
Deterministic Policy Gradients

1

Reading

• Silver, David, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. "Deterministic policy gradient algorithms." In International
conference on machine learning, pp. 387-395. PMLR, 2014.

• Lillicrap, Timothy P., Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. "Continuous control with
deep reinforcement learning." arXiv preprint arXiv:1509.02971 (2015).

• Fujimoto, Scott, Herke Hoof, and David Meger. "Addressing function
approximation error in actor-critic methods." In International conference on
machine learning, pp. 1587-1596. PMLR, 2018.

2

Overview

• Q-learning works well for systems with finitely many actions

• However, most real-world systems have infinitely many control
actions

–One could discretize the action space and still use Q-
learning

–Unlikely to scale if we have more than a couple of
dimensions to discretize over

• Need to extend Q-learning methods to infinite-state MDPs

3

Extending Q-learning to infinite action spaces

• First, suppose we know the optimal 𝑄 function

– in an infinite action space

• Can compute the policy 𝜋 by maximizing 𝑄 over all actions:
𝜋 𝑠 = max

𝑎
𝑄(𝑠, 𝑎)

–May be hard if 𝑄 is a complex function (e.g., a neural net)

– But would probably find a good local optimum eventually

• Of course, we don’t know the optimal 𝑄

–Need to iteratively update 𝑄 and 𝜋

• Could apply the Q-learning iteration followed by the
maximization above

– Research in the past showed that this approach is quite
unstable

4

Deterministic Policy Gradient

• Standard policy gradient theorem is very inefficient (why?)

∇𝑣𝜋 𝑠0 = ෍

𝑠

𝑑𝜋(𝑠) ෍

𝑎

∇𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎

–Need to know/approximate 𝑞𝜋 for all actions

–Hard to do in an infinite space

• One can avoid the expectation over all actions by introducing a
deterministic policy gradient

• For a deterministic policy, there is only one action per state

–Most policies are deterministic anyway, e.g., neural nets

5

1David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. "Deterministic policy
gradient algorithms." In International conference on machine learning, pp. 387-395. PMLR, 2014.

Deterministic Policy Gradient, cont’d

• Standard policy gradient theorem is very inefficient

∇𝑣𝜋 𝑠0 = ෍

𝑠

𝑑𝜋(𝑠) ෍

𝑎

∇𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎

• However, stochastic policies have a crucial benefit

– Exploration!

• If target policy is deterministic, need a stochastic behavior policy

–And an off-policy algorithm!

6

1David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. "Deterministic policy
gradient algorithms." In International conference on machine learning, pp. 387-395. PMLR, 2014.

Deterministic Policy Gradient Theorem

• What would be different from the stochastic version:

∇𝜽𝑣𝜋 𝑠0 = ෍

𝑠

𝑑𝜋(𝑠) ෍

𝑎

∇𝜽𝜋 𝑎 𝑠 𝑞𝜋 𝑠, 𝑎

–No need to average over all actions any more

– Can evaluate gradient at the specific action taken by the
policy

• Deterministic policy gradient theorem:

∇𝜽𝑣𝜋 𝑠0 = න
𝑆

𝑑𝜋 𝑠 ∇𝜽𝜋 𝑠; 𝜽 ∇𝑎𝑞𝜋 𝑠, 𝑎 ቚ
𝑎=𝜋(𝑠)

𝑑𝑠

– Policy gradients for deterministic policies only make sense
over continuous spaces (why?)

– The 𝑞-value function is not differentiable w.r.t. 𝑎 otherwise

7

Continuous-space Markov Decision Processes

• Before we look at the deterministic policy gradient proof, we
need to talk about continuous-space MDPs

• How do we define an infinite-state MDP?

