Strong Induction: Strengthening Induction
 – Chapter 6
• Solving harder problems with induction
 – Proving $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \leq 2\sqrt{n}$
• Strengthening the induction hypothesis
 – Proving $n^2 < 2^n$
 – L-tiling
• Many flavors of induction
 – Leaping Induction
 • Postage
 • $n^3 < 2^n$
 – Strong induction
 • Fundamental Theorem of Arithmetic
 • Games of Strategy
A Hard Problem: $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \leq 2\sqrt{n}$

- **Proof.** $P(n)$: $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \leq 2\sqrt{n}$

1. **[Base case]** $P(1)$ claims that $1 \leq 2$, which is T

2. **[Induction step]** Show $P(n) \rightarrow P(n + 1)$ for all $n \geq 1$. Direct proof.
 - Assume (induction hypothesis) $P(n)$ is T: $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \leq 2\sqrt{n}$
 - Show $P(n + 1)$ is T:
 $$\sum_{i=1}^{n+1} \frac{1}{\sqrt{i}} \leq 2\sqrt{n + 1}$$
 $$\sum_{i=1}^{n+1} \frac{1}{\sqrt{i}} = \sum_{i=1}^{n} \frac{1}{\sqrt{i}} + \frac{1}{\sqrt{n+1}}$$
 $$\leq 2\sqrt{n} + \frac{1}{\sqrt{n+1}}$$
 [key step]
 $$\leq 2\sqrt{n + 1}$$
 [induction hypothesis]

 - Hm, now what??

 - **Lemma:** $2\sqrt{n} + \frac{1}{\sqrt{n+1}} \leq 2\sqrt{n + 1}$
Lemma: \(2\sqrt{n} + \frac{1}{\sqrt{n+1}} \leq 2\sqrt{n} + 1 \)

- Proof. By contradiction.
 - Assume
 \[
 2\sqrt{n} + \frac{1}{\sqrt{n+1}} > 2\sqrt{n} + 1
 \]
 - It follows that (by multiplying by \(\sqrt{n+1} \))
 \[
 2\sqrt{n(n+1)} + 1 > 2(n+1)
 \]
 \[
 2\sqrt{n(n+1)} > 2n + 1
 \]
 \[
 4n(n + 1) > (2n + 1)^2
 \]
 \[
 4n^2 + 4n > 4n^2 + 4n + 1
 \]
 \[
 0 > 1
 \]
 - Contradiction!
A Hard Problem: $\Sigma_{i=1}^{n} \frac{1}{\sqrt{i}} \leq 2\sqrt{n}$

- Proof. $P(n): \Sigma_{i=1}^{n} \frac{1}{\sqrt{i}} \leq 2\sqrt{n}$

1. **[Base case]** $P(1)$ claims that $1 \leq 2$, which is T

2. **[Induction step]** Show $P(n) \rightarrow P(n + 1)$ for all $n \geq 1$. Direct proof.
 - Assume (induction hypothesis) $P(n)$ is T: $\Sigma_{i=1}^{n} \frac{1}{\sqrt{i}} \leq 2\sqrt{n}$
 - Show $P(n + 1)$ is T: $\Sigma_{i=1}^{n+1} \frac{1}{\sqrt{i}} \leq 2\sqrt{n + 1}$

 $\Sigma_{i=1}^{n+1} \frac{1}{\sqrt{i}} = \Sigma_{i=1}^{n} \frac{1}{\sqrt{i}} + \frac{1}{\sqrt{n+1}}$ [key step]

 $\leq 2\sqrt{n} + \frac{1}{\sqrt{n+1}}$ [induction hypothesis]

 $\leq 2\sqrt{n + 1}$ [Lemma]
 - So, $P(n) \rightarrow P(n + 1)$

3. By induction, $P(n)$ is T $\forall n \geq 1$.

Proving Stronger Claims

- Prove that \(n^2 \leq 2^n \) for \(n \geq 4 \)

Proof attempt. [By induction]

