
Policy Gradients with Function Approximation

Actor-Critic Methods
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Reading

• Reinforcement Learning

– http://www.incompleteideas.net/book/the-book-2nd.html

– Chapter 13.4-13.7

• Sutton, Richard S., et al. "Policy gradient methods for 
reinforcement learning with function 
approximation." Advances in neural information processing 
systems 12 (1999).

• David Silver lecture on Policy Gradients

– https://www.youtube.com/watch?v=KHZVXao4qXs&t=3s

2

http://www.incompleteideas.net/book/the-book-2nd.html


Overview

• REINFORCE algorithm can work well in some settings but it has 
to wait for returns at the end of the episode

• Suffers from similar issues as Monte Carlo methods

– Large variance

– Slow convergence

• Essentially does not use the Bellman equation

• We will discuss a similar progression of algorithms as in value-
based methods

–Add function approximation

–Add bootstrapping (actor-critic methods)
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REINFORCE algorithm, cont’d

• Final form for the gradient is

∇𝑣𝜋 𝑠 = 𝔼𝜋 σ𝑡=𝑘
𝑇 ∇ log 𝜋 𝐴𝑡 𝑆𝑡 𝐺𝑘 𝑆𝑘 = 𝑠

• Once we have the gradient, update weights as usual
𝜽′ = 𝜽 + 𝛼∇𝑣𝜋𝜽

𝑠

– This is similar to the Monte Carlo learning method where we 
wait until the end of the episode to observe 𝐺𝑡
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Issues with REINFORCE

• Can you spot any issues with this iteration?

∇𝑣𝜋 𝑠 = 𝔼𝜋 σ𝑡=𝑘
𝑇 ∇ log 𝜋 𝐴𝑡 𝑆𝑡 𝐺𝑘 𝑆𝑘 = 𝑠

–How important is the magnitude of 𝐺𝑘?

– Turns out quite a bit – tasks have greatly varying returns

– Especially problematic if *good* runs have zero returns
• Gradient is 0!

• Vanilla REINFORCE has very large variance depending on 𝐺𝑘

• How do we address this issue?

–Need to somehow normalize the returns
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REINFORCE with Baseline

• Can add an arbitrary baseline 𝑏(𝑠) to compare to the action 
value for each state

∇𝑣𝜋 𝑠0 = 𝔼𝜋 ෍

𝑡=1

𝑇

∇ log 𝜋 𝐴𝑡 𝑆𝑡 𝐺1 − 𝑏 |𝑆𝑡 = 𝑠0

• Similar to the update in Q-learning

• Expectation remains the same as long as 𝑏 is not a function of 
the action 𝑎

–Why?
∇𝜽𝑣𝜋 𝑠0 = ∇𝜽𝔼 𝐺1 − 𝑏 𝑆1 = 𝑠0

– Since ∇𝜽𝑏 = 0 when 𝑏 is not a function of 𝑎
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REINFORCE with Baseline: minimize variance

• Can add an arbitrary baseline 𝑏

∇𝑣𝜋 𝑠0 = 𝔼𝜋 ෍

𝑡=1

𝑇

∇ log 𝜋 𝐴𝑡 𝑆𝑡 𝐺1 − 𝑏 |𝑆𝑡 = 𝑠0

• Can pick 𝑏 to minimize variance

– Recall 𝑉𝑎𝑟 𝑋 = 𝔼 𝑋2 − 𝔼 𝑋 2

– The variance of the gradient update (in 1D) is

𝔼𝜋 ෍

𝑡=1

𝑇

∇ log 𝜋 𝐴𝑡 𝑆𝑡 𝐺1 − 𝑏

2

− 𝔼𝜋 ෍

𝑡=1

𝑇

∇ log 𝜋 𝐴𝑡 𝑆𝑡 𝐺1 − 𝑏

2

–Note that the 2nd term is not affected by the value of 𝑏
• Goes away when taking the gradient w.r.t. 𝑏
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REINFORCE with Baseline: minimize variance, 

