QUIZ 1: 60 Minutes

Last Name:
First Name:
RIN:
Section:

Answer ALL questions.
NO COLLABORATION or electronic devices. Any violations result in an F.
NO questions allowed during the test. Interpret and do the best you can.

GOOD LUCK!

Circle at most one answer per question.
10 points for each correct answer.

You MUST show CORRECT work to get full credit.

When in doubt, TINKER.
INSTRUCTIONS

1. This is a closed book test. No electronics, books, notes, internet, etc.

2. The test will become available in Submitty at 8am on the test date.

3. Your PDF is due in Submitty by 2pm.

4. By submitting the test you attest that:
 – the work is entirely your own.
 – you obeyed the time limits of the exam.

5. Your submission must be typed and submitted as a PDF file.

6. The first page should list your twenty answers, something like:

 | | |
---|---|---|
(1) | A |
(2) | B |
(3) | C |
(4) | D |
 | |
 | |
 | |
(20)| A |

7. The second page onward must show your work for every answer, e.g.:

 | | |
---|---|---|
(1) | Because \(x \) is even |
(2) | Because \(\sqrt{2} \) is irrational. |
(3) | Number of links is |
 | \(1 + 2 + \cdots + 10 = 55 \) |
 | |
 | |
 | |
(20) | Because we proved in class that \(t = n - 1 \) |

 – Some problems may be “easy”, so give a one line justification
 – Some problems may require a detailed reasoning.

8. If you don’t show correct work, you won’t get credit.

9. Be careful. This is multiple choice.
 – Correct answers get 10 points.
 – Wrong answers or correct answers with no justification get 0.

10. Submit with plenty of time to spare. A late test won’t be accepted.
 – We won’t accept submissions that are even 1 second late.
1. Jodie asks John to solve \(x^2 - a = 0 \) and find \(x \) as a rational number. Which is true?

- A. \(\forall a \in \mathbb{N} : \) John can find a rational solution \(x \). \(\times \)
- B. \(\forall a \in \mathbb{N} : \) John cannot find a rational solution \(x \). \(\times \)
- C. \(\forall a \in \mathbb{Z} : \) John can find a rational solution \(x \). \(\times \)
- D. \(\forall a \in \mathbb{Z} : \) John cannot find a rational solution \(x \). \(\times \)
- E. None of the above.

\[a = 2 \rightarrow x = \sqrt{2} \text{ rational} \]
\[a = 4 \rightarrow x = 2 \text{ rational} \]

\[x = \sqrt{a} \]

2. The set \(S = \{4, 16, 64, 256, 1024, \ldots\} \). Which of these definitions using a variable could be \(S \)?

- A. \(S = \{n|n = 2^k, \text{ for } k \in \mathbb{N}\} \).
- B. \(S = \{n|n = 4^{1+k(1/2)}, \text{ for } k \in \mathbb{N}\} \).
- C. \(S = \{n|n = 2 \times 2^k, \text{ for } k \in \mathbb{N}\} \).
- D. \(S = \{x|x = 2^k, \text{ for } k \in \mathbb{N}\} \).
- E. None of the above.

\[s = \{2^2, 2^4, 2^6, 2^8, 2^{10}, \ldots\} \]

\[2^k \quad k \in \mathbb{N} \]

3. \(A = \{\text{positive multiples of } 2\} \) and \(B = \{\text{positive multiples of } 3\} \). Which element is not in \(A \cap B \)?

- A. 4. \(\times \)
- B. 8. \(\times \)
- C. 12. \(\checkmark \)
- D. 16.
- E. None of the above.

\[\text{not in } A \cap B \text{ means in } A \cap B \]

\[\therefore \text{ must be multiple of } 2 \text{ and } 3 \]

4. An integer \(n \in \mathbb{Z} \) has a square that is divisible by 3, that is 3 divides \(n^2 \). Which claim must be true?

- A. \(n \) is odd.
- B. \(n \) is even.
- C. \(n \) is positive.
- D. \(n \) is divisible by 3.
- E. None of the above claims must be true.

\[3 \text{ divides } n^2 \rightarrow 3 \text{ divides } n \]

(proved in text).

5. If it rains on a day, then it rains the next day. Today it didn't rain. Which is true?

- A. It will rain tomorrow.
- B. It will not rain tomorrow.
- C. It did rain yesterday.
- D. It did not rain yesterday.
- E. None of the above.

\[r = \text{rain yesterday} \]
\[p = \text{rain today} \]
\[q = \text{rain tomorrow} \]

\[r \rightarrow p \]
\[p \rightarrow q \]

\[\sim p \text{ means can conclude } \sim r \]
6. Which method would succeed in proving \(p \rightarrow (q \lor r) \)?

A. You assumed \(p \) is true and showed \(q \) is true.
B. You assumed \(q \) is false and showed \(p \) is false.
C. You showed that \(p \) is true and \(q \) is false.
D. You showed that \(p \) is true and both \(q \) and \(r \) are false.
E. None of the above.

7. Which method would succeed in disproving \(p \rightarrow (q \lor r) \)?

A. You assumed \(p \) is true and showed \(q \) is true.
B. You assumed \(q \) is false and showed \(p \) is false.
C. You showed that \(p \) is true and \(q \) is false.
D. You showed that \(p \) is true and both \(q \) and \(r \) are false.
E. None of the above.

