Deterministic Policy Gradients
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Overview @©@ Rensselaer

* Q-learning works well for systems with finitely many actions
* However, most real-world systems have infinitely many control
actions

— One could discretize the action space and still use Q-
learning

— Unlikely to scale if we have more than a couple of
dimensions to discretize over

* Need to extend Q-learning methods to infinite-state MDPs




Extending Q-learning to infinite action spaces @®) Rensselaer

* First, suppose we know the optimal Q function
—in an infinite action space

e Can compute the policy ™ by maximizing Q over all actions:
n(s) = maxQ(s,a)
a

—May be hard if Q is a complex function (e.g., a neural net)
— But would probably find a good local optimum eventually

* Of course, we don’t know the optimal Q
— Need to iteratively update Q and

Could apply the Q-learning iteration followed by the
maximization above

— Research in the past showed that this approach is quite
unstable




Deterministic Policy Gradient @) Rensselaer

e Standard policy gradient theorem is very inefficient (why?)
Von(s0) = ) dn(s) ) V(als)z(s, @)
S a

— Need to know/approximate g, for all actions
—Hard to do in an infinite space

* One can avoid the expectation over all actions by introducing a
deterministic policy gradient

* For a deterministic policy, there is only one action per state
— Most policies are deterministic anyway, e.g., neural nets

1David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. "Deterministic policy
gradient algorithms." In International conference on machine learning, pp. 387-395. PMLR, 2014. 5




Deterministic Policy Gradient, cont’d @ Rensselaer

» Standard policy gradient theorem is very inefficient

Vor(50) = ) dn(s) ) V(als)an(s, a)

* However, stochastic policies have a crucial benefit
— Exploration!

* |f target policy is deterministic, need a stochastic behavior policy
— And an off-policy algorithm!

1David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. "Deterministic policy
gradient algorithms." In International conference on machine learning, pp. 387-395. PMLR, 2014. 6




Deterministic Policy Gradient Theorem

 What would be different from the stochastic version:
VoUn(50) = ) dn(s) ) Vom(als)qx(s, @
S a

—No need to average over all actions any more

— Can evaluate gradient at the specific action taken by the

policy
* Deterministic policy gradient theorem:
Vovr(so) = f dr(s)Vem(s; 0)V,q.(s,a) ds
S a=m(s)

— Policy gradients for deterministic policies only make sense
over continuous spaces (why?)

—The g-value function is not differentiable w.r.t. a otherwise

® Rensselaer




Continuous-space Markov Decision Processes

» Before we look at the deterministic policy gradient proof, we
need to talk about continuous-space MDPs

* How do we define an infinite-state MDP?
—Itis a 5-tuple (5,4, P,R,n) as before
—Now S and A4 are infinite

— Infinite spaces can be tricky but a standard choice is to use a
probability density function (pdf)

—The transition function is described with a pdf p(s’|s, a)
E[S;+11S; = s,4; = a] = [ s'p(s'|s,a)ds’
« Recall that for any pdf [ p(s'|s,a)ds’ =1

—The reward function R is defined similarly
R.(s,a) = E[R;+1|S; =s,4; = a] = [ R(s',s,a)p(s’|s, a)ds’

—The initial condition n is also a pdf

® Rensselaer




Continuous-state Bellman Equation @) Rensselaer

e Turns out the Bellman equation is the same for continuous-
state MDPs as it is for finite-state ones
qr(s,a) = Ex[Reyq + yv(Se41)|Se = 5,4 = al
= [ (R(S’, a,s) + yv(s’))p(s’ls, a)ds'’

—Don’t have time to prove
e If T is deterministic, what is a?

