Policy Gradients with Function Approximation

Actor-Critic Methods

®) Rensselaer

Reading

* Reinforcement Learning
— http://www.incompleteideas.net/book/the-book-2nd.html

— Chapter 13.4-13.7

e Sutton, Richard S., et al. "Policy gradient methods for

reinforcement learning with function
approximation." Advances in neural information processing

systems 12 (1999).

* David Silver lecture on Policy Gradients
— https://www.youtube.com/watch?v=KHZVXao4gXs&t=3s

http://www.incompleteideas.net/book/the-book-2nd.html

Overview @©@ Rensselaer

REINFORCE algorithm can work well in some settings but it has
to wait for returns at the end of the episode

 Suffers from similar issues as Monte Carlo methods

— Large variance

— Slow convergence

Essentially does not use the Bellman equation

We will discuss a similar progression of algorithms as in value-
based methods

— Add function approximation
— Add bootstrapping (actor-critic methods)

REINFORCE algorithm, cont’d @ Rensselaer

* Final form for the gradient is
Vor(s) = En[Z1-y V1og(m(4:1S)) Gk Sk = s]
* Once we have the gradient, update weights as usual
0" =0+ aVvg,(s)

—This is similar to the Monte Carlo learning method where we
wait until the end of the episode to observe G;

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for .,

Input: a differentiable policy parameterization 7 (als,)
Algorithm parameter: step size o > 0
Initialize policy parameter 8 € R (e.g., to 0)

Loop forever (for each episode):

Generate an episode Sy, Ag, Ry,....S7—1, Ap_1, Ry, following =(-|-, 8)
Loop for each step of the episode t =0,1,.... 1T — 1:
i 0
G+ Zk:t—H '\/k t IRk (Gt)

0 +— 0+ ay'GVInr(A4:]S;, 0)

Issues with REINFORCE @©@ Rensselaer

* Can you spot any issues with this iteration?
Vur(s) = Eq[Zi=k Viog(n(A¢IS)) Gk[S =]
—How important is the magnitude of G, ?
—Turns out quite a bit — tasks have greatly varying returns
— Especially problematic if *good™* runs have zero returns
* Gradientis O!
* Vanilla REINFORCE has very large variance depending on Gy,

* How do we address this issue?
— Need to somehow normalize the returns

REINFORCE with Baseline @©@ Rensselaer

* Can add an arbitrary baseline b(s) to compare to the action
value for each state

[T
Vor(50) = B |) Viog(w(4,150) (61 = DIS: = 50
t=1

e Similar to the update in Q-learning

e Expectation remains the same as long as b is not a function of
the action a

—Why?
Vovr(sg) = VE[G1 — b|S; = s¢]

—Since Vgb = 0 when b is not a function of a

REINFORCE with Baseline: minimize variance

® Rensselaer

* Can add an arbitrary b_aseline b

Von(s0) = B |) Viog(w(4,15) (G = DIS: = 50

e Can pick b to minimize variance
—Recall Var[X] = E[X?] — (E[X])?

—The variance of the gradler!t update (in 1D) is

T 2 T 2
Er (; Vlog(n(AtlSt)) (G — b)> — (En l; Vlog(n(At|St)) (G — b)])

— Note that the 2"d term is not affected by the value of b

* Goes away when taking the gradient w.r.t. b

REINFORCE with Baseline: minimize variance,
cont’d

® Rensselaer

 Differentiating w.r.t. b

27
dVar d -

. _
= —|Exlg?G7] - b2Ex[gG1] + b2Er[9]|
= —2E,|g%G,| + 2bE,|g?]

—where g := ZfﬂVIOg(n(AtlSt))
» Setting it equal to 0 and solving for b, we get
_ En[ngl]

Erlg”]
— Will reduce the algorithm’s sensitivity to large variance of G;

— Issues?