- **[Base case]** \(P(4) \) claims that \(16 \leq 16 \), which is T

- **[Induction step]** Assume \(P(n) \) is T: \(n^2 \leq 2^n \) for \(n \geq 4 \)
 - Need to show \(P(n) \rightarrow P(n+1): \)
 \[(n + 1)^2 \leq 2^{n+1} \]
 - Note that \((n + 1)^2 = n^2 + 2n + 1 \leq 2^n + 2n + 1 \)
 - If only we could show \(2n + 1 \leq 2^n \)
 - Then \(2^n + 2n + 1 \leq 2^n + 2^n = 2^{n+1} \)
 - With induction, it can be easier to prove a stronger claim.
Strengthen the claim: \(Q(n) \) Implies \(P(n) \)

- Consider a new claim \(Q(n): (i) \) \(n^2 \leq 2^n \) AND \((ii) \) \(2n + 1 \leq 2^n \)

- **Proof.** [By induction]
 1. **[Base case]** \(Q(4) \) claims \(16 \leq 16 \) AND \(9 \leq 16 \); both are T
 2. **[Induction step]** Show \(Q(n) \rightarrow Q(n + 1) \) for \(n \geq 4 \). Direct proof
 - Assume \(Q(n) \) is T: \((i) \) \(n^2 \leq 2^n \) AND \((ii) \) \(2n + 1 \leq 2^n \)
 - Show \(Q(n + 1) \) is T:
 \[(i) \quad (n + 1)^2 \leq 2^{(n+1)} \text{ AND } (ii) \quad 2(n + 1) + 1 \leq 2^{(n+1)}\]
 \[(i): \quad (n + 1)^2 = n^2 + 2n + 1 \]
 \[
 \leq 2^n + 2n + 1 \leq 2^n + 2^n = 2^{n+1}
 \]
 - (From the induction hypothesis: \(n^2 \leq 2^n \) AND \(2n + 1 \leq 2^n \))
 \[(ii): \quad 2(n + 1) + 1 = 2 + 2n + 1 \]
 \[
 \leq 2^n + 2^n = 2^{n+1}
 \]
 - (Because \(2 \leq 2^n \) and \(2n + 1 \leq 2^n \) from the induction hypothesis)
 - So \(Q(n + 1) \) is T
 3. By induction, \(Q(n) \) is T for \(n \geq 4 \)
L-Tile Land

- Can you tile a $2^n \times 2^n$ patio missing a center square (there’s a pot there!). You only have L-shaped tiles

- **TINKER!**
 - when $n = 1$
 - when $n = 2$
 - when $n = 3$

- $P(n)$: The $2^n \times 2^n$ grid minus a center-square can be L-tiled.
L-Tile Land: Induction Idea

- Suppose $P(n)$ is true. What about $P(n + 1)$?
- The $2^{n+1} \times 2^{n+1}$ patio can be decomposed into four $2^n \times 2^n$ patios

- **Problem.** Corner squares are missing. $P(n)$ can be used only if center-square is missing.
- **Solution.** Strengthen claim to also include patios missing corner-squares. $Q(n)$:
 - (i) The $2^n \times 2^n$ grid missing a **center-square** can be L-tiled; AND
 - (ii) The $2^n \times 2^n$ grid missing a **corner-square** can be L-tiled
L-Tile Land: Induction Proof of Stronger Claim

- Assume $Q(n)$:
 - (i) The $2^n \times 2^n$ grid missing a **center-square** can be L-tiled; and
 - (ii) The $2^n \times 2^n$ grid missing a **corner-square** can be L-tiled

- Induction step: Must prove two things for $Q(n + 1)$, namely (i) and (ii).
 - (i) Center square missing
 - (ii) Corner square missing

- Exercise: Add base cases and complete the formal proof.