—It’s just T (s)
v (s) = qr(s,m(s)) = [ (R(s",m(s),5) +yv(s"))p(s'ls, m(s))ds’




Deterministic Policy Gradient Theorem Proof @ Rensselaer

 Fairly similar to the stochastic case, with some differences
Vevn(S) = Vp [qn(s,n(s))]

= Vg jp(s’ls,n(s))[R(s’,n(s),s) + yv,(s")]ds’  chainrule
S

= j Vor(s)Vu[p(s'ls, @) R(s',a, )] ds' + Vg j p(s'ls, m(s))yva(s’) ds’
S

a=1(s)

= Vor(s)V,R,.(s,a) |a s) + Vejp(s |s, m(s))yv,(s") ds’
Leibniz rule +
_|_
a=m(s) chain rule

v (s")ds'

a=mn(s

= Vo (s)V,R,.(s,a)

y f p(s'|s, () Vavn(s") + Vor(s)Vap(s'ls, a)
S
= VG”(S)va (Re(S, a) +y jP(S'|S, a)vn(sl)d5,>
y j p(s'[s, m(s))Vgvn(s") ds’
S

_|_

a=1(s)
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Deterministic Policy Gradient Theorem Proof,
cont’d

® Rensselaer

ngn(S) =
= Vor(s)V, (Re(s, a) +y jp(S'Is, a)vn(S')dS'>

v P15 7 () Vve(s a5
S

_|_

a=1(s)

= Vo (s)V,q(s,a) ) + yj[Pn[s — s',1|Vev,(s") ds’
S

a=

* Does this look familiar?
—Same sequence as stochastic policy gradient theorem
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Deterministic Policy Gradient Theorem Proof,

cont’d @ Rensselaer

Vour(s) = Vom(s)Vaq(s, a) +
a=1(s)
+yf Prls = s',1]Ver(s)Veq(s, @) ds’
S a=1(s)
e J Prls » s, 2]Ver(s)Vaq(s, ) ds’
S a=mn(s)
+ ...
N Z j Y Prls - s, t]Ven(s)Vaq(s, a) ds’
=0’S a=1(s)

= f z YiP,[s = s, t]Ven(s)V,q(s, a) ds’ Fubini’s theorem
5 t=0

a=1(s)
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Deterministic Policy Gradient Theorem Proof,
cont’d

® Rensselaer

ds’

a=1(s)

Tova(®) = [ 3 yBals = 5" e100m($)Vaq(5,0)
t=0

* Similar to the stochastic case, we have a discounted aggregate
visitation function d;(s)

—Now it is a pdf, not a probability function, since we have a
continuous space

d.(s) = ) y'P.[s - s',t]
—where
Prls - s',t] = fp(51|5;7T(5))fP(52|S1;7T(51)) ---fp(5’|5t—1»ﬂ(5t—1))d5t—1 .. dSpdsy
* Plugging d,; back in gives the final result

Vo (o) = j Ay ()Vor(s; O)Vaan(s,@)|  ds
S a=1(s)




Off-Policy Deterministic Actor-Critic @®) Rensselaer

* Computing the deterministic gradient is easier
—So far, so good

* But learning using a deterministic policy is harder
— Not much exploration with a deterministic policy

* Need a behavior policy b
— And an off-policy learning approach
—What is the challenge with such an approach?

— Data is generated from b, need to adapt the policy gradient
theorem




Stochastic Off-Policy Actor-Critic

® Rensselaer

 Since the data is generated from b we need to consider the
guantity
J(0) = Ep|vry(Sp)]

* |In the finite case the expectation is expanded as

J©) = ) d ()0, (5)

- Z dy(s) ) m(als)any (5, @)

—where dj, is the discounted aggregate visitation probability

* We want to pick @ that maximizes J(0)
— As usual, we’ll use gradient ascent

Degris, Thomas, Martha White, and Richard S. Sutton. "Off-policy actor-critic." arXiv preprint arXiv:1205.4839 (2012).
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Stochastic Off-Policy Actor-Critic, cont’d @) Rensselaer

* |In the finite case the expectation is expanded as

1©) = ) dy(s) ) m(als)ar, (s, )

* Look at the gradient (using chain rule)

Vo] (8) = ) dy(s) ) Vom(als)an, (s 0)

+ 3 dy(s) ) m(als)Valny (s, )

e Paper argues that minimizing first term is good enough
—Shows proof in case of finite-state case

* Infinite-case proof/claim has some issues

Vo)(0) ~ Z dy(s) Z Vo (als)r, (s, @

Degris, Thomas, Martha White, and Richard S. Sutton "Off-policy actor critic." arXiv preprint arXiv:1205.4839 (2012).