* Estimating expectations may be hard

REINFORCE with Baseline: running state value
estimate

® Rensselaer

* Can add an arbitrary b_aseline b

T
Vo (s0) = By |) Vlog(m(AIS) (61 = bIS: = o
t=1

* What else can we do?
— Can pick b to be a running estimate of the current state value
— Can have a parameterized 7, (s) estimator

* Pick w to minimize a loss, e.g.,
. 2
(Gt - vw(St))
e Can perform gradient descent (with chain rule) after each iteration
w' =w+ awz(Gt _ ﬁw(St))vwﬁw(St)

REINFORCE with Baseline, cont’d ® Rensselaer

e REINFORCE with state value estimates as baseline

* Lower variance means much sor_ RENFORCE v ol 2 -

201 i _h:_-._\:.;n'_.ﬂm_iruﬁ DRIt gy <— v L0
faster convergence [
o i " remnForce
0 o f S
Total reward A"
on episode ,
averaged over 100 runs .

1 200 400 600 800 1000
Episode

REINFORCE with Baseline (episodic), for estimating mg = .

Input: a differentiable policy parameterization w(a|s, @)

Input: a differentiable state-value function parameterization v(s,w)
Algorithm parameters: step sizes a? > 0, a™ > 0

Initialize policy parameter 8 € RY and state-value weights w € R4 (e.g., to 0)

Loop forever (for each episode):

Generate an episode Sy, Ag, Ry,...,S7_1, A7, Ry, following w(-|-, 8)
Loop for each step of the episode £t =0,1,...,T — 1:
T i ¥
G+ Zk:t—H Afk IRy (Gt)

§ +— G — v(5:,w)
w4 w4+ a¥oVo(S,w)
8 «+ 0+ a5V Inm(A;|S:,0)

10

Policy gradients with function approximation ® Rensselaer

REINFORCE with baseline tries to estimate each state’s value
— Greatly reduces variance if done well

But we still need to wait for returns

What else can we do?
Von(s0) =) dn(s)) V(als)n(s, @)
S a

—We can try to approximate the g function!
—Then use the approximation g in the policy gradient

What is a potential issue with that approach?
— Unclear if the true policy gradient is still followed
— Unclear if it converges (and what it converges to)

Policy gradients with function approximation,
cont’d

® Rensselaer

* What else can we do?
Von(s0) =) dn(s)) V(als)n(s, @)
S a

— We can try to approximate the g function!?

* Suppose we use an approximation f,, of g,
—How do we train f,,,?
— One option is to use least squares as usual
(42(5,@) = fiu(s, @)

— As usual, we don’t know the true g values

* Can use G; instead — will learn the same w in expectation

1Sutton, Richard S., et al. "Policy gradient methods for reinforcement learning with function approximation." Advances

in neural information processing systems 12 (1999). >

Policy gradients with function approximation,
cont’d

® Rensselaer

* Suppose we try to minimize least squares
(an(s, @) = (s, @)’
* We can use the same algorithm as REINFORCE with baseline
— except now we use the other form of the policy gradient

— For each step of an episode: t = 0,1, ..., T
* Gt = Yhers1V IR
* 6; = Gy — fw(St, Ap)
e w =w+ a,,0,Vf,,(S: Ap)
* 0" =0+ agVr(AlS) fuw (St Ar)
e Can you spot any issues?
— Algorithm may be very noisy depending on quality of f,,
— May not ever converge

Compatible Approximations @) Rensselaer

* Recall the policy gradient

Vor(50) =) dn(s)) V(als)an(s, a)

* Suppose we use an approximation f,, of g, (s, a)
—What property would f,, have ideally?

Von(s0) =) dn(s)) Vr(als)fu(s,a)

— We follow the correct gradient when we update 6
—This is known as a compatible approximation

14

Compatible Approximation Property @) Rensselaer

* Suppose we train f,, until convergence, i.e.,
2
Vw(qz(s,a) — f(s,@)) =0
° j.e.,

(42(s, @) — fu(s,))Vyf(s,a) = 0

* This means that f,, is the least squares estimator of g,; as
—Thus, f,, is un unbiased estimator of g, i.e.,

Eq_[(92(S,4) — £, (S,)V, f(S,A)] = 0

 How do we expand that expected value?
Eq, [(0:(5,A) — £,(S, D))V, f(S, A)] =

=) P15 = 5,4 = a] (42(5,4) = fu (5,)V £ (S, 4)

=) dn()) 7(als)(@n(S, A) = £u (S,)V (S, 4)

Compatible Approximation Property, cont’d @ Rensselaer

* Suppose we train f,, until convergence, i.e.,
> dn(s) Y 1(als)(x(s,@) = fuls, @)Vuf (s, @) = 0

