
Rainbow

1



Reading

• Hessel, Matteo, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg 
Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David 
Silver. "Rainbow: Combining improvements in deep reinforcement learning." In 
Proceedings of the AAAI conference on artificial intelligence, vol. 32, no. 1. 
2018.

2



Overview

• A lot of extensions to the standard deep Q-learning (DQN) 
algorithm have been made

–Double DQN (DDQN)

– Prioritized Experience Replay (PER)

–N-step learning

–Dueling DDQN

–Noisy DQN

–Distributional DQN

• A lot of them can be combined in a single framework

• Rainbow combines them and shows that the combination 
performs much better than each individual approach

3



Double DQN

• The idea is to have two critics

–One critic is used to select the maximizing action

–One critic is used to bootstrap the returns

–Alleviates maximization bias

• Suppose 𝑄𝜽1  is used to determine the max Q value, i.e.,

𝐴∗ = argmax𝑎 𝑄𝜽1(𝑆𝑡 , 𝑎)

• And 𝑄𝜽2 is used to get the actual value of 𝐴∗, i.e.,

𝑄𝜽2 𝑆𝑡 , 𝐴
∗ = 𝑄𝜽2 𝑆𝑡 , argmax

𝑎
𝑄𝜽1 𝑆𝑡 , 𝑎

• E.g., 𝑄𝜽1 is trained using loss

𝑅𝑡 + 𝛾𝑄𝜽2 𝑆𝑡+1, argmax
𝑎

𝑄𝜽1 𝑆𝑡, 𝑎 − 𝑄𝜽1 𝑆𝑡, 𝐴𝑡
2

4

Van Hasselt, Hado, Arthur Guez, and David Silver. "Deep reinforcement learning with double q-learning." Proceedings of the AAAI 
conference on artificial intelligence. Vol. 30. No. 1. 2016.



Prioritized Experience Replay (PER)

• DQN samples uniformly from the replay buffer

– This treats all experiences/transitions as equally important

–A lot of them are similar and not relevant

– PER alleviates this issue by assigning different weights to 
different transitions when sampling

• Transition 𝑡 is weighted according to its current DDQN loss
𝑤𝑡 = 𝑅𝑡 + 𝛾𝑄𝜽2 𝑆𝑡+1, argmax

𝑎
𝑄𝜽1 𝑆𝑡 , 𝑎 − 𝑄𝜽1 𝑆𝑡 , 𝐴𝑡

𝜔

–where 𝜔 is a hyperparameter

• Transitions with larger loss more likely to be selected

– They are more important to learn

– Same for new transitions

5
Schaul, Tom, John Quan, Ioannis Antonoglou, and David Silver. "Prioritized experience replay." arXiv preprint arXiv:1511.05952 (2015).



Multi-step Learning

• Already seen this idea also

– Sutton&Barto book describes it well

• Consider the 𝑛-step return
𝐺𝑡:𝑡+𝑛 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 +⋯+ 𝛾𝑛−1𝑅𝑡+𝑛

• Bootstrap the 𝑛-label and minimize loss

𝐺𝑡:𝑡+𝑛 + 𝛾𝑄𝜽2 𝑆𝑡+𝑛+1, argmax
𝑎

𝑄𝜽1 𝑆𝑡+𝑛+1, 𝑎 − 𝑄𝜽1 𝑆𝑡 , 𝐴𝑡
2

• Can learn faster with the right choice of hyperparameter 𝑛

• Paper below describes an interesting asynchronous version 
(A3C)

–Don’t have time to cover

6

Mnih, Volodymyr, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 
"Asynchronous methods for deep reinforcement learning." In International conference on machine learning, pp. 1928-1937. PMLR, 2016.



Dueling Networks

• DDQN learns the q-value for each state-action pair

– This may lead to high variance if a state has low value, but 
some state-action pair has spuriously high value estimate

–May be better to separate learning the state values from the 
action values

• The dueling networks method uses the advantage function
𝐴𝜋 𝑠, 𝑎 = 𝑞𝜋 𝑠, 𝑎 − 𝑣𝜋(𝑠)

–Measures how good is the current action relative to the best

• Advantage function is a popular concept in RL

–Used in other popular algorithms such as TRPO and PPO

7

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., & Freitas, N. (2016, June). Dueling network architectures for deep 
reinforcement learning. In International conference on machine learning (pp. 1995-2003). PMLR.



