>((p \lor q) \rightarrow r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>2.</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>3.</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>4.</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>5.</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>6.</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>7.</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>8.</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Example

• IF (you are hungry OR you are thirsty) THEN you visit the cafeteria
• \((p \lor q) \rightarrow r\)
 – where \(p\) = you are hungry, \(q\) = you are thirsty, \(r\) = you visit the cafeteria

• You are thirsty: \(q\) is T. In both cases \(r\) is T
 (you visit the cafeteria)

• You did visit the cafeteria: \(r\) is T.
 – Are you hungry? We don’t know.
 – Are you thirsty? We don’t know.
 – (You accompanied your hungry friend)

<table>
<thead>
<tr>
<th></th>
<th>(p)</th>
<th>(q)</th>
<th>(r)</th>
<th>((p \lor q))</th>
<th>((p \lor q) \rightarrow r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>2.</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>3.</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>4.</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>5.</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>6.</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>7.</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>8.</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Example

• IF (you are hungry OR you are thirsty) THEN you visit the cafeteria

• \((p \lor q) \rightarrow r\)
 – where \(p =\) you are hungry, \(q =\) you are thirsty, \(r =\) you visit the cafeteria

• You are thirsty: \(q\) is T.
 – There are two rows where \(q\) is T and \((p \lor q) \rightarrow r\) is T
 – In both cases \(r\) is T
 (you visit the cafeteria)

• You did visit the cafeteria: \(r\) is T.
 – Are you hungry? We don’t know.
 – Are you thirsty? We don’t know.
 – (You accompanied your hungry friend)

• You did not visit the cafeteria: \(r\) is F
 – \(p\) and \(q\) are both F
 – (You are neither hungry nor thirsty.)

<table>
<thead>
<tr>
<th></th>
<th>(p)</th>
<th>(q)</th>
<th>(r)</th>
<th>(p \lor q)</th>
<th>((p \lor q) \rightarrow r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>2.</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>3.</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>4.</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>5.</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>6.</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>7.</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>8.</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Example

• IF (you are hungry OR you are thirsty) THEN you visit the cafeteria
• \((p \lor q) \rightarrow r\)
 – where \(p = \text{you are hungry}, q = \text{you are thirsty}, r = \text{you visit the cafeteria}\)

• You are thirsty: \(q\) is T.
 – There are two rows where \(q\) is T and \((p \lor q) \rightarrow r\) is T
 – In both cases \(r\) is T
 (you visit the cafeteria)

• You did visit the cafeteria: \(r\) is T.
 – Are you hungry? We don’t know.
 – Are you thirsty? We don’t know.
 – (You accompanied your hungry friend)

• You did not visit the cafeteria: \(r\) is F
 – \(p\) and \(q\) are both F
 – (You are neither hungry nor thirsty.)

1.	F	F	F	F	T
2.	F	F	T	F	T
3.	F	T	F	T	F
4.	F	T	T	T	T
5.	T	F	F	T	F
6.	T	F	T	T	T
7.	T	T	F	T	F
8.	T	T	T	T	T
• Order is very important!
 – In particular, $p \rightarrow q$ and $q \rightarrow p$ do not mean the same thing!
• IF I’m dead, THEN my eyes are closed vs. IF my eyes are closed, THEN I’m dead
Proving an Implication: Reasoning without Facts

• IF \(n^2 \) is even \THEN \(n \) is even

\[
\begin{array}{|c|c|c|}
\hline
p & q & p \rightarrow q \\
\hline
F & F & T \\
F & T & T \\
T & F & F \\
T & T & T \\
\hline
\end{array}
\]

• What is \(n \)? How to prove?
 – We must show that the highlighted row \textit{cannot} occur.
 – i.e., \(n \) is odd cannot be the case

• In this row, \(q \) is \(F \): \(n = 2k + 1 \)

• \(n^2 = (2k + 1)^2 = 2(2k^2 + 2k) + 1 \)

• \(p \) cannot be \(T \). This row cannot happen: \(p \rightarrow q \) is always \(T \)
Quantifiers

- Every person has a soulmate
- John has some gray hair
- Everyone has some gray hair
- Any map can be colored with 4 colors with adjacent countries having different colors
- Every even integer \(n > 2 \) is the sum of 2 primes \((\text{Goldbach conjecture, 1742})\)
 - Still not proven, but holds for numbers up to at least \(4 \times 10^{18} \)
- Someone broke this faucet
- There exists a creature with blue eyes and blonde hair
- All cars have four wheels
Quantifiers, etc.