cont’d

• Differentiating w.r.t. 𝑏

𝑑𝑉𝑎𝑟

𝑑𝑏
=

𝑑

𝑑𝑏
𝔼𝜋 𝐺1 − 𝑏 ෍

𝑡=1

𝑇

∇ log 𝜋 𝐴𝑡 𝑆𝑡

2

 =
𝑑

𝑑𝑏
𝔼𝜋 𝑔2𝐺1

2 − 𝑏2𝔼𝜋 𝑔2𝐺1 + 𝑏2𝔼𝜋 𝑔2

= −2𝔼𝜋 𝑔2𝐺1 + 2𝑏𝔼𝜋 𝑔2  

–where 𝑔 ≔  σ𝑡=1
𝑇 ∇ log 𝜋 𝐴𝑡 𝑆𝑡

• Setting it equal to 0 and solving for 𝑏, we get

𝑏 =
𝔼𝜋 𝑔2𝐺1

𝔼𝜋 𝑔2

–Will reduce the algorithm’s sensitivity to large variance of 𝐺𝑡

– Issues?
• Estimating expectations may be hard
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REINFORCE with Baseline: running state value 

estimate

• Can add an arbitrary baseline 𝑏

∇𝑣𝜋 𝑠0 = 𝔼𝜋 ෍

𝑡=1

𝑇

∇ log 𝜋 𝐴𝑡 𝑆𝑡 𝐺1 − 𝑏 |𝑆𝑡 = 𝑠0

• What else can we do?

– Can pick 𝑏 to be a running estimate of the current state value

– Can have a parameterized ො𝑣𝒘(𝑠) estimator
• Pick 𝒘 to minimize a loss, e.g.,

𝐺𝑡 − ො𝑣𝒘 𝑆𝑡
2

• Can perform gradient descent (with chain rule) after each iteration

𝒘′ = 𝒘 + 𝛼𝒘2 𝐺𝑡 − ො𝑣𝒘 𝑆𝑡 ∇𝒘 ො𝑣𝒘 𝑆𝑡
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REINFORCE with Baseline, cont’d

• REINFORCE with state value estimates as baseline

• Lower variance means much
faster convergence
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Policy gradients with function approximation

• REINFORCE with baseline tries to estimate each state’s value

–Greatly reduces variance if done well

• But we still need to wait for returns

• What else can we do?

∇𝑣𝜋 𝑠0 = ෍

𝑠

𝑑𝜋(𝑠) ෍

𝑎

∇𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎

–We can try to approximate the 𝑞 function!

– Then use the approximation ො𝑞 in the policy gradient

• What is a potential issue with that approach?

–Unclear if the true policy gradient is still followed

–Unclear if it converges (and what it converges to)
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Policy gradients with function approximation, 

cont’d

• What else can we do?

∇𝑣𝜋 𝑠0 = ෍

𝑠

𝑑𝜋(𝑠) ෍

𝑎

∇𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎

–We can try to approximate the 𝑞 function!1

• Suppose we use an approximation 𝑓𝒘 of 𝑞𝜋

–How do we train 𝑓𝒘?

–One option is to use least squares as usual

𝑞𝜋 𝑠, 𝑎 − 𝑓𝒘 𝑠, 𝑎
2

–As usual, we don’t know the true 𝑞 values
• Can use 𝐺𝑡 instead – will learn the same 𝒘 in expectation
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Policy gradients with function approximation, 

cont’d

• Suppose we try to minimize least squares

𝑞𝜋 𝑠, 𝑎 − 𝑓𝒘 𝑠, 𝑎
2

• We can use the same algorithm as REINFORCE with baseline

– except now we use the other form of the policy gradient

– For each step of an episode: 𝑡 = 0,1, … , 𝑇

• 𝐺𝑡 = σ𝑘=𝑡+1
𝑇 𝛾𝑘−𝑡−1𝑅𝑘

• 𝛿𝑡 = 𝐺𝑡 − 𝑓𝒘 𝑆𝑡 , 𝐴𝑡

• 𝒘′ = 𝒘 + 𝛼𝒘𝛿𝑡∇𝑓𝒘(𝑆𝑡 , 𝐴𝑡)

• 𝜽′ = 𝜽 + 𝛼𝜽∇𝜋 𝐴𝑡 𝑆𝑡 𝑓𝒘 𝑆𝑡 , 𝐴𝑡

• Can you spot any issues?

–Algorithm may be very noisy depending on quality of 𝑓𝒘

–May not ever converge
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Compatible Approximations

• Recall the policy gradient

∇𝑣𝜋 𝑠0 = ෍

𝑠

𝑑𝜋(𝑠) ෍

𝑎

∇𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎

• Suppose we use an approximation 𝑓𝒘 of 𝑞𝜋(𝑠, 𝑎)

–What property would 𝑓𝒘 have ideally?