– It is a 5-tuple (𝑆, 𝐴, 𝑃, 𝑅, 𝜂) as before

–Now 𝑆 and 𝐴 are infinite

– Infinite spaces can be tricky but a standard choice is to use a
probability density function (pdf)

– The transition function is described with a pdf 𝑝 𝑠′ 𝑠, 𝑎
𝔼 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 = ∫ 𝑠′𝑝 𝑠′ 𝑠, 𝑎 𝑑𝑠′

• Recall that for any pdf ∫ 𝑝 𝑠′ 𝑠, 𝑎 𝑑𝑠′ = 1

– The reward function 𝑅 is defined similarly
𝑅𝑒(𝑠, 𝑎) = 𝔼 𝑅𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 = ∫ 𝑅 𝑠′, 𝑠, 𝑎 𝑝 𝑠′ 𝑠, 𝑎 𝑑𝑠′

– The initial condition 𝜂 is also a pdf
8

Continuous-state Bellman Equation

• Turns out the Bellman equation is the same for continuous-
state MDPs as it is for finite-state ones

𝑞𝜋 𝑠, 𝑎 = 𝔼𝜋 𝑅𝑡+1 + 𝛾𝑣 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= ∫ 𝑅 𝑠′, 𝑎, 𝑠 + 𝛾𝑣 𝑠′ 𝑝 𝑠′ 𝑠, 𝑎 𝑑𝑠′

–Don’t have time to prove

• If 𝜋 is deterministic, what is 𝑎?

– It’s just 𝜋(𝑠)
𝑣𝜋 𝑠 = 𝑞𝜋 𝑠, 𝜋 𝑠 = ∫ 𝑅 𝑠′, 𝜋 𝑠 , 𝑠 + 𝛾𝑣 𝑠′ 𝑝 𝑠′ 𝑠, 𝜋 𝑠 𝑑𝑠′

9

Deterministic Policy Gradient Theorem Proof

• Fairly similar to the stochastic case, with some differences
∇𝜽𝑣𝜋 𝑠 = ∇𝜽 𝑞𝜋 𝑠, 𝜋(𝑠)

= ∇𝜽 න
𝑆

𝑝 𝑠′ 𝑠, 𝜋 𝑠 𝑅 𝑠′, 𝜋(𝑠), 𝑠 + 𝛾𝑣𝜋 𝑠′ 𝑑𝑠′

 = න
𝑆

∇𝜽𝜋 𝑠 ∇𝑎[𝑝 𝑠′ 𝑠, 𝑎 𝑅 𝑠′, 𝑎, 𝑠] ቚ
𝑎=𝜋(𝑠)

𝑑𝑠′ + ∇𝜽 න
𝑆

𝑝 𝑠′ 𝑠, 𝜋 𝑠 𝛾𝑣𝜋 𝑠′ 𝑑𝑠′

 = ∇𝜽𝜋 𝑠 ∇𝑎𝑅𝑒 𝑠, 𝑎 ቚ
𝑎=𝜋(𝑠)

+ ∇𝜽 න
𝑆

𝑝 𝑠′ 𝑠, 𝜋 𝑠 𝛾𝑣𝜋 𝑠′ 𝑑𝑠′

= ∇𝜽𝜋 𝑠 ∇𝑎𝑅𝑒 𝑠, 𝑎 ቚ
𝑎=𝜋(𝑠)

+

 𝛾 න
𝑆

𝑝 𝑠′ 𝑠, 𝜋 𝑠 ∇𝜽𝑣𝜋 𝑠′ + ∇𝜽𝜋 𝑠 ∇𝑎𝑝 𝑠′ 𝑠, 𝑎 ቚ
𝑎=𝜋 𝑠

𝑣𝜋 𝑠′ 𝑑𝑠′

 = ∇𝜽𝜋 𝑠 ∇𝑎 𝑅𝑒 𝑠, 𝑎 + 𝛾 න
𝑠

𝑝 𝑠′ 𝑠, 𝑎 𝑣𝜋 𝑠′ 𝑑𝑠′ ቚ
𝑎=𝜋(𝑠)

+

𝛾 න
𝑆

𝑝 𝑠′ 𝑠, 𝜋 𝑠 ∇𝜽𝑣𝜋 𝑠′ 𝑑𝑠′

10

Leibniz rule +
chain rule

chain rule

Deterministic Policy Gradient Theorem Proof,

cont’d

∇𝜽𝑣𝜋 𝑠 =

 = ∇𝜽𝜋 𝑠 ∇𝑎 𝑅𝑒 𝑠, 𝑎 + 𝛾 න
𝑠

𝑝 𝑠′ 𝑠, 𝑎 𝑣𝜋 𝑠′ 𝑑𝑠′ ቚ
𝑎=𝜋(𝑠)

+

𝛾 න
𝑆

𝑝 𝑠′ 𝑠, 𝜋 𝑠 ∇𝜽𝑣𝜋 𝑠′ 𝑑𝑠′

 = ∇𝜽𝜋 𝑠 ∇𝑎𝑞(𝑠, 𝑎) ቚ
𝑎=𝜋(𝑠)

+ 𝛾 න
𝑆

ℙ𝜋[𝑠 → 𝑠′, 1]∇𝜽𝑣𝜋 𝑠′ 𝑑𝑠′

• Does this look familiar?

