
Soft Actor Critic

1



Reading

• Haarnoja, Tuomas, Aurick Zhou, Pieter Abbeel, and Sergey Levine. "Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning with a 
stochastic actor." In International conference on machine learning, pp. 1861-
1870. PMLR, 2018.

2



Overview

• Standard model-free RL methods need A LOT OF samples

–Model-free RL algorithms are ones that do not try to recover 
the underlying MDP structure
• Will discuss model-based approaches later

– Reasons?
• Poor exploration

• Off-policy learning, which results in inefficient gradients

• On-policy learning, which requires a lot of data to re-compute 
values for new policies

• The soft actor-critic (SAC) method tries to alleviate these 
challenges

– Back to stochastic policies and a slightly modified objective 
that encourages exploration

3



Overall Approach

• What is the objective in classic RL methods so far?

• Maximize the state values
max

𝜋
𝑣𝜋 𝑠 = 𝔼𝜋 𝐺0 𝑆0 = 𝑠

 = 

𝑡=1

𝑇

𝔼𝜋 𝑅𝑡 𝑆0 = 𝑠

– Ignoring discounting to keep notation simple

• Suppose we want to encourage policies that explore more

–How can we modify the objective?

–Also maximize policy entropy

max
𝜋

𝐽(𝜋) = 

𝑡=1

𝑇

𝔼𝜋 𝑅𝑡 + 𝛼𝐻 𝜋 ⋅ 𝑆𝑡 𝑆0 = 𝑠

4



Benefits of maximizing entropy

• Recall the definition of entropy

𝐻 𝑋 = − 

𝑥

𝑝 𝑥 log 𝑝 𝑥 = −𝔼 log 𝑝 𝑋

• Similarly,

𝐻 𝜋 ⋅ 𝑆𝑡 = − 

𝑎

𝜋 𝑎 𝑆𝑡 log 𝜋 𝑎 𝑆𝑡 = −𝔼𝐴𝑡
log 𝜋 𝐴𝑡 𝑆𝑡

– Encourages more exploration

• Discourages getting stuck in local minima

–More exploration makes this unlikely

• Incentivizes learning multiple ways to maximize the reward

–May make the policy more robust in parts of the state space 
that haven’t been explored yet

5



Soft Policy Evaluation

• What is a soft policy?

–Any stochastic policy derived from a deterministic policy

– E.g., an 𝜖-greedy policy

• How did we evaluate policies in the finite-MDP case?

– Iterative policy iteration

–Apply the Bellman operator iteratively
𝑣𝑘 𝒔 = 𝑅 𝒔 + 𝛾𝑷𝑣𝑘−1 𝒔

6



Soft Policy Evaluation, cont’d

• Notice that the new reward is

𝑅𝜋,𝑡(𝑆𝑡 , 𝐴𝑡) = 𝑅(𝑆𝑡 , 𝐴𝑡) + 𝛼𝐻 𝜋 ⋅ 𝑆𝑡

–we’ll omit 𝛼 from now on (paper does it for simplicity)

–where 𝑅 is the deterministic reward function and

𝐻 𝜋 ⋅ 𝑆𝑡 = 𝔼𝜋 − log 𝜋 𝐴𝑡 𝑆𝑡

• The value functions are now defined as
𝑣𝜋 𝑠 = 𝔼𝜋 𝐻 𝜋 ⋅ 𝑆𝑡 + 𝑅 𝑆𝑡, 𝐴𝑡 + ⋯ + 𝐻 𝜋 ⋅ 𝑆𝑇 + 𝑅 𝑆𝑇 , 𝐴𝑇 𝑆𝑡 = 𝑠

𝑞𝜋 𝑠, 𝑎 = 𝔼𝜋 𝑅 𝑆𝑡 , 𝐴𝑡 + ⋯ + 𝛼𝐻 𝜋 ⋅ 𝑆𝑇 + 𝑅 𝑆𝑇 , 𝐴𝑇 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎  