8. Determine true or false for the claim \(\forall n \in \mathbb{Z} : (n > n + 1) \rightarrow (n + 1 > n + 2) \).

A. This is not a valid proposition which is either true or false.
B. True for \(n < 0 \) and false otherwise.
C. True for \(n = 0 \) and false otherwise.
D. False.
E. True.

9. What method of proof would you use to prove that you cannot choose \(a, b \in \mathbb{Z} \) so that \(a^2 - 4b = 2 \)?

A. Direct proof
B. Contraposition proof.
C. Proof by induction.
D. Proof by contradiction.
E. None of the above.

10. What method would you use to prove that \(n^3 \leq 2^n \) for all \(n \geq 10 \)?

A. Direct proof
B. Contraposition proof.
C. Show that the formula is true for \(n = 1 \) up to \(n = 1000 \).
D. Proof by induction.
E. Proof by contradiction.
11. We wish to prove $P(n)$ for all $n \geq 10$. Which method accomplishes this?

A. Prove base case $P(1)$ and prove $P(n) \rightarrow P(n+2)$ for all $n \geq 10$.
B. Prove base cases $P(1), P(2)$ and prove $P(n) \rightarrow P(n+2)$ for all $n \geq 10$.
C. Prove base case $P(10)$ and prove $P(n) \rightarrow P(n+2)$ for all $n \geq 10$.
D. Prove base cases $P(10), P(11)$ and prove $P(n) \rightarrow P(n+2)$ for all $n \geq 10$.
E. None of the above methods works.

12. For $x, y \in \mathbb{Z}$, which statement is not necessarily a contradiction? (That is, which could be true?)

A. $x + 0 > x + 1$.
B. $x \geq y$ AND $x < y$.
C. $x^2 \geq y^2$ AND $|x| < |y|$.
D. $x^2 + y^2 \leq 1$.
E. They are all contradictions.

13. Consider the predicate $P(n) : n^2 \leq 2^n$. Which claim is true?

A. $P(n)$ is true for at most finite number of $n \in \mathbb{N}$.
B. $P(n)$ is true for all $n \in \mathbb{N}$.
C. $P(n)$ is true for all even $n \in \mathbb{N}$.
D. $P(n)$ is true for all odd $n \in \mathbb{N}$.
E. None of the above claims is true.

14. Consider the predicate $P(n) : 8$ divides $n^2 - 1$. Which claim is true?

A. $P(n)$ is true for at most finite number of $n \in \mathbb{N}$.
B. $P(n)$ is true for all $n \in \mathbb{N}$.
C. $P(n)$ is true for all even $n \in \mathbb{N}$.
D. $P(n)$ is true for all odd $n \in \mathbb{N}$.
E. None of the above claims is true.

15. Consider the predicate $P(n) : 1^2 + 2^2 + 3^2 + \ldots + n^2 > n^3/3$. Which claim is true?

A. $P(n)$ is true for at most finite number of $n \in \mathbb{N}$.
B. $P(n)$ is true for all $n \in \mathbb{N}$.
C. $P(n)$ is true for all even $n \in \mathbb{N}$.
D. $P(n)$ is true for all odd $n \in \mathbb{N}$.
E. None of the above claims is true.
16. You wish to make postage \(n \) cents with 5-cent and 6-cent stamps. For which \(n \in \mathbb{N} \) can you do it?

A. All postages \(n \geq 5 \) cents.
B. All postages \(n \geq 10 \) cents.
C. All postages \(n \geq 15 \) cents.
D. All postages \(n \geq 20 \) cents.
E. None of the above.

17. \(A_0 = 0 \) and for \(n > 0 \), \(A_n = n^2 + A_{n-2} \). What is \(A_6 \)?

A. It cannot be computed because this recurrence has only one base case.
B. \(A_6 = 12 \).
C. \(A_6 = 52 \).
D. \(A_6 = 56 \).
E. None of the above.

\[
A_6 = 36 + A_4 = 36 + 16 + A_2 = 36 + 16 + 4 + A_0 = 56.
\]

18. \(f(1) = 1; f(2) = 1 \) and for \(n > 2 \), \(f(n) = n + f(n - 3) \). For which \(n \in \mathbb{N} \) can \(f(n) \) be computed?

A. All \(n \in \mathbb{N} \).
B. All \(n \in \mathbb{N} \) which are even.
C. All \(n \in \mathbb{N} \) which are multiples of 3.
D. All \(n \in \mathbb{N} \) which are not multiples of 3.
E. None of the above.

19. Rooted binary trees (RBTs) are recursively defined below. How many RBTs have 4 vertices and 2 links?

A. 0
B. 5
C. 14
D. 42
E. 132

Recursive Definition of RBT:
1. The empty tree is an RBT.
2. If \(T_1, T_2 \) are disjoint RBTs with roots \(r_1 \) and \(r_2 \), then linking \(r_1 \) and \(r_2 \) to a new root \(r \) gives a new RBT with root \(r \).
3. Nothing else is an RBT.

20. \(T_1 \) and \(T_2 \) are disjoint RBTs. RBT \(T_1 \) has 8 vertices and 7 links. RBT \(T_2 \) has 4 vertices and 3 links. Using the constructor for RBT, you get a child RBT \(T \). How many vertices and links does \(T \) have?

A. 12 vertices and 10 links
B. 12 vertices and 11 links
C. 13 vertices and 11 links
D. 13 vertices and 12 links
E. None of the above, or we can't say for sure.