∇𝑣𝜋 𝑠0 = ෍

𝑠

𝑑𝜋(𝑠) ෍

𝑎

∇𝜋 𝑎 𝑠 𝑓𝒘 𝑠, 𝑎

–We follow the correct gradient when we update 𝜽

– This is known as a compatible approximation
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Compatible Approximation Property

• Suppose we train 𝑓𝒘 until convergence, i.e.,

∇𝒘 𝑞𝜋 𝑠, 𝑎 − 𝑓𝒘 𝑠, 𝑎
2

= 0

• i.e.,

𝑞𝜋 𝑠, 𝑎 − 𝑓𝒘 𝑠, 𝑎 ∇𝒘𝑓(𝑠, 𝑎) = 0

• This means that 𝑓𝒘 is the least squares estimator of 𝑞𝜋 as

– Thus, 𝑓𝒘 is un unbiased estimator of 𝑞𝜋, i.e.,

𝔼𝑑𝜋
𝑞𝜋 𝑆, 𝐴 − 𝑓𝒘 𝑆, 𝐴 ∇𝒘𝑓 𝑆, 𝐴 = 0

• How do we expand that expected value?
𝔼𝑑𝜋

𝑞𝜋 𝑆, 𝐴 − 𝑓𝒘 𝑆, 𝐴 ∇𝒘𝑓 𝑆, 𝐴 = 

= ෍

𝑎,𝑠

ℙ𝑑𝜋
𝑆 = 𝑠, 𝐴 = 𝑎 𝑞𝜋 𝑆, 𝐴 − 𝑓𝒘 𝑆, 𝐴 ∇𝒘𝑓 𝑆, 𝐴

= ෍

𝑠

𝑑𝜋 𝑠 ෍

𝑎

𝜋 𝑎 𝑠 𝑞𝜋 𝑆, 𝐴 − 𝑓𝒘 𝑆, 𝐴 ∇𝒘𝑓 𝑆, 𝐴  
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Compatible Approximation Property, cont’d

• Suppose we train 𝑓𝒘 until convergence, i.e.,

෍

𝑠

𝑑𝜋(𝑠) ෍

𝑎

𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎 − 𝑓𝒘 𝑠, 𝑎 ∇𝒘𝑓(𝑠, 𝑎) = 0

• Suppose that 𝑓𝒘 satisfies the following equation

∇𝒘𝑓(𝑠, 𝑎) =
1

𝜋 𝑎 𝑠
∇𝜽𝜋 𝑠, 𝑎

–A bit of a hacky assumption but makes the math work

– Sutton/Tsitsiklis conjecture it may actually be the only case 
that guarantees convergence

• Makes the least-squares gradient

෍

𝑠

𝑑𝜋(𝑠) ෍

𝑎

𝑞𝜋 𝑠, 𝑎 − 𝑓𝒘 𝑠, 𝑎 ∇𝜽𝜋 𝑠, 𝑎 = 0
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Compatible Approximation Property, cont’d

• Suppose that 𝑓𝒘 satisfies the following equation

∇𝒘𝑓(𝑠, 𝑎) =
1

𝜋 𝑎 𝑠
∇𝜽𝜋 𝑠, 𝑎

• Makes the least-squares gradient

෍

𝑠

𝑑𝜋(𝑠) ෍

𝑎

𝑞𝜋 𝑠, 𝑎 − 𝑓𝒘 𝑠, 𝑎 ∇𝜽𝜋 𝑠, 𝑎 = 0

• What does this look like?

– Policy gradient, plus a term!

