
Offline Reinforcement Learning

1

Reading

• Levine, Sergey, Aviral Kumar, George Tucker, and Justin Fu.
"Offline reinforcement learning: Tutorial, review, and
perspectives on open problems." arXiv preprint
arXiv:2005.01643 (2020).

• Kaiser, Lukasz, Mohammad Babaeizadeh, Piotr Milos, Blazej
Osinski, Roy H. Campbell, Konrad Czechowski, Dumitru Erhan
et al. "Model-based reinforcement learning for atari." arXiv
preprint arXiv:1903.00374 (2019).

2

Overview

• Only seen online RL methods so far

– The algorithm interacts with the system and iteratively
learns a better policy over time

• This approach is not very practical in many real-life applications

–Why?

–Data collection is expensive (think robotics, healthcare)

– Learning can be dangerous (e.g., autonomous driving,
healthcare)

• Instead, it makes sense to collect a dataset a learn a policy
from that dataset

– Similar to supervised learning on images, language, etc.

3

Setup

• We have an MDP as before

–May or may not be finite

–MDP dynamics may or may not be known

• We are given a static dataset 𝒟 = {(𝑆𝑡
𝑖 , 𝐴𝑡

𝑖 , 𝑅𝑡+1
𝑖 , 𝑆𝑡+1

𝑖)}

–where 𝑖 is the trajectory index

– and 𝑡 is the time within each trajectory

– similar to an experience replay buffer in deep RL, except it
doesn’t change

• Similar to a supervised learning setting

• In essence, the offline RL problem amounts to figuring out the
underlying reward structure and finding the optimal policy for
it

4

Different Shades of RL

• Ultimately, offline RL is a combination of off-policy RL and
supervised learning

• Though one could envision a framework where the “training”
dataset is gradually collected by carefully updating the
behavior over time

5

Examples: Healthcare

• Model the process of diagnosis and treatment of a patient

• Collect data of interventions and corresponding outcomes

• One example from my research is automated ventilator
weaning

– Some patients cannot go back to spontaneous breathing
after surgery

–Need to develop a gradual weaning method

–Have historic data on ventilator settings, outcomes, etc.

–Need to learn an optimal policy

– Problem is made extra hard since each patient is different

6

Examples: Learning Robotic Manipulation Skills

• In controlled settings, online RL may actually be feasible

• Still hard to extend to modifications of the training setting or
slightly different tasks

• With offline RL, we can collect all data from past experiments
and learn a policy that generalizes to new settings

• The hope is to generalize better than online RL which
effectively only works for the current environment

• Could be wishful thinking since new settings may be out of
distribution

7

Challenges with Offline RL

• Similar to off-policy RL with one major difference

– Cannot collect additional data

• Existing RL algorithms do not work well on fixed datasets

• Why?

• No exploration

– It is common to assume that training data is sufficient to
learn an optimal policy, though it is hard to even formalize
this assumption

• Once the target policy is changed, policy evaluation may be
challenging if behavior policy was too different

– Essentially asking a counterfactual question, i.e., a “what if”
question

8

Offline Evaluation

• Suppose our current policy is 𝜋

• Data was generated using behavior policy 𝑏

• How do we compute 𝑣𝜋(𝑠)?

• Off-policy evaluation with importance sampling!
𝑣𝜋 𝑠 = 𝔼𝑏[𝜌𝑡:𝑇−1𝐺𝑡|𝑆𝑡 = 𝑠]

–where 𝜌𝑡:𝑇−1 = ς𝑘=𝑡
𝑇−1 𝜋 𝐴𝑘 𝑆𝑘

𝑏 𝐴𝑘 𝑆𝑘

• This estimate has high variance that can be improved by
normalizing the weights

• What is the main issue with this approach?

– Requires the training data to have explored most
state/action pairs

9

Off-Policy Policy Gradients

• Offline RL could use the off-policy gradient policy approach

• Recall the off-policy deterministic policy gradient

∇𝜽𝐽 𝜽 ≈ න
𝑆

𝑑𝑏 𝑠 ∇𝜽𝜋 𝑠; 𝜽 ∇𝑎𝑞𝜋 𝑠, 𝑎 ቚ
𝑎=𝜋(𝑠)

𝑑𝑠

• What is the challenge with this approach?