Off-Policy Deterministic Actor-Critic, cont’d @®) Rensselaer

e Deterministic paper uses the same off-policy gradient
approximation as in Sutton paper
To)(0) = | dy()Vom(s; OVatn(s,0)| s
S a=m(s)

— Approximation quality is not clear but ultimately with
modern RL algorithms the proof is in the pudding

* Crucially, this approximation means that one can apply the on-
policy algorithm in the off-policy setting
—This seems suspicious, but if the approximation is good
enough locally, then algorithm may work well

* Given small enough learning rate and other stabilization techniques
used in modern RL




Off-Policy Critic Training @) Rensselaer

 Since trajectories are generated by behavior policy b, we can’t
train the critic on-policy

6 = Ry + yQW(St41, Ar41) — Q% (St Ar)
—The A1 would have been generated by b
* How did we modify TD-learning to make it off-policy?
— Q-learning!
— Can’t compute max anymore. What is the alternative?
8¢ = Ry + YQY(St4+1,0(St41)) — Q¥ (St Ap)
* The rest of the updates are the same as in the on-policy case
w=w+ «,95;V,0%(S:, A;)
0 =0+ agVyme(s)V,0%Y(s,a)

a=m(s)




® Rensselaer

* Lillicrap, Timothy P., Jonathan J. Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan
Wierstra. "Continuous control with deep reinforcement
learning." arXiv preprint arXiv:1509.02971 (2015).
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Overview @©@ Rensselaer

* Combine classical actor-critic ideas with new insights from the
DQN paper

* Use neural networks for both the actor and critic and update
them using (deterministic) policy gradients

 Stabilize learning with recent insights such as experience
replay and target networks (explained later)

e Also add batch normalization

* Method called deep deterministic policy gradient (DDPG)

— One of the early breakthroughs in continuous-action deep
RL




Setup @ Rensselaer

* Environment is an MDP, as usual
— No finite-state assumption necessary
— Different environments considered, ranging from standard
control tasks to RL benchmarks such as the pendulum
» Action space is continuous (possibly multidimensional)

* Observe areward R; at each time t

 The goal is to learn a (deterministic) policy m that maps the
current state to a control action, maximizing the expected
(discounted) reward




Training the Critic @) Rensselaer

* Criticis a neural network, trained using supervised learning

* Recall the iteration
— After observing a tuple (S¢, 44, R¢, S¢4+1,A¢+1), compute the
difference 8; = Ry + YQY(St1+1, m(St41)) — Q¥ (St Ar)
—Lety = R; + )/QW(SHl,n(SHl)). Then minimize loss:
Lw(@Q",St, Any) = (v — Q¥ (St Ap))?
—i.e., follow gradient 26,:V,,Q% (S¢, A¢):
w' =w+ a,6:V,,Q%(S;, Ar)
— Can train directly using gradient ascent

* Note that this is off-policy since data comes from past behavior
policies in the replay buffer




Training the Actor @) Rensselaer

 The actor is a neural network that takes in the
observation/state and outputs the control action

* Unlike DQN, this network is not a classifier, but a regressor
e Output layer has one neuron (for each action dimension)

* Trained using the deterministic policy gradient

0" =0 + agVem(5;)V,Q" (S, a)
a=m(St)
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Target Networks @) Rensselaer

* Recall the idea in double Q-learning

— Use two Q estimators, one to pick the maximal action and
one to estimate the bootstrapped return

— Reduces maximization bias

* Normally, Q" and mg networks used to bootstrap the labels y
Y =Ry + Q" (St+1,o(Se41))
—This adds a lot of variance and slows down training
ultimately
* Instead, we could have separate “target” networks Q%' and 1y,
to bootstrap the labels

— We update these more slowly than the ones we train




Target Networks, cont’d @®) Rensselaer

* Target O, updated as a weighted average of previous target
parameters and trained parameters 0

=10+ (1—-1)0,
—where tiscloseto 0
—Same forw and w'

* This process greatly stabilizes training

— It may make it slower in some cases but the benefits in
stability outweigh the cost in noise without targets

