Rainbow

Reading @) Rensselaer

* Hessel, Matteo, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg
Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David
Silver. "Rainbow: Combining improvements in deep reinforcement learning." In
Proceedings of the AAAI conference on artificial intelligence, vol. 32, no. 1.

2018.

Overview

® Rensselaer

* A lot of extensions to the standard deep Q-learning (DQN)
algorithm have been made

—Double DQN (DDQN)
— Prioritized Experience Replay (PER)
— N-step learning
—Dueling DDQN
— Noisy DQN
— Distributional DQN
* A lot of them can be combined in a single framework

* Rainbow combines them and shows that the combination
performs much better than each individual approach

Double DON @©@ Rensselaer

* The idea is to have two critics
— One critic is used to select the maximizing action
— One critic is used to bootstrap the returns
— Alleviates maximization bias

* Suppose Qg, is used to determine the max Q value, i.e.,
A™ = argmax, Qg (S;, a)

 And ngis used to get the actual value of 47, i.e,,
Qo,(St, A) = Qp, (Str argmax Qg (St a))
a

* E.g., Qp,is trained using loss
(Re Qo (Sees, argmax o, (5¢,)) - Qel(st,Aa)z
a

Van Hasselt, Hado, Arthur Guez, and David Silver. "Deep reinforcement learning with double g-learning." Proceedings of the AAAI
conference on artificial intelligence. Vol. 30. No. 1. 2016.

Prioritized Experience Replay (PER) @ Rensselaer

 DQN samples uniformly from the replay buffer
—This treats all experiences/transitions as equally important
— A lot of them are similar and not relevant
— PER alleviates this issue by assigning different weights to
different transitions when sampling

* Transition t is weighted according to its current DDQN loss
Wt = ‘Rt + v Qo, (St+1» argmax (g, (St a)) — (o, (St At) ©
a

—where w is a hyperparameter

* Transitions with larger loss more likely to be selected
—They are more important to learn
—Same for new transitions

Schaul, Tom, John Quan, loannis Antonoglou, and David Silver. "Prioritized experience replay." arXiv preprint arXiv:1511.05952 (2015).

Multi-step Learning @) Rensselaer

* Already seen this idea also
— Sutton&Barto book describes it well

Consider the n-step return
Grit4n = Res1 T YRz + -+ V" Reyqy

Bootstrap the n-label and minimize loss
2
(Gt:t+n + ¥ Qo, (St+n+1r argmax (g, (Stsn+1, a)) — g, (St»At))

a

* Can learn faster with the right choice of hyperparameter n

* Paper below describes an interesting asynchronous version
(A3C)

—Don’t have time to cover

Mnih, Volodymyr, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu.
"Asynchronous methods for deep reinforcement learning." In International conference on machine learning, pp. 1928-1937. PMLR, 2016.

Dueling Networks

« DDQN learns the g-value for each state-action pair

—This may lead to high variance if a state has low value, but
some state-action pair has spuriously high value estimate

— May be better to separate learning the state values from the
action values

* The dueling networks method uses the advantage function
Ar(s,a) = qr(s,a) — vg(s)
— Measures how good is the current action relative to the best
e Advantage function is a popular concept in RL
— Used in other popular algorithms such as TRPO and PPO

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., & Freitas, N. (2016, June). Dueling network architectures for deep
reinforcement learning. In International conference on machine learning (pp. 1995-2003). PMLR.

® Rensselaer

Dueling Networks, cont’d @) Rensselaer

* Given a state input, the dueling network has one output for the
state value and one output for each action’s advantage

13y

* Final output is Ag(s)

Qo(s,a) = Vy(s) +| Ag(s,a) — |A|2A9(5 a')

—Where the average over all other actions is subtracted
e Authors claim this modification stabilizes learning
* Trained with standard deep double Q-learning, as usual

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., & Freitas, N. (2016, June). Dueling network architectures for deep
reinforcement learning. In International conference on machine learning (pp. 1995-2003). PMLR.