* Suppose that f,, satisfies the following equation

Vwf(s,a) =

2(als) Vor(s,a)

— A bit of a hacky assumption but makes the math work
— Sutton/Tsitsiklis conjecture it may actually be the only case
that guarantees convergence

* Makes the least-squares gradient
D d(s)) (4n(5,0) — fuls, @))Vpm(s, @) = 0

Compatible Approximation Property, cont’d @ Rensselaer

* Suppose that f,, satisfies the following equation

Vwf(s,a) =

2(als) Vor(s,a)

* Makes the least-squares gradient
D ()) (4x(5,@) = fuls,))Vgm(s, @) = 0

* What does this look like?
— Policy gradient, plus a term!
— Moving the extra term to the right, we get

D da(s)) V(al$)gn(s,@) =) dy(s)) Vr(als)fi(s,

* So finally,
Von(s0) =) dn(s)) Vn(als)fu(s, a)

Compatible Approximation Property, cont’d @ Rensselaer

* Suppose that f,, satisfies the following equation

Vwf(s,a) =

2(als) Vor(s,a)

* Makes the least-squares gradient
D ()) (4x(5,@) = fuls,))Vgm(s, @) = 0

* So finally,
Von(s0) =) du(s)) V(als)fi(s,@)

* A “compatible” approximation points the gradient in the same
direction as the true g function!

18

Compatible Approximation Example @) Rensselaer

e Suppose policy is the softmax policy as before
0T x(s,a)

;0) =
Tl,'(alS) Za, eBTx(s,al)

 Whatis Vrr(als; 68)?
—The derivative of the sigmoidis o'(x) = a(x)(l — a(x))

— The derivative of the softmax is the same:
Vri(als; 0) = x(s,a)m(als; 9)(1 — m(als; 9))

* Recall a compatible approximation is

Vf(s,a) = Vet (s,a) = x(s, a)(l —m(als; 0))

m(als)

* One option for f is a linear function:
fw(s,a) = wlx(s,a) —wlx(s,a)m(als; 6)

Compatible Approximation Example, cont’d @) Rensselaer

* Recall a compatible approximation is

Vf(s,a) = Vet (s,a) = x(s, a)(l —m(als; 0))

m(als)
* One option for f is a linear function:
fw(s,a) =wlx(s,a) —wlx(s,a)m(als; 9)

 Effectively, we can only prove convergence for linear
approximations

— Linear approximation can be arbitrarily bad if the true g
function is very non-linear

— May need to trade convergence guarantees for better
approximators and hope for the best
* Will need to look at non-linear approximations (wink, wink)

Improving REINFORCE with baseline ® Rensselaer

Recall the REINFORCE with baseline policy gradient

T
Vor(s) = By |) Vlog(m(AyISe) (Ge — 9(50))
k=t

Similar to MC methods, need to wait for returns
— Both slow and high-variance

 How can we address it? (What did we do in the MC case?)

— Use a TD-like approach!

Instead of using only the current estimate ¥(S;), use a
bootstrapped estimate of G;:

Re + yU(Se41) — U(St)

Actor-Critic Methods @ Rensselaer

* The TD-like policy gradient is now

T
Von(s) = By |) V1og(m(A;150) Ry +¥0(Ses) = 0(S5,))
k=t

 Just like in TD vs. MC, the above usually converges much faster

* This modification is called the actor-critic approach

—The function approximating v is called the critic
* Can also have a critic estimate the action-value g instead of v

—The policy is called the actor

22

Actor-critic, cont’d ® Rensselaer

* Similar to Q-learning, actor-critic adds a bias
— but reduces the variance
—and is consistent (i.e., bias goes to 0 with more data)

* Typically, the critic is trained in parallel with the actor
—How?