Dueling Networks, cont’d

• Given a state input, the dueling network has one output for the 
state value and one output for each action’s advantage

• Final output is 

𝑄𝜽 𝑠, 𝑎 = 𝑉𝜽 𝑠 + 𝐴𝜽 𝑠, 𝑎 −
1

𝐴
෍

𝑎′

𝐴𝜽 𝑠, 𝑎′

–Where the average over all other actions is subtracted
• Authors claim this modification stabilizes learning

• Trained with standard deep double Q-learning, as usual

8

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., & Freitas, N. (2016, June). Dueling network architectures for deep 
reinforcement learning. In International conference on machine learning (pp. 1995-2003). PMLR.

𝑉𝜽(𝑠)

𝐴𝜽(𝑠)



Noisy Nets

• Exploration is tricky in sparse reward settings where rewards 
are only received after a lot of actions (e.g., in mountain car)

– Standard 𝜖-greedy exploration does not work so well here

• Authors propose to add noisy fully connected layers

𝒚 = 𝑾𝒙 + 𝒃 + 𝑾𝑛𝑜𝑖𝑠𝑦⨀𝝐𝑤 𝒙 + 𝒃𝑛𝑜𝑖𝑠𝑦⨀𝝐𝑏

–which is followed by an activation as usual

– two sets of parameters: 𝑾,𝒃 and 𝑾𝑛𝑜𝑖𝑠𝑦 , 𝒃𝑛𝑜𝑖𝑠𝑦

– noises 𝝐𝑤 and 𝝐𝑏 are sampled randomly for each step

• This promotes more randomness and exploration

–Over time, network learns to ignore noise for states where 
exploration is no longer needed (i.e., has strong gradients)

9

Fortunato, M.; Azar, M. G.; Piot, B.; Menick, J.; Osband, I.; Graves, A.; Mnih, V.; Munos, R.; Hassabis, D.; Pietquin, O.; Blundell, C.; and 
Legg, S. 2017. Noisy networks for exploration. CoRR abs/1706.10295.



Distributional RL

• Instead of learning the 𝑄-value per state-action pair, authors 
propose to learn the full distribution of returns 𝐺𝑡
–Distribution satisfies a similar Bellman equation as 𝑄 values

– If distribution is multi-modal, this approach may stabilize 
learning as opposed to standard 𝑄-learning

• Learn a discrete distribution 𝑧1, … , 𝑧𝑁 for the bootstrapped 
return from each state-action pair

𝑅𝑡 + 𝛾𝑧1, 𝑝1 𝑆𝑡, 𝐴𝑡 , … , 𝑅𝑡 + 𝛾𝑧𝑁, 𝑝𝑁 𝑆𝑡, 𝐴𝑡

–Where the 𝑝𝑖 are inferred from the 𝑧𝑖 (e.g., using softmax)

• Finally, train a neural net to match its predicted distribution to 
the target

– E.g., by minimizing KL divergence

10

Bellemare, Marc G., Will Dabney, and Rémi Munos. "A distributional perspective on reinforcement learning." In International conference 
on machine learning, pp. 449-458. PMLR, 2017.



Integrated Agent

• Uses distributional loss (minimize KL divergence)

• Uses n-step returns

• Uses double networks

• Uses experience replay (with distributional loss)

• Uses dueling network architecture

–With noisy linear (fully connected) layers

11



Aggregate Performance Over all 57 Atari Games

• Rainbow beats all individual algorithms after 44M steps

12



Evaluation per Game

13



Individual Component Importance

• Most important aspects seem to be

– prioritized replay

–multi-step learning

– distributional loss

• Least important are

– double DQN

– dueling networks

• Noisy nets in the middle

• Some methods may have 
overlapping properties

14



Conclusion

• Combining different methods does seem to bring a significant 
advantage

• There are improvements to Rainbow already as well

• There are also foundational RL models which supposedly can 
play all Atari games

– Check out Google’s Gato model

• Learning still requires an enormous amount of computation

– So a lot of work is still left to do
• Why do we need so much data?

• Can we generalize from one game to another?

• Can we guarantee safety?

15


	Slide 1: Rainbow
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: Double DQN
	Slide 5: Prioritized Experience Replay (PER)
	Slide 6: Multi-step Learning
	Slide 7: Dueling Networks
	Slide 8: Dueling Networks, cont’d
	Slide 9: Noisy Nets
	Slide 10: Distributional RL
	Slide 11: Integrated Agent
	Slide 12: Aggregate Performance Over all 57 Atari Games
	Slide 13: Evaluation per Game
	Slide 14: Individual Component Importance
	Slide 15: Conclusion