- **Exercise 6.4.** What if the missing square is some random square?
 - Strengthen further.
• Prove $P(n): n^3 < 2^n$, for all $n \geq 10$

• *Proof attempt.* [By induction]
 – *[Base case]* $P(10)$ claims $1000 = 10^3 < 2^{10} = 1024$.
 • True.
 – *[Induction step]* Assume $P(n)$ is T: $n^3 < 2^n$ for $n \geq 10$.
 • Need to show $P(n + 1)$ is T:
 \[(n + 1)^3 < 2^{n+1}\]
 – Seems hard
 • Consider $P(n + 2): (n + 2)^3 < 2^{n+2}$?
 \[(n + 2)^3 = n^3 + 6n^2 + 12n + 8\]
 \[< n^3 + n \cdot n^2 + n^2 \cdot n + n^3\]
 » (Because $n \geq 10 \rightarrow 6 < n, 12 < n^2, 8 < n^3$)
 \[(n + 2)^3 < n^3 + n \cdot n^2 + n^2 \cdot n + n^3 = 4n^3\]
 \[< 4 \cdot 2^n = 2^{n+2}\]
 » (From induction hypothesis: $P(n): n^3 < 2^n$)
 – i.e., $P(n) \rightarrow P(n + 2)$
• Not quite induction yet. What can we do?
A Tricky Induction Problem, cont’d

• Prove \(P(n) \): \(n^3 < 2^n \), for all \(n \geq 10 \)

• *Proof. [By induction]*

1. **[Base cases]** \(P(10) \) claims \(1000 = 10^3 < 2^{10} = 1024 \).
 \(P(11) \) claims \(1331 = 11^3 < 2^{11} = 2048 \).
 – Both are T.

2. **[Induction step]** Assume \(P(n) \) is T: \(n^3 < 2^n \) for \(n \geq 10 \).
 – Need to show \(P(n) \) \(\rightarrow \) \(P(n + 2) \): \((n + 2)^3 < 2^{n+2} \)

 • Consider \(P(n + 2) \): \((n + 2)^3 < 2^{n+2} \)?
 \[
 (n + 2)^3 = n^3 + 6n^2 + 12n + 8 \\
 < n^3 + n \cdot n^2 + n^2 \cdot n + n^3

 » (Because \(n \geq 10 \rightarrow 6 < n, 12 < n^2, 8 < n^3 \))
 \[
 (n + 2)^3 < n^3 + n \cdot n^2 + n^2 \cdot n + n^3 = 4n^3 < 4 \cdot 2^n = 2^{n+2}

 » (From induction hypothesis: \(P(n) \): \(n^3 < 2^n \))
 – i.e., \(P(n) \) \(\rightarrow \) \(P(n + 2) \)

3. By induction, \(P(n + 2) \) is T for all \(n \geq 10 \)
 – Already showed \(P(10) \) and \(P(11) \) are T.
Leaping Induction

• **Induction.** One base case.
 \[P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow \cdots \]

• **Leaping Induction.** More than one base case.
 \[P(1) \rightarrow P(3) \rightarrow P(5) \rightarrow \cdots \]
 \[P(2) \rightarrow P(4) \rightarrow P(6) \rightarrow \cdots \]

• **Example.** Postage greater than 5¢ can be made using 3¢ and 4¢ stamps.

<table>
<thead>
<tr>
<th>3¢</th>
<th>4¢</th>
<th>5¢</th>
<th>6¢</th>
<th>7¢</th>
<th>8¢</th>
<th>9¢</th>
<th>10¢</th>
<th>11¢</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>-</td>
<td>3,3</td>
<td>3,4</td>
<td>4,4</td>
<td>3,3,3</td>
<td>3,4,3</td>
<td>4,4,3</td>
</tr>
</tbody>
</table>

• \(P(n) \): Postage of \(n \text{¢} \) can be made using only 3¢ and 4¢ stamps.
 \[P(n) \rightarrow P(n + 3) \text{ (add a 3¢ stamp to } n) \]

• **Practice.** Exercise 6.6
Fundamental Theorem of Arithmetic

• The fundamental theorem of arithmetic states that
 \[2024 = 2 \times 2 \times 2 \times 11 \times 23 \]

 – Huh?

 – Well, it says more than that 😊

• Theorem [The primes (\(\mathcal{P} = \{2,3,5,7,11,13,\ldots\}\)) are the atom numbers]. Suppose \(n \geq 2\) is natural number. Then:

 – (i) \(n\) can be written as a product of factors all of which are prime.