– If the behavior policy hasn’t explored enough, the policy
gradient estimate will be very noisy

– Effectively, we’ll assign very small weights to most actions
chosen by the target policy

–Ultimately, the same problem as importance sampling

10

Offline RL via Dynamic Programming

• In principle, dynamic programming is a useful approach for
offline RL

• If we could approximate the 𝑞 value for all state/action pairs,
then we can use dynamic programming to find the optimal
policy

• What are the challenges with this approach?

–May not have enough data for each state/action pair

–What type of approximation should we use?
• Linear approximation may be too simplistic

• Neural networks may overfit

11

Dynamic Programming with Linear Q-function

Approximations

• Suppose we approximate the Q-function with a linear function

• Let the features be 𝒇(𝑠, 𝑎)

–Want to learn parameters 𝝓 such that ො𝑞 𝑠, 𝑎 = 𝝓𝑇𝒇(𝑠, 𝑎)

• What is one way to learn these parameters?

– Least squares using the Bellman equation!
• Requires knowing the MDP transition function

• Recall that we can write the Bellman equation in matrix form:
𝑞 𝒔, 𝒂 = 𝑅 𝒔 + 𝛾𝑷𝑞(𝒔, 𝒂)

• Let 𝑭 be the matrix of all features. Then
𝑭𝝓 = 𝑅 𝒔 + 𝛾𝑷𝑭𝝓

• i.e.,

𝝓∗ = 𝑭 − 𝛾𝑷𝑭 𝑇 𝑭 − 𝛾𝑷𝑭
−1

𝑭 − 𝛾𝑷𝑭 𝑇𝑅(𝒔)
12

Distribution Shift with Dynamic Programming

• Offline dynamic programming suffers from distribution shift

–Why?
• Same reason as any other offline method really

• 𝑄-estimates may be very wrong for some state-action pairs

– If behavior policy did not explore enough, dynamic
programming will overfit (regardless of how much training
data we have)

13

Soft Actor Critic applied
on offline data.

Notice the number of
trajectories does not help,
i.e., the issue is not
overfitting on the training
data (rather exploration)

Mitigating Distribution Shift: Policy Constraints

• The idea of policy constraints is to keep the learned policy
similar to the behavior policy

–What does this achieve?

– The 𝑞 function will not be queried on state/action pairs that
weren’t explored in the training set

• Of course, you want a significantly different policy since the
behavior policy is likely far from optimal

• How do we achieve both?

– Constrained learning, e.g., actor-critic!

– Effectively learn the best policy that can be evaluated
sufficiently well given the available data

14

Policy Constraints, cont’d

• Suppose we use a standard actor-critic method

• Iteratively train a critic using (bootstrapped) least squares

– Then obtain the optimal policy for the current critic

• How do we constrain the policy w.r.t. the behavior policy 𝑏?

– Can add a constraint such as KL divergence

– E.g., 𝐷𝐾𝐿(𝜋| 𝑏 ≤ 𝜖
• Requires knowing the probabilities of actions under 𝑏, 𝑏 𝑎 𝑠

• If not, can learn a prior 𝜋𝜽𝑏
 approximating behavior policy 𝑏

– E.g., by maximizing the log-likelihood of training data

15

Offline Model-Based RL

• The goal of model-based RL is to learn the underlying MDP

– i.e., the transition probability matrix 𝑃 𝑠, 𝑎, 𝑠′

• While still suffering from distribution shift and exploration
issues in training data, this is more promising than DP

–Why?

– Transition probabilities do not depend on behavior policy
• Unlike 𝑞 function approximations

• Model-based RL is similar to a vast area in control theory
known as system identification

–Given training trajectories of states and controls, can you
learn system dynamics 𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘)

16

Model Exploitation and Distribution Shift

• Once a model is trained, it can be used as a standard simulator
in model-free online RL

– It may still suffer from distribution shift, both through
visiting states or actions that weren’t explored in the
training data

• During RL training, the policy may exploit deficiencies in the
model

–How?

– If the model has assigned an erroneously high reward to
some transition, the policy may exploit that

• This also happens in unrealistic driving simulators

– E.g., car learns to drive through a tree and cut a corner

17

• Kaiser, Lukasz, Mohammad Babaeizadeh, Piotr Milos, Blazej
Osinski, Roy H. Campbell, Konrad Czechowski, Dumitru Erhan
et al. "Model-based reinforcement learning for atari." arXiv
preprint arXiv:1903.00374 (2019).