— It is a low-pass filter of sorts




Exploration @) Rensselaer

A common and simple way to enforce exploration is to add
noise to the actions

* The choice of noise is essential because sometimes we need to
add similar noise over several steps (e.g., to force a turn)
—If we add random noise at every step, may not explore
enough
* One popular choice is the Ornstein-Uhlenbeck (OU) process
x(t) = —0x(t) + on(t)
—where 6 and ¢ are parameters and 1 is Gaussian noise

—this is effectively a random walk, where 6 and o determine
the mean and variance, respectively

— correlation over time ensures that non-trivial actions can be
explored over time




Full DDPG algorithm @) Rensselaer

Algorithm 1 DDPG algorithm

Randomly initialize critic network Q(s, a|#%) and actor y(s|##) with weights §< and #*.
Initialize target network Q' and p/ with weights 9" «— §9_, g+ +— g
[nitialize replay buffer R
for episode = 1, M do
Initialize a random process N for action exploration
Receive initial observation state sq
fort=1,T do
Select action a; = p(s;|6*) + N} according to the current policy and exploration noise
Execute action a; and observe reward r; and observe new state s;.
Store transition (s;,a;. 7, 5;.1) in R
Sample a random minibatch of N transitions (s;. a;.r;, s;.1) from R
Sety; = r; +vQ'(siy1. M;(Si+1|ﬂplj|9q]
Update critic by minimizing the loss: L = % 3y — Q(s4,a:]09))?
Update the actor policy using the sampled policy gradient:

1

vg,rz.} = J.T\-T

Z an(S, aw(?:l's:si,a:p{si}vg-“ M(SW'UJ |3i.

Update the target networks:
09 — 169 + (1 — 7)Y
O TH* + (1 — T]H'U'F

end for
end for




Experimental environments ®) Rensselaer

Authors looked at a number of control tasks

Classical benchmarks such as cartpole, pendulum

* MuJoCo environment tasks
— cheetah, monoped, locomotion tasks

 Torcs (driving simulator)




Results

®) Rensselaer

DDPG much more stable than pure DPG on almost all tasks

— Target networks and batch norm seem to be a good combo

e Can also learn fairly good policies directly from pixels (blue)
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Accuracy of estimated Q-values @ Rensselaer

* Estimates reasonably accurate for simpler tasks
* Overestimation issues for complex tasks (e.g., cheetah)

* This is a known problem in all Q-learning-like methods
—The overapproximation bias has returned!
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® Rensselaer

* Fujimoto, Scott, Herke Hoof, and David Meger. "Addressing
function approximation error in actor-critic methods." In
International conference on machine learning, pp. 1587-1596.
PMLR, 2018.
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Overview @©@ Rensselaer

» Value function overestimation is a common problem in Q-
learning

— Already saw maximization bias in standard Q-learning

* It can degrade the quality of learning in several ways

— Reduce exploration when a suboptimal action has a greatly
overestimated value

—Increase variance if several suboptimal actions have
overestimated values
* Overall, learning is significantly slowed down
—May not even converge in some cases




Correcting Overestimation Bias

» Target networks in the DDPG paper are an analogue of double
Q-learning

— But not quite double Q-learning since the networks change
slowly — target and behavior nets are often similar

— But true double Q-learning can’t be applied to the deep RL
setting exactly (why?)

 Critics are trained on the same buffer (not independent)

* |nstead train two separate critics and use the critic that
provides the lower value

y=r+ Virg}gQw,;(s,ﬂ(s))

— Critics are trained in the same way as before (just initialized
with different weights)

— Alleviates the overestimation error

® Rensselaer




Delayed Policy Updates @®) Rensselaer

* Do not perform the policy gradient every time but rather every
T iterations (where T is typically several hundred)

—Same for target network updates

* What is the benefit of this approach?
— Policy gradients are really expected values

* Delaying allows us to collect more data from the current policy
e Obtain a better estimate of the expectation
— Also, effectively makes training more on-policy

* Since we're effectively using the on-policy gradient, this ought to
help as well




Results

®) Rensselaer

* Training is much more stable and able to find better policies in
most cases

* TD3 is my algorithm of choice for continuous-action RL
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