– Same sequence as stochastic policy gradient theorem

11

Deterministic Policy Gradient Theorem Proof,

cont’d

∇𝜽𝑣𝜋 𝑠 = ∇𝜽𝜋 𝑠 ∇𝑎𝑞 𝑠, 𝑎 ቚ
𝑎=𝜋 𝑠

+

+𝛾 න
𝑆

ℙ𝜋[𝑠 → 𝑠′, 1]∇𝜽𝜋 𝑠 ∇𝑎𝑞(𝑠, 𝑎) ቚ
𝑎=𝜋(𝑠)

𝑑𝑠′

 +𝛾2 න
𝑆

ℙ𝜋[𝑠 → 𝑠′, 2]∇𝜽𝜋 𝑠 ∇𝑎𝑞(𝑠, 𝑎) ቚ
𝑎=𝜋(𝑠)

𝑑𝑠′

+ ⋯

= ෍

𝑡=0

∞

න
𝑆

𝛾𝑡ℙ𝜋 𝑠 → 𝑠′, 𝑡 ∇𝜽𝜋 𝑠 ∇𝑎𝑞 𝑠, 𝑎 ቚ
𝑎=𝜋 𝑠

𝑑𝑠′

= න
𝑆

෍

𝑡=0

∞

𝛾𝑡ℙ𝜋 𝑠 → 𝑠′, 𝑡 ∇𝜽𝜋 𝑠 ∇𝑎𝑞 𝑠, 𝑎 ቚ
𝑎=𝜋 𝑠

𝑑𝑠′

12

Fubini’s theorem

Deterministic Policy Gradient Theorem Proof,

cont’d

∇𝜽𝑣𝜋 𝑠 = න
𝑆

෍

𝑡=0

∞

𝛾𝑡ℙ𝜋 𝑠 → 𝑠′, 𝑡 ∇𝜽𝜋 𝑠 ∇𝑎𝑞 𝑠, 𝑎 ቚ
𝑎=𝜋 𝑠

𝑑𝑠′

• Similar to the stochastic case, we have a discounted aggregate
visitation function 𝑑𝜋(𝑠)

–Now it is a pdf, not a probability function, since we have a
continuous space

𝑑𝜋 𝑠′ = ෍

𝑡=0

∞

𝛾𝑡ℙ𝜋 𝑠 → 𝑠′, 𝑡

–where
ℙ𝜋 𝑠 → 𝑠′, 𝑡 = ∫ 𝑝 𝑠1 𝑠, 𝜋 𝑠 ∫ 𝑝 𝑠2 𝑠1, 𝜋 𝑠1 … ∫ 𝑝 𝑠′ 𝑠𝑡−1, 𝜋 𝑠𝑡−1 𝑑𝑠𝑡−1 … 𝑑𝑠2𝑑𝑠1

• Plugging 𝑑𝜋 back in gives the final result

∇𝜽𝑣𝜋 𝑠0 = න
𝑆

𝑑𝜋 𝑠 ∇𝜽𝜋 𝑠; 𝜽 ∇𝑎𝑞𝜋 𝑠, 𝑎 ቚ
𝑎=𝜋(𝑠)

𝑑𝑠

13

Off-Policy Deterministic Actor-Critic

• Computing the deterministic gradient is easier

– So far, so good

• But learning using a deterministic policy is harder

–Not much exploration with a deterministic policy

• Need a behavior policy 𝑏

–And an off-policy learning approach

–What is the challenge with such an approach?

