Policy Gradients with Function Approximation Actor-Critic Methods

Reading

🕲 Rensselaer

- Reinforcement Learning
 - -<u>http://www.incompleteideas.net/book/the-book-2nd.html</u>
 - -Chapter 13.4-13.7
- Sutton, Richard S., et al. "Policy gradient methods for reinforcement learning with function approximation." Advances in neural information processing systems 12 (1999).
- David Silver lecture on Policy Gradients

– https://www.youtube.com/watch?v=KHZVXao4qXs&t=3s

Overview

- REINFORCE algorithm can work well in some settings but it has to wait for returns at the end of the episode
- Suffers from similar issues as Monte Carlo methods
 - Large variance
 - Slow convergence
- Essentially does not use the Bellman equation
- We will discuss a similar progression of algorithms as in valuebased methods
 - Add function approximation
 - Add bootstrapping (actor-critic methods)

- Final form for the gradient is $\nabla v_{\pi}(s) = \mathbb{E}_{\pi} \left[\sum_{t=k}^{T} \nabla \log(\pi(A_t|S_t)) G_k \middle| S_k = s \right]$
- Once we have the gradient, update weights as usual $\theta' = \theta + \alpha \nabla v_{\pi_{\theta}}(s)$
 - This is similar to the Monte Carlo learning method where we wait until the end of the episode to observe G_t

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for π_*	
Input: a differentiable policy parameterization $\pi(a s, \theta)$ Algorithm parameter: step size $\alpha > 0$ Initialize policy parameter $\theta \in \mathbb{R}^{d'}$ (e.g., to 0)	
Loop forever (for each episode): Generate an episode $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$, following $\pi(\cdot \cdot, \theta)$ Loop for each step of the episode $t = 0, 1, \ldots, T - 1$:	
$\begin{array}{l} G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k \\ \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \gamma^t G \nabla \ln \pi(A_t S_t, \boldsymbol{\theta}) \end{array}$	(G_t)

- Can you spot any issues with this iteration? $\nabla v_{\pi}(s) = \mathbb{E}_{\pi} \left[\sum_{t=k}^{T} \nabla \log(\pi(A_t|S_t)) G_k \middle| S_k = s \right]$
 - How important is the magnitude of G_k ?
 - Turns out quite a bit tasks have greatly varying returns
 - Especially problematic if *good* runs have zero returns
 - Gradient is 0!
- Vanilla REINFORCE has very large variance depending on G_k
- How do we address this issue?
 - Need to somehow normalize the returns

 Can add an arbitrary baseline b(s) to compare to the action value for each state

$$\nabla v_{\pi}(s_0) = \mathbb{E}_{\pi} \left[\sum_{t=1}^{T} \nabla \log \left(\pi(A_t | S_t) \right) (G_1 - b) | S_t = s_0 \right]$$

- Similar to the update in Q-learning
- Expectation remains the same as long as b is not a function of the action a
 - -Why?

$$\nabla_{\boldsymbol{\theta}} \nu_{\pi}(s_0) = \nabla_{\boldsymbol{\theta}} \mathbb{E}[G_1 - b | S_1 = s_0]$$

-Since $\nabla_{\theta} b = 0$ when b is not a function of a

REINFORCE with Baseline: minimize variance

Rensselaer

• Can add an arbitrary baseline *b*

$$\nabla v_{\pi}(s_0) = \mathbb{E}_{\pi} \left[\sum_{t=1}^{T} \nabla \log \left(\pi(A_t | S_t) \right) (G_1 - b) | S_t = s_0 \right]$$

- Can pick *b* to minimize variance
 - $-\operatorname{Recall} Var[X] = \mathbb{E}[X^2] (\mathbb{E}[X])^2$
 - The variance of the gradient update (in 1D) is

$$\mathbb{E}_{\pi}\left[\left(\sum_{t=1}^{T} \nabla \log(\pi(A_t|S_t))(G_1-b)\right)^2\right] - \left(\mathbb{E}_{\pi}\left[\sum_{t=1}^{T} \nabla \log(\pi(A_t|S_t))(G_1-b)\right]\right)^2$$

- Note that the 2^{nd} term is not affected by the value of b
 - Goes away when taking the gradient w.r.t. *b*