–Note that 𝐻 𝜋 ⋅ 𝑆𝑡  is known before the next action

• The Bellman equations are the same as before

– Same derivation as usual, just use 𝑅𝜋,𝑡 as the reward
𝑣𝜋 𝑠 = 𝔼𝜋 𝑅𝜋,𝑡(𝑆𝑡 , 𝐴𝑡) + 𝑣𝜋 𝑆𝑡+1 𝑆𝑡 = 𝑠  

𝑞𝜋 𝑠, 𝑎 = 𝔼𝜋 𝑅𝜋,𝑡(𝑆𝑡 , 𝐴𝑡) + 𝑞𝜋 𝑆𝑡+1, 𝐴𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎
7



Soft Policy Evaluation, cont’d

• The value functions are now defined as
𝑣𝜋 𝑠 = 𝔼𝜋 𝐻 𝜋 ⋅ 𝑠 + 𝑅 𝑆𝑡 , 𝐴𝑡 + ⋯ 𝐻 𝜋 ⋅ 𝑆𝑇 + 𝑅 𝑆𝑇 , 𝐴𝑇 𝑆𝑡 = 𝑠

𝑞𝜋 𝑠, 𝑎 = 𝔼𝜋 𝑅 𝑆𝑡 , 𝐴𝑡 + ⋯ 𝛼𝐻 𝜋 ⋅ 𝑆𝑇 + 𝑅 𝑆𝑇 , 𝐴𝑇 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎  

• The Bellman equations are the same as before

– Same derivation as usual, just use 𝑅𝜋,𝑡 as the reward
𝑣𝜋 𝑠 = 𝔼𝜋 𝑅𝜋,𝑡(𝑆𝑡 , 𝐴𝑡) + 𝑣𝜋 𝑆𝑡+1 𝑆𝑡 = 𝑠  

𝑞𝜋 𝑠, 𝑎 = 𝔼𝜋 𝑅𝜋,𝑡(𝑆𝑡 , 𝐴𝑡) + 𝑞𝜋 𝑆𝑡+1, 𝐴𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

• Note that the state value function can be written as
𝑣𝜋 𝑠 = 𝐻 𝜋 ⋅ 𝑠 + 𝔼𝜋 𝑅 𝑆𝑡 , 𝐴𝑡 + ⋯ 𝐻 𝜋 ⋅ 𝑆𝑇 + 𝑅 𝑆𝑇 , 𝐴𝑇 𝑆𝑡 = 𝑠

= 𝐻 𝜋 ⋅ 𝑠 + 𝔼𝜋 𝑞 𝑠, 𝐴𝑡 𝑆𝑡 = 𝑠  

= 𝔼𝜋 𝑞𝜋 𝑠, 𝐴𝑡 − log 𝜋 𝐴𝑡 𝑠 𝑆𝑡 = 𝑠  

• Again, recall 𝐻 𝜋 ⋅ 𝑆𝑡 = 𝔼𝜋 − log 𝜋 𝐴𝑡 𝑆𝑡

8



Soft Policy Improvement

• Recall the standard policy improvement idea
𝜋′ 𝑠 = 𝑎𝑟𝑔 max

𝑎
𝑞𝜋(𝑠, 𝑎)

– The new policy is guaranteed to be better than the old one

– If we find a better policy, iterate until convergence

• Recall the 𝑞 value is now
𝑣𝜋 𝑠 = 𝔼𝜋 𝑞𝜋(𝑠, 𝐴𝑡) − log 𝜋 𝐴𝑡 𝑠 𝑆𝑡 = 𝑠

 = −𝐷𝐾𝐿(𝜋(𝐴𝑡|𝑠)||𝜂 exp 𝑞𝜋 𝑠, 𝐴𝑡 )

–where 𝜂 is a normalizing constant such that 

𝜂 

𝑎

exp 𝑞𝜋 𝑠, 𝑎 = 1

–Also recall

𝐷𝐾𝐿(𝑝| 𝑞 = 𝔼 log
𝑝 𝑋

𝑞 𝑋
 

= 𝔼 log 𝑝 𝑋 − log 𝑞 𝑋 9



Soft Policy Improvement, cont’d

• To apply the policy improvement theorem, choose the 
maximizing action, i.e., minimize the KL divergence

𝜋′ ⋅ |𝑠 = 𝑎𝑟𝑔 min
𝜋∈Π

𝐷𝐾𝐿(𝜋(𝐴𝑡|𝑠)||𝜂 exp(𝑞𝜋 𝑠, 𝐴𝑡 )) 

–where Π is the set of all considered policies, e.g., neural nets

• Why is 𝜋′ better than 𝜋?