–Data is generated from 𝑏, need to adapt the policy gradient
theorem

14

Stochastic Off-Policy Actor-Critic

• Since the data is generated from 𝑏 we need to consider the
quantity

𝐽 𝜽 = 𝔼𝑏 𝑣𝜋𝜽
𝑆𝑡

• In the finite case the expectation is expanded as

𝐽 𝜽 = ෍

𝑠

𝑑𝑏 𝑠 𝑣𝜋𝜽
(𝑠)

 = ෍

𝑠

𝑑𝑏 𝑠 ෍

𝑎

𝜋(𝑎|𝑠)𝑞𝜋𝜽
(𝑠, 𝑎)

–where 𝑑𝑏 is the discounted aggregate visitation probability

• We want to pick 𝜽 that maximizes 𝐽 𝜽

–As usual, we’ll use gradient ascent

15

Degris, Thomas, Martha White, and Richard S. Sutton. "Off-policy actor-critic." arXiv preprint arXiv:1205.4839 (2012).

Stochastic Off-Policy Actor-Critic, cont’d

• In the finite case the expectation is expanded as

𝐽 𝜽 = ෍

𝑠

𝑑𝑏 𝑠 ෍

𝑎

𝜋(𝑎|𝑠)𝑞𝜋𝜽
(𝑠, 𝑎)

• Look at the gradient (using chain rule)

∇𝜽𝐽 𝜽 = ෍

𝑠

𝑑𝑏 𝑠 ෍

𝑎

∇𝜽𝜋(𝑎|𝑠)𝑞𝜋𝜽
(𝑠, 𝑎)

 + ෍

𝑠

𝑑𝑏 𝑠 ෍

𝑎

𝜋(𝑎|𝑠)∇𝜽𝑞𝜋𝜽
(𝑠, 𝑎)

• Paper argues that minimizing first term is good enough

– Shows proof in case of finite-state case
• Infinite-case proof/claim has some issues

∇𝜽𝐽 𝜽 ≈ ෍

𝑠

𝑑𝑏 𝑠 ෍

𝑎

∇𝜽𝜋(𝑎|𝑠)𝑞𝜋𝜽
(𝑠, 𝑎)

16
Degris, Thomas, Martha White, and Richard S. Sutton. "Off-policy actor-critic." arXiv preprint arXiv:1205.4839 (2012).

Off-Policy Deterministic Actor-Critic, cont’d

• Deterministic paper uses the same off-policy gradient
approximation as in Sutton paper

∇𝜽𝐽 𝜽 ≈ න
𝑆

𝑑𝑏 𝑠 ∇𝜽𝜋 𝑠; 𝜽 ∇𝑎𝑞𝜋 𝑠, 𝑎 ቚ
𝑎=𝜋(𝑠)

𝑑𝑠

–Approximation quality is not clear but ultimately with
modern RL algorithms the proof is in the pudding

• Crucially, this approximation means that one can apply the on-
policy algorithm in the off-policy setting

– This seems suspicious, but if the approximation is good
enough locally, then algorithm may work well
• Given small enough learning rate and other stabilization techniques

used in modern RL

17

Off-Policy Critic Training

• Since trajectories are generated by behavior policy 𝑏, we can’t
train the critic on-policy

𝛿𝑡 = 𝑅𝑡 + 𝛾𝑄𝒘 𝑆𝑡+1, 𝐴𝑡+1 − 𝑄𝒘(𝑆𝑡 , 𝐴𝑡)

– The 𝐴𝑡+1 would have been generated by 𝑏

• How did we modify TD-learning to make it off-policy?

–Q-learning!

– Can’t compute max anymore. What is the alternative?

𝛿𝑡 = 𝑅𝑡 + 𝛾𝑄𝒘 𝑆𝑡+1, 𝜋 𝑆𝑡+1 − 𝑄𝒘(𝑆𝑡 , 𝐴𝑡)

• The rest of the updates are the same as in the on-policy case
𝒘′ = 𝒘 + 𝛼𝒘𝛿𝑡∇𝒘𝑄𝒘 𝑆𝑡 , 𝐴𝑡

𝜽′ = 𝜽 + 𝛼𝜽∇𝜽𝜋𝜽 𝑠 ∇𝑎𝑄𝒘 𝑠, 𝑎 ቚ
𝑎=𝜋(𝑠)

18

• Lillicrap, Timothy P., Jonathan J. Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan
Wierstra. "Continuous control with deep reinforcement
learning." arXiv preprint arXiv:1509.02971 (2015).