 – (ii) The representation of \(n\) as a product of primes is unique (up to reordering).

• What is \(P(n)\)?

 \[P(n): n \text{ is a product of primes} \]

• What is the first thing we do?

 – TINKER!
Fundamental Theorem of Arithmetic

- The prime-factor decomposition of 2024 is:
 \[2024 = 2 \times 2 \times 2 \times 11 \times 23 \]

- **Theorem.** [The primes \(\mathcal{P} = \{2,3,5,7,11,13, \ldots \} \) are the atom numbers]. Suppose \(n \geq 2 \). Then:
 - (i) \(n \) **can be written as a product of factors all of which are prime.**
 - (ii) The representation of \(n \) as a product of primes is unique (up to reordering).

- What is \(P(n) \)?
 \[P(n): n \text{ is a product of primes} \]

- What is the prime-factor decomposition of 2025:
 \[2025 = 5 \times 5 \times 3 \times 3 \times 3 \times 3 \]

- Wow! No similarity between the factors of 2024 and 2025
 - **How will** \(P(n) \) **help us to prove** \(P(n + 1) \)?
Much “Stronger” Induction Claim

- Do smaller values of \(n \) help with 2025?
 - Yes, \(2025 = 25 \times 81 \)
 \[
P(25) \land P(81) \rightarrow P(2025)
 \]
 - (like leaping induction)

- **Much Stronger Claim:**
 - \(Q(n) \): 2, 3, ..., \(n \) are all products of primes.
 - Compare with: \(P(n) \): \(n \) is a product of primes
 \[
 Q(n) = P(2) \land P(3) \land P(4) \land \cdots \land P(n)
 \]

- **Surprise!** The much stronger claim is *much* easier to prove.
 - Also, \(Q(n) \rightarrow P(n) \)
Fundamental Theorem of Arithmetic: Proof of \((i)\)

- Recall \(P(n): n\) is product of primes.
 - Recall \(Q(n) = P(2) \land P(3) \land \cdots \land P(n)\)

- **Proof.** [By induction that \(Q(n)\) is \(T\) for all \(n \geq 2\).]

1. **[Base case].** \(Q(1)\) claims that 2 is product of primes. True.

2. **[Induction step]** Show that \(Q(n) \rightarrow Q(n + 1)\) for \(n \geq 2\). Direct proof.
 - Assume \(Q(n)\) is \(T\): each of 2, 3, ..., \(n\) are products of primes
 - Show \(Q(n + 1)\) is \(T\): each of 2, 3, ..., \(n\), \(n + 1\) are products of primes
 - Since we assumed \(Q(n)\), we know 2, 3, ..., \(n\) are products of primes
 - To prove \(Q(n + 1)\), we only need to prove \(n + 1\) is a product of primes!
Fundamental Theorem of Arithmetic: Proof of \((i)\)

• **Proof.** [By induction that \(Q(n)\) is T for all \(n \geq 2\).]

1. **[Base case]**. \(Q(1)\) claims that 2 is product of primes. True.

2. **[Induction step]** Show that \(Q(n) \rightarrow Q(n + 1)\) for \(n \geq 2\). Direct proof.
 - Assume \(Q(n)\) is T: each of 2, 3, \(\ldots\), \(n\) are products of primes
 - Show \(Q(n + 1)\) is T: each of 2, 3, \(\ldots\), \(n\), \(n + 1\) are products of primes
 - Since we assumed \(Q(n)\), we know 2, 3, \(\ldots\), \(n\) are products of primes
 - To prove \(Q(n + 1)\), we only need to prove \(n + 1\) is a product of primes!
 - Case 1: \(n + 1\) is prime.
 - Done, nothing to prove.
 - Case 2: \(n + 1\) is not prime,
 - i.e., \(n + 1 = kl\), where \(2 \leq k, l \leq n\).
 - What now?
 » Use induction hypothesis!
 \[P(k): k \text{ is product of primes}; P(l): l \text{ is product of primes.}\]
 - i.e., \(n + 1 = kl\) is a product of primes and \(Q(n + 1)\) is T