–Moving the extra term to the right, we get

෍

𝑠

𝑑𝜋(𝑠) ෍

𝑎

∇𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎 = ෍

𝑠

𝑑𝜋(𝑠) ෍

𝑎

∇𝜋 𝑎 𝑠 𝑓𝒘 𝑠, 𝑎

• So finally,

∇𝑣𝜋 𝑠0 = ෍

𝑠

𝑑𝜋(𝑠) ෍

𝑎

∇𝜋 𝑎 𝑠 𝑓𝒘 𝑠, 𝑎
17



Compatible Approximation Property, cont’d

• Suppose that 𝑓𝒘 satisfies the following equation

∇𝒘𝑓(𝑠, 𝑎) =
1

𝜋 𝑎 𝑠
∇𝜽𝜋 𝑠, 𝑎

• Makes the least-squares gradient

෍

𝑠

𝑑𝜋(𝑠) ෍

𝑎

𝑞𝜋 𝑠, 𝑎 − 𝑓𝒘 𝑠, 𝑎 ∇𝜽𝜋 𝑠, 𝑎 = 0

• So finally,

∇𝑣𝜋 𝑠0 = ෍

𝑠

𝑑𝜋(𝑠) ෍

𝑎

∇𝜋 𝑎 𝑠 𝑓𝒘 𝑠, 𝑎

• A “compatible” approximation points the gradient in the same 
direction as the true 𝑞 function!
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Compatible Approximation Example

• Suppose policy is the softmax policy as before

𝜋 𝑎 𝑠; 𝜽 =
𝑒𝜽𝑇𝒙(𝑠,𝑎)

σ𝑎′ 𝑒𝜽𝑇𝒙(𝑠,𝑎′)

• What is ∇𝜋 𝑎 𝑠; 𝜽 ?

– The derivative of the sigmoid is 𝜎′ 𝑥 = 𝜎 𝑥 1 − 𝜎 𝑥

– The derivative of the softmax is the same:

∇𝜋 𝑎 𝑠; 𝜽 = 𝒙(𝑠, 𝑎)𝜋 𝑎 𝑠; 𝜽 1 − 𝜋 𝑎 𝑠; 𝜽

• Recall a compatible approximation is 

∇𝒘𝑓(𝑠, 𝑎) =
1

𝜋 𝑎 𝑠
∇𝜽𝜋 𝑠, 𝑎 = 𝒙(𝑠, 𝑎) 1 − 𝜋 𝑎 𝑠; 𝜽

• One option for 𝑓 is a linear function:
𝑓𝒘 𝑠, 𝑎 = 𝒘𝑇𝒙 𝑠, 𝑎 − 𝒘𝑇𝒙 𝑠, 𝑎 𝜋(𝑎|𝑠; 𝜽)
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Compatible Approximation Example, cont’d

• Recall a compatible approximation is 

∇𝒘𝑓(𝑠, 𝑎) =
1

𝜋 𝑎 𝑠
∇𝜽𝜋 𝑠, 𝑎 = 𝒙(𝑠, 𝑎) 1 − 𝜋 𝑎 𝑠; 𝜽

• One option for 𝑓 is a linear function:
𝑓𝒘 𝑠, 𝑎 = 𝒘𝑇𝒙 𝑠, 𝑎 − 𝒘𝑇𝒙 𝑠, 𝑎 𝜋(𝑎|𝑠; 𝜽)

• Effectively, we can only prove convergence for linear 
approximations

– Linear approximation can be arbitrarily bad if the true 𝑞 
function is very non-linear

–May need to trade convergence guarantees for better 
approximators and hope for the best
• Will need to look at non-linear approximations (wink, wink)
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Improving REINFORCE with baseline

• Recall the REINFORCE with baseline policy gradient

∇𝑣𝜋 𝑠 = 𝔼𝜋 ෍

𝑘=𝑡

𝑇

∇ log 𝜋 𝐴𝑘 𝑆𝑘 𝐺𝑡 − ො𝑣(𝑆𝑡)

• Similar to MC methods, need to wait for returns

– Both slow and high-variance

• How can we address it? (What did we do in the MC case?)

–Use a TD-like approach!

• Instead of using only the current estimate ො𝑣(𝑆𝑡), use a 
bootstrapped estimate of 𝐺𝑡:

𝑅𝑡 + 𝛾 ො𝑣 𝑆𝑡+1 − ො𝑣(𝑆𝑡)
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Actor-Critic Methods

• The TD-like policy gradient is now

∇𝑣𝜋 𝑠 = 𝔼𝜋 ෍

𝑘=𝑡

𝑇

∇ log 𝜋 𝐴𝑘 𝑆𝑘 𝑅𝑡 + 𝛾 ො𝑣 𝑆𝑡+1 − ො𝑣(𝑆𝑡)

• Just like in TD vs. MC, the above usually converges much faster

• This modification is called the actor-critic approach

– The function approximating 𝑣 is called the critic
• Can also have a critic estimate the action-value 𝑞 instead of 𝑣

– The policy is called the actor
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Actor-critic, cont’d