REINFORCE with Baseline: minimize variance, cont'd

• Differentiating w.r.t. b

$$\begin{aligned} \frac{dVar}{db} &= \frac{d}{db} \mathbb{E}_{\pi} \left[\left((G_1 - b) \sum_{t=1}^{T} \nabla \log(\pi(A_t | S_t)) \right)^2 \right] \\ &= \frac{d}{db} \left[\mathbb{E}_{\pi} [g^2 G_1^2] - b2 \mathbb{E}_{\pi} [g^2 G_1] + b^2 \mathbb{E}_{\pi} [g^2] \right] \\ &= -2 \mathbb{E}_{\pi} [g^2 G_1] + 2b \mathbb{E}_{\pi} [g^2] \\ - \text{where } g \coloneqq \sum_{t=1}^{T} \nabla \log(\pi(A_t | S_t)) \end{aligned}$$

- Setting it equal to 0 and solving for *b*, we get $b = \frac{\mathbb{E}_{\pi}[g^2 G_1]}{\mathbb{E}_{\pi}[g^2]}$
 - Will reduce the algorithm's sensitivity to large variance of G_t
 - Issues?
 - Estimating expectations may be hard

REINFORCE with Baseline: running state value estimate

• Can add an arbitrary baseline b

$$\nabla v_{\pi}(s_0) = \mathbb{E}_{\pi}\left[\sum_{t=1}^{T} \nabla \log(\pi(A_t|S_t))(G_1 - b)|S_t = s_0\right]$$

- What else can we do?
 - Can pick b to be a running estimate of the current state value
 - Can have a parameterized $\hat{v}_{w}(s)$ estimator
 - Pick w to minimize a loss, e.g.,

$$\left(G_t - \hat{v}_{\boldsymbol{w}}(S_t)\right)^2$$

• Can perform gradient descent (with chain rule) after each iteration $w' = w + \alpha_w 2(G_t - \hat{v}_w(S_t)) \nabla_w \hat{v}_w(S_t)$

REINFORCE with baseline $\alpha^{\theta} = 2^{-9}, \ \alpha^{w} = 2^{-6}$ -10 y Maria Maria Maria Maria Managana Managana Managana Managana Managana Managana Managana Managana Managana Mana -20 G_0 Total reward on episode veraged over 100 runs 200 400 600 800 1000 Episode REINFORCE with Baseline (episodic), for estimating $\pi_{\theta} \approx \pi_*$ Input: a differentiable policy parameterization $\pi(a|s,\theta)$ Input: a differentiable state-value function parameterization $\hat{v}(s, \mathbf{w})$ Algorithm parameters: step sizes $\alpha^{\theta} > 0, \ \alpha^{\mathbf{w}} > 0$ Initialize policy parameter $\theta \in \mathbb{R}^{d'}$ and state-value weights $w \in \mathbb{R}^{d}$ (e.g., to 0) Loop forever (for each episode): Generate an episode $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$, following $\pi(\cdot|\cdot, \theta)$ Loop for each step of the episode $t = 0, 1, \ldots, T - 1$: $G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$ (G_t) $\delta \leftarrow G - \hat{v}(S_t, \mathbf{w})$ $\mathbf{w} \leftarrow \mathbf{w} + \alpha^{\mathbf{w}} \delta \nabla \hat{v}(S_t, \mathbf{w})$ $\theta \leftarrow \theta + \alpha^{\theta} \gamma^t \delta \nabla \ln \pi (A_t | S_t, \theta)$

REINFORCE with Baseline, cont'd

- REINFORCE with state value estimates as baseline •
- Lower variance means much • faster convergence

Policy gradients with function approximation

- REINFORCE with baseline tries to estimate each state's value
 Greatly reduces variance if done well
- But we still need to wait for returns
- What else can we do?

$$\nabla v_{\pi}(s_0) = \sum_{s} d_{\pi}(s) \sum_{a} \nabla \pi(a|s) q_{\pi}(s,a)$$

- We can try to approximate the q function!
- Then use the approximation \hat{q} in the policy gradient
- What is a potential issue with that approach?
 - Unclear if the true policy gradient is still followed
 - Unclear if it converges (and what it converges to)

Policy gradients with function approximation, cont'd

• What else can we do?

$$\nabla v_{\pi}(s_0) = \sum_{s} d_{\pi}(s) \sum_{a} \nabla \pi(a|s) q_{\pi}(s,a)$$

– We can try to approximate the q function!¹

- Suppose we use an approximation $f_{\pmb{w}}$ of q_{π}
 - How do we train f_w ?
 - One option is to use least squares as usual

$$\left(q_{\pi}(s,a) - f_{w}(s,a)\right)^{2}$$

- As usual, we don't know the true q values
 - Can use G_t instead will learn the same w in expectation

¹Sutton, Richard S., et al. "Policy gradient methods for reinforcement learning with function approximation." *Advances in neural information processing systems* 12 (1999).