3. By induction, \(Q(n)\) is T, \(\forall n \geq 2\).
Strong Induction

• **Strong Induction.** To prove \(P(n) \) \(\forall n \geq 1 \) by strong induction, you use induction to prove the *stronger* claim:

 – \(Q(n) \): each of \(P(1), P(2), \ldots, P(n) \) are T

• Ordinary induction

 – Base case: Prove \(P(1) \)
 – Induction step: Assume \(P(n) \) and prove \(P(n + 1) \)

• **Strong induction**

 – Base case: Prove \(Q(1) = P(1) \)
 – Induction step: Assume \(Q(n) = P(1) \land P(2) \land P(3) \land \cdots \land P(n) \) and prove \(P(n + 1) \)

• **Strong induction is always easier**
Every $n \geq 1$ has a binary expansion

- What is $P(n)$ more precisely?
 - $P(n)$: Every $n \geq 1$ is a sum of distinct powers of 2 (its binary expansion)
 - E.g., what is the binary expansion of 22?

\[
22 = 2^4 + 2^2 + 2^1 \quad (22_{binary} = 10110)
\]
Every \(n \geq 1 \) has a binary expansion

- **Proof Sketch.**
- **[Base case]** \(P(1) \) is T: \(1 = 2^0 \)
- **[Induction step]** Assume \(P(1) \land P(2) \land \cdots \land P(n) \) and prove \(P(n + 1) \)
 - If \(n \) is even, then
 \[n + 1 = 2^0 + n_{\text{binary}} \]
 - e.g., \(23 = 2^4 + 2^2 + 2^1 + 2^0 \)
 - If \(n \) is odd, then multiply each term in the expansion of \(\frac{1}{2}(n + 1) \) by 2
 - This gets us \(n + 1 \)
 - e.g., \(24 = 2 \times 12_{\text{binary}} = 2 \times (2^3 + 2^2) = 2^4 + 2^3 \)
 - Why does \(\frac{1}{2}(n + 1) \) have an expansion?
 - Strong induction!
- **Exercise.** Give the formal proof by strong induction.
Applications of Induction

• Greedy or recursive algorithms, games of strategy
• Consider the game of Equal Pile Nim (old English/German: to steal or pilfer)
 – two players take turns taking pennies from two equal rows of pennies
 – each player can take an arbitrary number of pennies from one row
 – the player to take the last stone wins

• Claim: $P(n)$: Player 2 can win the game that starts with n pennies per row.
 – Equalization strategy:

 • Player 2 can always return the game to smaller equal piles.
 • If Player 2 wins the smaller game, Player 2 wins the larger game.
 • That’s strong induction!

• Exercise. Give the full formal proof by strong induction.
• Challenge. What about more than 2 piles? What about unequal piles? (Problem 6.20).
Investigate Further in the Problems

• Uniqueness of binary representation as a sum of distinct powers of 2:
 – Problem 6.27

• General Nim:
 – Problem 6.39
Checklist When Approaching an Induction Problem

• Are you trying to prove a “For all . . .” claim?

• Identify the claim $P(n)$, especially the parameter n. Here is an example.
 – Prove: geometric mean \leq arithmetic mean. What is $P(n)$? What is n?
 – $P(n)$: geometric mean \leq arithmetic mean for every set of $n > 0$ numbers
 – **Identifying the right claim is important.**
 You may fail because you try to prove too much. Your $P(n + 1)$ is too heavy a burden. You may fail
 because you try to prove too little. Your $P(n)$ is too weak a support. You must balance the strength of
 your claim so that the support is just enough for the burden. —G. Polya (paraphrased).

• Tinker. Does the claim hold for small n ($n = 1, 2, 3, ...$)? These become base cases.

• Tinker. Can you see why (say) $P(5)$ follows from $P(1), P(2), P(3), P(4)$?
 – This is the crux of induction; to build up from smaller n to a larger n.

• Determine the type of induction: try strong induction first.

• Write out the skeleton of the proof to see exactly what you need to prove.

• Determine and prove the base cases.

• Prove $P(n + 1)$ in the induction step. You must use the induction hypothesis.