23

Training the critic @) Rensselaer

e Typically, the critic is trained in parallel with the actor

e Can train the critic to minimize squared error, as usual

2
(Q(St;At) — QW(St;At))
—where the critic Q" is parameterized by weights w

* Of course, we don’t have the labels, so we bootstrap them
—We use labelsy = Ry, 1 + Q%Y (S¢+1,A41)

* Finally, minimize squared error using standard gradient
descent
W =w+ a,2(Rep1 +¥QY (St41, A1) — Q¥ (St A))Vu QY (St Ar)
—To calculate, need a tuple (S¢, A¢, Ri41, S¢41, Apy1)

Actor-critic, cont’d @©@ Rensselaer

* In summary, suppose the critic Q% is parameterized by weights
w and the actor g is parameterized by 0

— After observing a tuple (S¢, A¢, Re, S¢11, A 4+1):

* 8 = R +vQ¥(St41,Ar+1) — Q% (S, Ap)
* W =w+a,6:V,Q% (S Ap)

e ' =0 + a95tV10g(ﬂ9(At|St))

—We have separate learning rates for the critic and actor, «,,
and ag, respectively

— Factor of 2 removed since it is incorporated into «,,

e Note that this is an on-policy approach (why?)
— Need to wait for action A;, 4 from current policy

On-Policy Actor-Critic Algorithm ® Rensselaer

* |deally, estimate the policy gradient over multiple episodes
—It’s an expectation over trajectories
— One point is unbiased but has high variance

* As usual, cannot prove convergence for most cases

One-step Actor—Critic (episodic), for estimating mp =~ .

Input: a differentiable policy parameterization w(als, 8)
Input: a differentiable state-value function parameterization 9(s,w)
Parameters: step sizes o® > 0, a% > 0
Initialize policy parameter # € R and state-value weights w € R4 (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

I<1
Loop while 5 is not terminal (for each time step):
A ~x(]5,0)
Take action A, observe S, R
§ 4+ R+ y9(S,w) — 0(S,w) (if S” is terminal, then ©(S’,w) = 0)

W w4+ a¥iVo(Sw)
0+ 8+a%I6Vinm(A|S,8)
I+ ~I

S+ 8

26

Comparison between REINFORCE algorithms (@ Rensselaer

 Compare REINFORCE with baseline vs REINFORCE actor-critic
on cliff environment

— Use a simple Monte Carlo to estimate each state’s value
D'(s) = D(s) + a(G — 19(5))
* use ¥ both as baseline and as critic

— Actor is a simple softmax policy

—— REINFORCE actor-critic

* REINFORCE with baseline converges — RENFORCE i e
very slowly

—30

—40 4

e Actor-critic has lower variance but it
has a bias

—50 1

—60

Reward per Episode

— Bias slowly converges to O

— Also finds optimal policy il

Episode number

— Could be better with better critic |

Extending Actor-Critic to Multi-Step Returns @®) Rensselaer

* Can extend the actor-critic method to multi-step returns,
similar to TD(n)

—How?

—Instead of collecting one-step reward Ry, collect n-step
return Gepen = Re + -+ ¥ 1Rp 111

— Use return in policy gradient theorem:

* 8¢ = Grpin T V"QY (Stin Arin) — QW (St Ay)
* W =w+a,6:V,0% (S Ap)

28

	Slide 1: Policy Gradients with Function Approximation Actor-Critic Methods
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: REINFORCE algorithm, cont’d
	Slide 5: Issues with REINFORCE
	Slide 6: REINFORCE with Baseline
	Slide 7: REINFORCE with Baseline: minimize variance
	Slide 8: REINFORCE with Baseline: minimize variance, cont’d
	Slide 9: REINFORCE with Baseline: running state value estimate
	Slide 10: REINFORCE with Baseline, cont’d
	Slide 11: Policy gradients with function approximation
	Slide 12: Policy gradients with function approximation, cont’d
	Slide 13: Policy gradients with function approximation, cont’d
	Slide 14: Compatible Approximations
	Slide 15: Compatible Approximation Property
	Slide 16: Compatible Approximation Property, cont’d
	Slide 17: Compatible Approximation Property, cont’d
	Slide 18: Compatible Approximation Property, cont’d
	Slide 19: Compatible Approximation Example
	Slide 20: Compatible Approximation Example, cont’d
	Slide 21: Improving REINFORCE with baseline
	Slide 22: Actor-Critic Methods
	Slide 23: Actor-critic, cont’d
	Slide 24: Training the critic
	Slide 25: Actor-critic, cont’d
	Slide 26: On-Policy Actor-Critic Algorithm
	Slide 27: Comparison between REINFORCE algorithms
	Slide 28: Extending Actor-Critic to Multi-Step Returns