20

Overview

• Combine classical actor-critic ideas with new insights from the
DQN paper

• Use neural networks for both the actor and critic and update
them using (deterministic) policy gradients

• Stabilize learning with recent insights such as experience
replay and target networks (explained later)

• Also add batch normalization

• Method called deep deterministic policy gradient (DDPG)

–One of the early breakthroughs in continuous-action deep
RL

21

Setup

• Environment is an MDP, as usual

–No finite-state assumption necessary

–Different environments considered, ranging from standard
control tasks to RL benchmarks such as the pendulum

• Action space is continuous (possibly multidimensional)

• Observe a reward 𝑅𝑡 at each time 𝑡

• The goal is to learn a (deterministic) policy 𝜋 that maps the
current state to a control action, maximizing the expected
(discounted) reward

22

Training the Critic

• Critic is a neural network, trained using supervised learning

• Recall the iteration

–After observing a tuple (𝑆𝑡 , 𝐴𝑡, 𝑅𝑡 , 𝑆𝑡+1, 𝐴𝑡+1), compute the

difference 𝛿𝑡 = 𝑅𝑡 + 𝛾𝑄𝒘 𝑆𝑡+1, 𝜋 𝑆𝑡+1 − 𝑄𝒘(𝑆𝑡 , 𝐴𝑡)

– Let 𝑦 = 𝑅𝑡 + 𝛾𝑄𝒘 𝑆𝑡+1, 𝜋 𝑆𝑡+1 . Then minimize loss:

𝐿𝒘 𝑄𝒘, 𝑆𝑡 , 𝐴𝑡 , 𝑦 = 𝑦 − 𝑄𝒘(𝑆𝑡 , 𝐴𝑡) 2

– i.e., follow gradient 2𝛿𝑡∇𝒘𝑄𝒘(𝑆𝑡 , 𝐴𝑡):
𝒘′ = 𝒘 + 𝛼𝒘𝛿𝑡∇𝒘𝑄𝒘(𝑆𝑡 , 𝐴𝑡)

– Can train directly using gradient ascent

• Note that this is off-policy since data comes from past behavior
policies in the replay buffer

23

Training the Actor

• The actor is a neural network that takes in the
observation/state and outputs the control action

• Unlike DQN, this network is not a classifier, but a regressor

• Output layer has one neuron (for each action dimension)

• Trained using the deterministic policy gradient

𝜽′ = 𝜽 + 𝛼𝜽∇𝜽𝜋(𝑆𝑡)∇𝑎𝑄𝒘 𝑆𝑡 , 𝑎 ቚ
𝑎=𝜋(𝑆𝑡)

24

Target Networks

• Recall the idea in double Q-learning

–Use two Q estimators, one to pick the maximal action and
one to estimate the bootstrapped return

– Reduces maximization bias

• Normally, 𝑄𝒘 and 𝜋𝜽 networks used to bootstrap the labels 𝑦

𝑦 = 𝑅𝑡 + 𝛾𝑄𝒘 𝑆𝑡+1, 𝜋𝜽 𝑆𝑡+1

– This adds a lot of variance and slows down training
ultimately

• Instead, we could have separate “target” networks 𝑄𝒘′ and 𝜋𝜽′
to bootstrap the labels

–We update these more slowly than the ones we train

25

Target Networks, cont’d

• Target 𝜽𝑡 updated as a weighted average of previous target
parameters and trained parameters 𝜽

𝜽𝑡
′ = 𝜏𝜽 + 1 − 𝜏 𝜽𝑡

–where 𝜏 is close to 0

– Same for 𝒘 and 𝒘′

• This process greatly stabilizes training

– It may make it slower in some cases but the benefits in
stability outweigh the cost in noise without targets

– It is a low-pass filter of sorts

26

Exploration

• A common and simple way to enforce exploration is to add
noise to the actions

• The choice of noise is essential because sometimes we need to
add similar noise over several steps (e.g., to force a turn)

– If we add random noise at every step, may not explore
enough

• One popular choice is the Ornstein-Uhlenbeck (OU) process
ሶ𝑥(𝑡) = −𝜃𝑥(𝑡) + 𝜎𝜂(𝑡)

–where 𝜃 and 𝜎 are parameters and 𝜂 is Gaussian noise

– this is effectively a random walk, where 𝜃 and 𝜎 determine
the mean and variance, respectively