• These statements are more complex because of quantifiers:
 – EVERY; A; SOME; ANY; ALL; THERE EXISTS

• Compare:
 – My Tesla has four wheels
 – ALL cars have four wheels
Predicates are like functions

- ALL cars have four wheels
- Define predicate $P(c)$ and its domain
 - $C = \{c \mid c \text{ is a car}\}$
 - set of cars
 - $P(c) = \text{“car c has four wheels”}$
- “for all c in C, the statement $P(c)$ is true.”
 - $\forall c \in C: P(c)$
 - (\forall means “for all”)

\[\]
Predicates are like functions, cont’d

• Predicates

\[P(c) = \text{“car } c \text{ has four wheels”} \]

– Input: parameter \(c \in C \)
– Output: statement \(P(c) \)
– Example: \(P(Jen's \ Car) = \text{“car Jen's Car has four wheels”} \)

\[\forall c \in C: P(c) \]

– Meaning: for all \(c \in C \), the statement \(P(c) \) is T

• Functions:

\[f(x) = x^2 \]

– Input: parameter \(x \in \mathbb{R} \)
– Output: value \(f(x) \)
– Example: \(f(5) = 25 \)

\[\forall x \in \mathbb{R}, f(x) \geq 0 \]

– Meaning: for all \(x \in \mathbb{R} \), \(f(x) \) is \(\geq 0 \)
Example

• There EXISTS a creature with blue eyes and blonde hair
• Define predicate $Q(a)$ and its domain
 $$A = \{a | a \text{ is a creature}\}$$
 – set of creatures
 $$Q(a) = \text{“}a \text{ has blue eyes and blonde hair”}$$
• “there exists a in A for which the statement $Q(a)$ is true.”
 $$\exists a \in A: Q(a)$$
 \exists means “there exists”
• $G(a) = \text{“}a \text{ has blue eyes”}$
• $H(a) = \text{“}a \text{ has blonde hair”}$
• $\exists a \in A: (G(a) \land H(a))$
Example, cont’d

• \(G(a) = “a \text{ has blue eyes}” \)
• \(H(a) = “a \text{ has blonde hair}” \)
• \(\exists a \in A: (G(a) \land H(a)) \)
 – compound predicate
• When the domain is understood, we don’t need to keep repeating it
 – We write

\[\exists a: Q(a) \]

– or

\[\exists a: (G(a) \land H(a)) \]
Negative Quantifiers

• IT IS NOT THE CASE THAT (There EXISTS a creature with blue eyes and blonde hair)

• Same as: “All creatures don’t have blue eyes and blonde hair”
 \[\neg (\exists a \in A: Q(a)) \equiv \forall a \in A: \neg Q(a) \]
 (\equiv \text{ means they are equivalent/same})

• IT IS NOT THE CASE THAT (All cars have four wheels)

• Same as: “There is a car which does not have four wheels”
 \[\neg (\forall c \in C: P(c)) \equiv \exists c \in C: \neg P(c) \]

• When you take the negation inside the quantifier and negate the predicate, you must switch quantifiers:
 \[\exists \rightarrow \forall \]
 \[\forall \rightarrow \exists \]
There is a soulmate for EVERY person

- Define domains and a predicate
 \[A = \{ a | a \text{ is a person} \} \]
- \(P(a, b) = \text{“Person } a \text{ has as a soul mate person } b \text{”} \)
- There is some special person \(b \) who is a soul mate to every person \(a \)
 \[\exists b: (\forall a: P(a, b)) \]
- For every person \(a \), they have their own personal soul mate \(b \)
 \[\forall a: (\exists b: P(a, b)) \]
- When quantifiers are mixed, the order in which they appear is important for the meaning
 - Order generally cannot be switched
Proofs with quantifiers

• **Claim 1.** \(\forall n > 2: \) if \(n \) is even, then \(n \) is a sum of two primes. *(Goldbach, 1742)*

• **Claim 2.** \(\exists (a, b, c) \in \mathbb{N}^3: a^2 + b^2 = c^2 \)

 – where \((a, b, c) \in \mathbb{N}^3 \) means triples of natural numbers

• **Claim 3.** \(\neg \exists (a, b, c) \in \mathbb{N}^3: a^3 + b^3 = c^3 \)

• **Claim 4.** \(\forall (a, b, c) \in \mathbb{N}^3: a^3 + b^3 = c^3 \)

• Think about what it would take to prove these claims