Kensselaer

Policy gradients with function approximation, cont'd

$$\left(q_{\pi}(s,a) - f_{w}(s,a)\right)^{2}$$

- We can use the same algorithm as REINFORCE with baseline — except now we use the other form of the policy gradient
 - For each step of an episode: t = 0, 1, ..., T
 - $G_t = \sum_{k=t+1}^T \gamma^{k-t-1} R_k$
 - $\delta_t = G_t f_w(S_t, A_t)$
 - $\mathbf{w}' = \mathbf{w} + \alpha_{\mathbf{w}} \delta_t \nabla f_{\mathbf{w}}(S_t, A_t)$
 - $\boldsymbol{\theta}' = \boldsymbol{\theta} + \alpha_{\boldsymbol{\theta}} \nabla \pi(A_t | S_t) f_{\boldsymbol{w}}(S_t, A_t)$
- Can you spot any issues?
 - Algorithm may be very noisy depending on quality of f_w
 - May not ever converge

• Recall the policy gradient

$$\nabla v_{\pi}(s_0) = \sum_{s} d_{\pi}(s) \sum_{a} \nabla \pi(a|s) q_{\pi}(s,a)$$

- Suppose we use an approximation f_w of $q_\pi(s, a)$
 - What property would f_w have ideally?

$$\nabla v_{\pi}(s_0) = \sum_{s} d_{\pi}(s) \sum_{a} \nabla \pi(a|s) f_{w}(s,a)$$

- We follow the correct gradient when we update $oldsymbol{ heta}$
- This is known as a compatible approximation

- Suppose we train f_w until convergence, i.e., $\nabla_w (q_\pi(s,a) - f_w(s,a))^2 = 0$
- i.e.,

$$(q_{\pi}(s,a) - f_{w}(s,a))\nabla_{w}f(s,a) = 0$$

- This means that f_w is the least squares estimator of q_π as -Thus, f_w is un unbiased estimator of q_π , i.e., $\mathbb{E}_{d_\pi}[(q_\pi(S,A) - f_w(S,A))\nabla_w f(S,A)] = 0$
- How do we expand that expected value? $\mathbb{E}_{d_{\pi}}[(q_{\pi}(S,A) - f_{w}(S,A))\nabla_{w}f(S,A)] =$ $= \sum_{a,s} \mathbb{P}_{d_{\pi}}[S = s, A = a](q_{\pi}(S,A) - f_{w}(S,A))\nabla_{w}f(S,A)$ $= \sum_{s} d_{\pi}(s)\sum_{a} \pi(a|s)(q_{\pi}(S,A) - f_{w}(S,A))\nabla_{w}f(S,A)$

Compatible Approximation Property, cont'd



$$\sum_{s} d_{\pi}(s) \sum_{a} \pi(a|s) \left(q_{\pi}(s,a) - f_{w}(s,a) \right) \nabla_{w} f(s,a) = 0$$

• Suppose that f_w satisfies the following equation

$$\nabla_{\boldsymbol{w}} f(s, a) = \frac{1}{\pi(a|s)} \nabla_{\boldsymbol{\theta}} \pi(s, a)$$

- A bit of a hacky assumption but makes the math work
- Sutton/Tsitsiklis conjecture it may actually be the only case that guarantees convergence
- Makes the least-squares gradient

$$\sum_{s} d_{\pi}(s) \sum_{a} (q_{\pi}(s,a) - f_{w}(s,a)) \nabla_{\theta} \pi(s,a) = 0$$

Compatible Approximation Property, cont'd

- Suppose that f_w satisfies the following equation $\nabla_w f(s, a) = \frac{1}{\pi(a|s)} \nabla_\theta \pi(s, a)$
- Makes the least-squares gradient

$$\sum_{s} d_{\pi}(s) \sum_{a} (q_{\pi}(s,a) - f_{w}(s,a)) \nabla_{\theta} \pi(s,a) = 0$$