Noisy Nets @) Rensselaer

* Exploration is tricky in sparse reward settings where rewards
are only received after a lot of actions (e.g., in mountain car)

— Standard e-greedy exploration does not work so well here

* Authors propose to add noisy fully connected layers
y=Wx+b+ ((WnoiSyG)ew)x + (bnoiSyG)eb))
—which is followed by an activation as usual
—two sets of parameters: W, b and W45y, Dyoisy

—noises €,, and €, are sampled randomly for each step

* This promotes more randomness and exploration

— Over time, network learns to ignore noise for states where
exploration is no longer needed (i.e., has strong gradients)

Fortunato, M.; Azar, M. G.; Piot, B.; Menick, J.; Osband, |.; Graves, A.; Mnih, V.; Munos, R.; Hassabis, D.; Pietquin, O.; Blundell, C.; and
Legg, S. 2017. Noisy networks for exploration. CoRR abs/1706.10295.

Distributional RL @) Rensselaer

* Instead of learning the Q-value per state-action pair, authors
propose to learn the full distribution of returns G;

— Distribution satisfies a similar Bellman equation as Q values

— If distribution is multi-modal, this approach may stabilize
learning as opposed to standard Q-learning

* Learn a discrete distribution z4, ..., z), for the bootstrapped
return from each state-action pair
(Rt + YZ1,P1 (StJAt))i R (Rt + YZn, pN(StJAt))

—Where the p; are inferred from the z; (e.g., using softmax)

 Finally, train a neural net to match its predicted distribution to
the target
—E.g., by minimizing KL divergence

Bellemare, Marc G., Will Dabney, and Rémi Munos. "A distributional perspective on reinforcement learning." In International conference
on machine learning, pp. 449-458. PMLR, 2017.

Integrated Agent @ Rensselaer

Uses distributional loss (minimize KL divergence)
* Uses n-step returns

* Uses double networks

e Uses experience replay (with distributional loss)

* Uses dueling network architecture
— With noisy linear (fully connected) layers

11

Aggregate Performance Over all 57 Atari Games ®) Rensselaer

* Rainbow beats all individual algorithms after 44M steps

DQN
— DDQN
— Prioritized DDQN
== Dueling DDQN
200%+ A3C
o Distributional DQN
S — Noisy DQN
g == Rainbow
(0]
N
©
=S N SO00R TSRO
S 4
c ! A
: | p Ny /"7
£ 100%k I) P.&
< I A
c | '\‘W
© I
8 I
= i
1
1
0SSOSR SUSr SRR A WY~ N OO ¥ A
1
I
1
1
1
o, WL I | |
0%™3 a3 100 200

Millions of frames 12

Evaluation per Game

_ #games > 20% human _ #games > 50% human _#games > 100% human _#games > 200% human

B
o

N
w

number of games

_#games > 500% human

DQN
= DDQN
—— Prioritized DDQN
| == Dueling DDQN
A3C
Distributional DQN
= Noisy DQN
| === Rainbow

10
|/
57 .
DQN
== no double
== no priority
g 40} I == nodueling
E no multi-step
g no distribution
g == no noisy
8 25 | === Rainbow
€
2 s
10 fT
0 50 100 150 200 O 50 100 150 200 O 50 100 150 200 O 50 100 150 200 O 50 100 150 200

Millions of frames Millions of frames Millions of frames Millions of frames

Millions of frames

13

Individual Component Importance

®) Rensselaer

* Most important aspects seem to be

— prioritized replay
— multi-step learning
—distributional loss 200%

e Least important are
—double DQN
—dueling networks

100%

Median normalized score

* Noisy nets in the middle

* Some methods may have
overlapping properties

0%

DQON

no double

no priority

no dueling

no multi-step
no distribution
no noisy
Rainbow

Millions of frames

|
200

14

Conclusion @©@ Rensselaer

 Combining different methods does seem to bring a significant
advantage

* There are improvements to Rainbow already as well
* There are also foundational RL models which supposedly can

play all Atari games
— Check out Google’s Gato model

e Learning still requires an enormous amount of computation
—So a lot of work is still left to do

 Why do we need so much data?
e Can we generalize from one game to another?
e Can we guarantee safety?

	Slide 1: Rainbow
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: Double DQN
	Slide 5: Prioritized Experience Replay (PER)
	Slide 6: Multi-step Learning
	Slide 7: Dueling Networks
	Slide 8: Dueling Networks, cont’d
	Slide 9: Noisy Nets
	Slide 10: Distributional RL
	Slide 11: Integrated Agent
	Slide 12: Aggregate Performance Over all 57 Atari Games
	Slide 13: Evaluation per Game
	Slide 14: Individual Component Importance
	Slide 15: Conclusion