– Recall 𝑣𝜋 𝑠  = −𝐷𝐾𝐿(𝜋(𝐴𝑡|𝑠)||𝜂 exp 𝑞𝜋 𝑠, 𝐴𝑡 )

– In the paper, they prove this implies that 𝑞𝜋′ 𝑠, 𝑎 ≥
𝑞𝜋(𝑠, 𝑎) for all actions

– Proof is similar to the standard policy improvement proof 
we saw earlier

10



Soft Policy Iteration

• Given the policy evaluation and policy improvement results, 
the authors aim to apply standard policy iteration

– Evaluate policy

– Improve policy by minimizing 𝐷𝐾𝐿(𝜋(⋅ |𝑠)||𝜂 exp 𝑞 𝑠, 𝐴𝑡 )

• Authors prove that by applying policy iteration

1. The process converges because it’s bounded from above 
by the optimal value

2. The final policy is the optimal as it satisfies the Bellman 
optimality equation

11



Implementation

• Of course, once neural networks are used, using policy 
iteration is extremely inefficient

– Finding the optimal neural net at each step is not necessary
• Won’t find the optimal neural net anyway

–We’ll use approximators for the 𝑞 function also, which 
means the gradients may be noisy or wrong

• So the authors use the standard neural net solution

–Gradient descent with policy gradients!

12



Implementation, cont’d

• Authors choose to have two critics

–One each approximating the 𝑣 and 𝑞 function, respectively

– Stabilizes training

• Train each critic using least squares

–Value critic parameterized by 𝝍

min
𝝍

𝑉𝝍 𝑆𝑡 − 𝑄𝜽(𝑆𝑡 , 𝐴𝑡) + 𝑙𝑜𝑔𝜋𝝓 𝐴𝑡 𝑆𝑡

2

• Essentially learns the policy entropy over all actions

• Targets bootstrapped using action-value critic and policy

–Action value critic parameterized by 𝜽

min
𝜽

𝑄𝜽 𝑆𝑡 , 𝐴𝑡 − 𝑅𝑡 − 𝛾𝑉𝝍 𝑆𝑡+1

2

• Targets bootstrapped using value critic

13



Implementation, cont’d

• The policy is trained by minimizing the KL divergence

– i.e., following the gradient of 

𝑣𝜋𝝓
𝑠 = 𝔼𝜋 𝑞𝜋𝝓

(𝑠, 𝐴𝑡) − log 𝜋𝝓 𝐴𝑡 𝑠 𝑆𝑡 = 𝑠

• To learn a complex policy, 𝜋𝝓 has to be (based on) a neural net

–How do we train a neural network with random outputs?

–Reparameterization trick: train a neural net 𝑓𝝓 to output 

the parameters of a known distribution (e.g., Gaussian)
• Given an input state 𝑆𝑡

– first sample 𝜖𝑡~𝒩(0,1) and set 𝑓𝝓 𝑆𝑡 = 𝜇𝝓, 𝜎𝝓  

– Now set 𝐴𝑡 = 𝜇𝝓 + 𝜖𝑡𝜎𝝓 and note 𝐴𝑡~𝒩 𝜇𝝓, 𝜎𝝓

– Finally, 𝜋𝝓 𝐴𝑡 𝑆𝑡 = 𝑝𝜇𝝓,𝜎𝝓
(𝐴𝑡), where 𝑝𝜇𝝓,𝜎𝝓

 is the pdf of 

𝒩 𝜇𝝓, 𝜎𝝓

• Can backpropagate through sampling: deep learning black magic
14



Final Algorithm

• Used two sets of critics, as in TD3

• Used target networks, as in TD3 and DDPG

• Main difference is the policy gradient

– i.e., the definition of the value function

15



Evaluation

• Performance seems very promising, even compared to TD3

–Much better performance on humanoid tasks where TD3 
crashes
• Humanoid (rllab) not a standard benchmark, though

16



Compare and Contrast

• Trends?