- What does this look like?
 - Policy gradient, plus a term!
 - Moving the extra term to the right, we get

$$\sum_{s} d_{\pi}(s) \sum_{a} \nabla \pi(a|s) q_{\pi}(s,a) = \sum_{s} d_{\pi}(s) \sum_{a} \nabla \pi(a|s) f_{w}(s,a)$$

• So finally,

$$\nabla v_{\pi}(s_0) = \sum_{s} d_{\pi}(s) \sum_{a} \nabla \pi(a|s) f_{\mathbf{w}}(s,a)$$

Compatible Approximation Property, cont'd

- Suppose that f_w satisfies the following equation $\nabla f(s, q) = \frac{1}{\nabla \pi} \nabla \pi(s, q)$
 - $\nabla_{w}f(s,a) = \frac{1}{\pi(a|s)} \nabla_{\theta}\pi(s,a)$
- Makes the least-squares gradient

$$\sum_{s} d_{\pi}(s) \sum_{a} (q_{\pi}(s,a) - f_{w}(s,a)) \nabla_{\theta} \pi(s,a) = 0$$

• So finally,

$$\nabla v_{\pi}(s_0) = \sum_{s} d_{\pi}(s) \sum_{a} \nabla \pi(a|s) f_{w}(s,a)$$

• A "compatible" approximation points the gradient in the same direction as the true q function!

• Suppose policy is the softmax policy as before $e^{\theta^T x(s,a)}$

$$\pi(a|s;\boldsymbol{\theta}) = \frac{1}{\sum_{a'} e^{\boldsymbol{\theta}^T \boldsymbol{x}(s,a')}}$$

- What is $\nabla \pi(a|s; \theta)$?
 - The derivative of the sigmoid is $\sigma'(x) = \sigma(x)(1 \sigma(x))$
 - -The derivative of the softmax is the same: $\nabla \pi(a|s; \theta) = \mathbf{x}(s, a)\pi(a|s; \theta)(1 - \pi(a|s; \theta))$
- Recall a compatible approximation is

$$\nabla_{\boldsymbol{w}} f(s,a) = \frac{1}{\pi(a|s)} \nabla_{\boldsymbol{\theta}} \pi(s,a) = \boldsymbol{x}(s,a) \left(1 - \pi(a|s;\boldsymbol{\theta})\right)$$

• One option for f is a linear function: $f_{w}(s,a) = w^{T}x(s,a) - w^{T}x(s,a)\pi(a|s;\theta)$ **Compatible Approximation Example, cont'd**

• Recall a compatible approximation is

$$\nabla_{\boldsymbol{w}} f(s,a) = \frac{1}{\pi(a|s)} \nabla_{\boldsymbol{\theta}} \pi(s,a) = \boldsymbol{x}(s,a) \left(1 - \pi(a|s;\boldsymbol{\theta})\right)$$

- One option for f is a linear function: $f_{w}(s,a) = w^{T}x(s,a) - w^{T}x(s,a)\pi(a|s;\theta)$
- Effectively, we can only prove convergence for linear approximations
 - Linear approximation can be arbitrarily bad if the true q function is very non-linear
 - May need to trade convergence guarantees for better approximators and hope for the best
 - Will need to look at non-linear approximations (wink, wink)

• Recall the REINFORCE with baseline policy gradient

$$\nabla v_{\pi}(s) = \mathbb{E}_{\pi} \left[\sum_{k=t}^{T} \nabla \log(\pi(A_k | S_k)) (G_t - \hat{v}(S_t)) \right]$$

- Similar to MC methods, need to wait for returns
 Both slow and high-variance
- How can we address it? (What did we do in the MC case?)
 Use a TD-like approach!
- Instead of using only the current estimate $\hat{v}(S_t)$, use a bootstrapped estimate of G_t :

 $R_t + \gamma \hat{v}(S_{t+1}) - \hat{v}(S_t)$

- The TD-like policy gradient is now $\nabla v_{\pi}(s) = \mathbb{E}_{\pi} \left[\sum_{k=t}^{T} \nabla \log(\pi(A_{k}|S_{k})) (R_{t} + \gamma \hat{v}(S_{t+1}) - \hat{v}(S_{t})) \right]$
- Just like in TD vs. MC, the above usually converges much faster
- This modification is called the actor-critic approach
 - The function approximating v is called the *critic*
 - Can also have a critic estimate the action-value q instead of v
 - The policy is called the *actor*

- Similar to Q-learning, actor-critic adds a bias
 - -but reduces the variance
 - and is consistent (i.e., bias goes to 0 with more data)
- Typically, the critic is trained in parallel with the actor — How?