– correlation over time ensures that non-trivial actions can be
explored over time

27

Full DDPG algorithm

28

Experimental environments

• Authors looked at a number of control tasks

• Classical benchmarks such as cartpole, pendulum

• MuJoCo environment tasks

– cheetah, monoped, locomotion tasks

• Torcs (driving simulator)

29

Results

• DDPG much more stable than pure DPG on almost all tasks

– Target networks and batch norm seem to be a good combo

• Can also learn fairly good policies directly from pixels (blue)

30

Light grey: original DPG

Dark grey: DPG + batch norm

Green: DPG + batch norm + target networks (DDPG)

Blue: raw pixel data

Accuracy of estimated Q-values

• Estimates reasonably accurate for simpler tasks

• Overestimation issues for complex tasks (e.g., cheetah)

• This is a known problem in all Q-learning-like methods

– The overapproximation bias has returned!

31

• Fujimoto, Scott, Herke Hoof, and David Meger. "Addressing
function approximation error in actor-critic methods." In
International conference on machine learning, pp. 1587-1596.
PMLR, 2018.

32

Overview

• Value function overestimation is a common problem in Q-
learning

–Already saw maximization bias in standard Q-learning

• It can degrade the quality of learning in several ways

– Reduce exploration when a suboptimal action has a greatly
overestimated value

– Increase variance if several suboptimal actions have
overestimated values

• Overall, learning is significantly slowed down

–May not even converge in some cases

33

Correcting Overestimation Bias

• Target networks in the DDPG paper are an analogue of double
Q-learning

– But not quite double Q-learning since the networks change
slowly – target and behavior nets are often similar

– But true double Q-learning can’t be applied to the deep RL
setting exactly (why?)
• Critics are trained on the same buffer (not independent)

• Instead train two separate critics and use the critic that
provides the lower value

𝑦 = 𝑟 + 𝛾min
𝑖=1,2

𝑄𝒘𝑖
𝑠, 𝜋 𝑠

– Critics are trained in the same way as before (just initialized
with different weights)

–Alleviates the overestimation error 34

Delayed Policy Updates

• Do not perform the policy gradient every time but rather every
𝑇 iterations (where 𝑇 is typically several hundred)

– Same for target network updates

• What is the benefit of this approach?

– Policy gradients are really expected values
• Delaying allows us to collect more data from the current policy

• Obtain a better estimate of the expectation

–Also, effectively makes training more on-policy
• Since we’re effectively using the on-policy gradient, this ought to

help as well

35

Results

• Training is much more stable and able to find better policies in
most cases

• TD3 is my algorithm of choice for continuous-action RL

36

	Slide 1: Deterministic Policy Gradients
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: Extending Q-learning to infinite action spaces
	Slide 5: Deterministic Policy Gradient
	Slide 6: Deterministic Policy Gradient, cont’d
	Slide 7: Deterministic Policy Gradient Theorem
	Slide 8: Continuous-space Markov Decision Processes
	Slide 9: Continuous-state Bellman Equation
	Slide 10: Deterministic Policy Gradient Theorem Proof
	Slide 11: Deterministic Policy Gradient Theorem Proof, cont’d
	Slide 12: Deterministic Policy Gradient Theorem Proof, cont’d
	Slide 13: Deterministic Policy Gradient Theorem Proof, cont’d
	Slide 14: Off-Policy Deterministic Actor-Critic
	Slide 15: Stochastic Off-Policy Actor-Critic
	Slide 16: Stochastic Off-Policy Actor-Critic, cont’d
	Slide 17: Off-Policy Deterministic Actor-Critic, cont’d
	Slide 18: Off-Policy Critic Training
	Slide 20
	Slide 21: Overview
	Slide 22: Setup
	Slide 23: Training the Critic
	Slide 24: Training the Actor
	Slide 25: Target Networks
	Slide 26: Target Networks, cont’d
	Slide 27: Exploration
	Slide 28: Full DDPG algorithm
	Slide 29: Experimental environments
	Slide 30: Results
	Slide 31: Accuracy of estimated Q-values
	Slide 32
	Slide 33: Overview
	Slide 34: Correcting Overestimation Bias
	Slide 35: Delayed Policy Updates
	Slide 36: Results