• Similar to Q-learning, actor-critic adds a bias

– but reduces the variance

– and is consistent (i.e., bias goes to 0 with more data)

• Typically, the critic is trained in parallel with the actor

–How?
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Training the critic

• Typically, the critic is trained in parallel with the actor

• Can train the critic to minimize squared error, as usual

𝑞 𝑆𝑡 , 𝐴𝑡 − 𝑄𝒘 𝑆𝑡 , 𝐴𝑡
2

–where the critic 𝑄𝒘 is parameterized by weights 𝒘

• Of course, we don’t have the labels, so we bootstrap them

–We use labels 𝑦 = 𝑅𝑡+1 + 𝛾𝑄𝒘 𝑆𝑡+1, 𝐴𝑡+1

• Finally, minimize squared error using standard gradient 
descent

𝒘′ = 𝒘 + 𝛼𝒘2(𝑅𝑡+1 + 𝛾𝑄𝒘 𝑆𝑡+1, 𝐴𝑡+1 − 𝑄𝒘 𝑆𝑡, 𝐴𝑡 )∇𝒘𝑄𝒘(𝑆𝑡, 𝐴𝑡)

– To calculate, need a tuple (𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡+1, 𝑆𝑡+1, 𝐴𝑡+1)
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Actor-critic, cont’d

• In summary, suppose the critic 𝑄𝒘 is parameterized by weights 
𝒘 and the actor 𝜋𝜽 is parameterized by 𝜽

–After observing a tuple (𝑆𝑡 , 𝐴𝑡, 𝑅𝑡 , 𝑆𝑡+1, 𝐴𝑡+1):
• 𝛿𝑡 = 𝑅𝑡 + 𝛾𝑄𝒘 𝑆𝑡+1, 𝐴𝑡+1 − 𝑄𝒘(𝑆𝑡, 𝐴𝑡)

• 𝒘′ = 𝒘 + 𝛼𝒘𝛿𝑡∇𝒘𝑄𝒘(𝑆𝑡 , 𝐴𝑡)

• 𝜽′ = 𝜽 + 𝛼𝜽𝛿𝑡∇ log 𝜋𝜽 𝐴𝑡 𝑆𝑡

–We have separate learning rates for the critic and actor, 𝛼𝒘 
and 𝛼𝜽, respectively

– Factor of 2 removed since it is incorporated into 𝛼𝒘

• Note that this is an on-policy approach (why?)

–Need to wait for action 𝐴𝑡+1 from current policy
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On-Policy Actor-Critic Algorithm

• Ideally, estimate the policy gradient over multiple episodes

– It’s an expectation over trajectories

–One point is unbiased but has high variance

• As usual, cannot prove convergence for most cases
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Comparison between REINFORCE algorithms

• Compare REINFORCE with baseline vs REINFORCE actor-critic 
on cliff environment

–Use a simple Monte Carlo to estimate each state’s value
ො𝑣′ 𝑠 = ො𝑣(𝑠) + 𝛼 𝐺 − ො𝑣 𝑠

• use ො𝑣 both as baseline and as critic

–Actor is a simple softmax policy

• REINFORCE with baseline converges
very slowly

• Actor-critic has lower variance but it
has a bias

– Bias slowly converges to 0

–Also finds optimal policy

– Could be better with better critic 27



Extending Actor-Critic to Multi-Step Returns

• Can extend the actor-critic method to multi-step returns, 
similar to TD(n)

–How?

– Instead of collecting one-step reward 𝑅𝑡, collect n-step 
return 𝐺𝑡:𝑡+𝑛 = 𝑅𝑡 + ⋯ + 𝛾𝑛−1𝑅𝑡+𝑛−1

–Use return in policy gradient theorem:
• 𝛿𝑡 = 𝐺𝑡:𝑡+𝑛 + 𝛾𝑛𝑄𝒘 𝑆𝑡+𝑛, 𝐴𝑡+𝑛 − 𝑄𝒘(𝑆𝑡 , 𝐴𝑡)

• 𝒘′ = 𝒘 + 𝛼𝒘𝛿𝑡∇𝒘𝑄𝒘(𝑆𝑡, 𝐴𝑡)

• 𝜽′ = 𝜽 + 𝛼𝜽𝛿𝑡∇ log 𝜋𝜽 𝐴𝑡 𝑆𝑡
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