Training the critic

- Typically, the critic is trained in parallel with the actor
- Can train the critic to minimize squared error, as usual $(q(S_t, A_t) Q^w(S_t, A_t))^2$

– where the critic Q^w is parameterized by weights w

- Of course, we don't have the labels, so we bootstrap them - We use labels $y = R_{t+1} + \gamma Q^w(S_{t+1}, A_{t+1})$
- Finally, minimize squared error using standard gradient descent

 $w' = w + \alpha_w 2(R_{t+1} + \gamma Q^w(S_{t+1}, A_{t+1}) - Q^w(S_t, A_t)) \nabla_w Q^w(S_t, A_t)$

- To calculate, need a tuple $(S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1})$

Actor-critic, cont'd

- In summary, suppose the critic Q^w is parameterized by weights w and the actor π_{θ} is parameterized by θ
 - -After observing a tuple $(S_t, A_t, R_t, S_{t+1}, A_{t+1})$:
 - $\delta_t = R_t + \gamma Q^w(S_{t+1}, A_{t+1}) Q^w(S_t, A_t)$

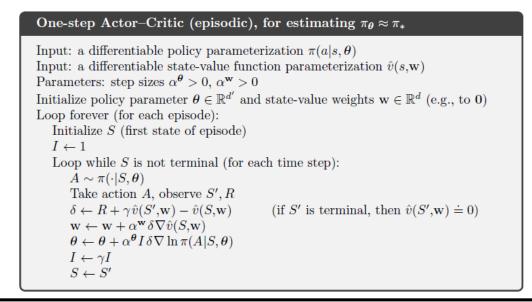
•
$$\mathbf{w}' = \mathbf{w} + \alpha_{\mathbf{w}} \delta_t \nabla_{\mathbf{w}} Q^{\mathbf{w}}(S_t, A_t)$$

•
$$\boldsymbol{\theta}' = \boldsymbol{\theta} + \alpha_{\boldsymbol{\theta}} \delta_t \nabla \log(\pi_{\boldsymbol{\theta}}(A_t|S_t))$$

- We have separate learning rates for the critic and actor, α_w and α_{θ} , respectively
- Factor of 2 removed since it is incorporated into α_w
- Note that this is an on-policy approach (why?) —Need to wait for action A_{t+1} from current policy

On-Policy Actor-Critic Algorithm

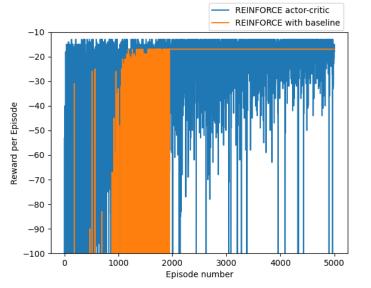
- Ideally, estimate the policy gradient over multiple episodes
 - It's an expectation over trajectories
 - One point is unbiased but has high variance
- As usual, cannot prove convergence for most cases



27

Comparison between REINFORCE algorithms

- Compare REINFORCE with baseline vs REINFORCE actor-critic on cliff environment
 - Use a simple Monte Carlo to estimate each state's value $\hat{v}'(s) = \hat{v}(s) + \alpha (G \hat{v}(s))$
 - use \hat{v} both as baseline and as critic
 - Actor is a simple softmax policy
- REINFORCE with baseline converges very slowly
- Actor-critic has lower variance but it has a bias
 - Bias slowly converges to 0
 - Also finds optimal policy
 - Could be better with better critic



- Can extend the actor-critic method to multi-step returns, similar to TD(n)
 - -How?
 - Instead of collecting one-step reward R_t , collect n-step return $G_{t:t+n} = R_t + \dots + \gamma^{n-1}R_{t+n-1}$
 - Use return in policy gradient theorem:
 - $\delta_t = G_{t:t+n} + \gamma^n Q^w(S_{t+n}, A_{t+n}) Q^w(S_t, A_t)$

•
$$\mathbf{w}' = \mathbf{w} + \alpha_{\mathbf{w}} \delta_t \nabla_{\mathbf{w}} Q^{\mathbf{w}}(S_t, A_t)$$

• $\boldsymbol{\theta}' = \boldsymbol{\theta} + \alpha_{\boldsymbol{\theta}} \delta_t \nabla \log(\pi_{\boldsymbol{\theta}}(A_t|S_t))$