– TD3 is the
same in both

– SAC wins
mostly in
their own
evaluation

–Why?
• Likely 

hyperparemeter
tuning

17



Summary

• Actor-critic methods are state-of-the-art in model-free RL

• Can now be used in high-dimensional settings with images

• Training is very volatile but can be made to work if you know 
what you’re doing

• Algorithms depend heavily on hyperparameter selection

• I prefer TD3 as it seems to be the most stable as of now

• Main limitation of model-free RL is that it requires massive 
amounts of data

–Mostly works for simulators/games

• Offline RL is a more realistic setting, but much harder

–More next
18



Implementation, cont’d

• The policy is trained by minimizing the KL divergence 

– i.e., following the gradient of

𝑣𝜋𝝓
𝑠 = 𝔼𝜋 𝑞𝜋𝝓

(𝑠, 𝐴𝑡) − log 𝜋𝝓 𝐴𝑡 𝑠 𝑆𝑡 = 𝑠

• The gradient with respect to 𝝓 is (in the finite action case)

∇𝝓𝑣𝜋𝝓
𝑠 = 

𝑎

∇𝝓 𝜋𝝓 𝑎 𝑠 𝑞𝜋𝝓
𝑠, 𝑎 − log 𝜋𝝓 𝑎 𝑠

• As usual, authors approximate it using a batch of points 
𝑆1, 𝐴1 , … , 𝑆𝑀, 𝐴𝑀

– Essentially, just calculate the average gradient



𝑡=1

𝑀

𝑞𝜋𝝓
𝑆𝑡 , 𝐴𝑡 − log 𝜋𝝓 𝐴𝑡 𝑆𝑡  

19



Implementation, cont’d

• The gradient with respect to 𝝓 is (in the finite action case)

∇𝝓𝑣𝜋𝝓
𝑠 = 

𝑎

∇𝝓 𝜋𝝓 𝑎 𝑠 𝑞𝜋𝝓
𝑠, 𝑎 − log 𝜋𝝓 𝑎 𝑠

• As usual, authors approximate it using a batch of points

– E.g., note for a Gaussian:

log 𝜋𝝓 𝑎 𝑠 = log
1

2𝜋𝑓𝜽,2(𝑠)
exp

𝑎 − 𝑓𝜽,1 𝑠
2

2𝑓𝜽,2 𝑠 2  

 = −
1

2
log 2𝜋 −

1

2
log 𝑓𝜽,2 𝑠 −

𝑎 − 𝑓𝜽,1 𝑠
2

2𝑓𝜽,2 𝑠 2 : = 𝑐 − 𝜋1,𝝓 𝑠 − 𝜋2,𝝓(𝑠, 𝑎)

– Thus the gradient becomes

−∇𝝓𝜋1,𝝓 𝑆𝑡 + −∇𝑎𝜋2,𝝓 𝑆𝑡, 𝑎 + ∇𝑎𝑞𝜋𝝓
𝑆𝑡, 𝑎 ቚ

𝑎=𝐴𝑡

∇𝝓𝑓𝝓(𝑆𝑡)

– Similar to standard policy gradient theorem
20


	Slide 1: Soft Actor Critic
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: Overall Approach
	Slide 5: Benefits of maximizing entropy
	Slide 6: Soft Policy Evaluation
	Slide 7: Soft Policy Evaluation, cont’d
	Slide 8: Soft Policy Evaluation, cont’d
	Slide 9: Soft Policy Improvement
	Slide 10: Soft Policy Improvement, cont’d
	Slide 11: Soft Policy Iteration
	Slide 12: Implementation
	Slide 13: Implementation, cont’d
	Slide 14: Implementation, cont’d
	Slide 15: Final Algorithm
	Slide 16: Evaluation
	Slide 17: Compare and Contrast
	Slide 18: Summary
	Slide 19: Implementation, cont’d
	Slide 20: Implementation, cont’d