18

Overview

• It is known that humans can learn Atari games in minutes

• RL methods typically require millions of training steps

• In this paper, the authors ask whether they can learn good
policies with a budget of 100K steps

– Roughly 2 hours of play time

–No model-free method can get even close to this goal

• The idea is to use a model so as to minimize interaction with
the Atari simulator

–Offline learning steps are not counted towards the 100K

19

Goal

• The real environment (i.e., the Atari simulator) is called 𝑒𝑛𝑣

• The goal is to sample from 𝑒𝑛𝑣 as little as possible

– Collecting data from real environments is expensive in
general

• The authors aim to build a model environment 𝑒𝑛𝑣’ that will
be used for large-scale sampling

– Essentially run model-free RL on 𝑒𝑛𝑣’

• In some sense, the RL algorithms remain the same

– The main difference is the use of a model so as to minimize
interactions with the real environment

20

System Identification Aside

• System identification is quite challenging for several reasons

• Suppose training data contains trajectories 𝑥𝑘
𝑡 , 𝑢𝑘

𝑡 , 𝑥𝑘+1
𝑡

–where 𝑡 is the trajectory index and 𝑘 is the time within the
trajectory

• What challenges do you see when trying to approximate the
real dynamics 𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘)?

• Samples within a trajectory are not independent

– Can’t just use them in a standard supervised fashion

• Data was generated using a behavior controller

–Need sufficient exploration so as to ensure good learning

21

Learning an Image Model

• Learning a predictive model for images is particularly hard

–Why?

–Output is high-dimensional

–A single image doesn’t store the full state (e.g., velocity)
• Need to stack multiple (4) images together as input

• Specifying the loss function is also not trivial

–Authors experiment with softmax and 𝐿2

– Regardless of the loss choice, what challenges do you see?

–When you average the loss over many pixels, non-important
pixels may dominate

–Authors resolve this issue by capping the loss per pixel
• Results in better behaved gradients across all pixels

22

Learning an Image Model, cont’d

• Neural networks that output high-dimensional objects, such as
images, are called generative models

– Examples include generative adversarial networks (GANs)
and variational autoencoders (VAEs)

– Foundation models are variants of the above

• Generative models use a number of layers that are not present
in classification models

–Deconvolutional layers

–Attention

– Recurrent layers

23

Autoencoders

• Idea is to use an encoder and decoder (autoencoder)

– Encode the input as a low-dimensional embedding and
combine with actions

– Then decode the embedding into the predicted output

• Recurrent encoding allows one to use a single frame at a time
since it’s able to remember the past

–Note that this model is deterministic
• May need stochasticity, e.g., for random environment events

24

Oh, J., Guo, X., Lee, H., Lewis, R. L., & Singh, S. (2015). Action-conditional video prediction using deep networks in atari games. Advances
in neural information processing systems, 28.

Variational Autoencoders

• Suppose we want to add stochasticity to the generative model

– i.e., we want to learn the data-generating process for a
dataset 𝒟 = 𝒙1, … , 𝒙𝑁

–One approach is to assume there is a low-dimensional
representation of the high-dimensional data
• E.g., an MNIST digit can be described by its shape, etc.

• Called latent variables

• Goal is to

– Sample latent variable 𝒛𝑖~𝑝(𝒛)

– Sample a high-dimensional example 𝒙𝑖~𝑝 𝒙 𝒛𝑖

25

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd International Conference on Learning Representations,
ICLR 2014

𝒛 𝒙

Variational Autoencoders, cont’d

• Goal is to

– Sample latent variable 𝒛𝑖~𝑝(𝒛)

– Sample a high-dimensional example 𝒙𝑖~𝑝 𝒙 𝒛𝑖

• What is the challenge?

–We don’t observe 𝒛’s

• Ideally, we would use marginalization

𝑝 𝒙 = ∫ 𝑝 𝒛 𝑝 𝒙 𝒛 𝑑𝒛

• Or Bayes rule

𝑝 𝒛 𝒙 =
𝑝 𝒙 𝒛 𝑝(𝒛)

𝑝 𝒙

– but hard to estimate quantities in a high-dimensional space

26

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd International Conference on Learning Representations,
ICLR 2014

Variational Autoencoders, cont’d

• The idea is to approximate 𝑝(𝒛|𝒙) with a model 𝑞𝝓(𝒛|𝒙)

– Similarly, approximate 𝑝 𝒙 𝒛 with a model 𝑝𝜽 𝒙 𝒛
• Where models are neural nets, of course

–And train both parts so that they become “compatible”
• Intuitively, want 𝑑𝑒𝑐(𝑒𝑛𝑐(𝑥)) = 𝑥

27

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd International Conference on Learning Representations,
ICLR 2014

Source:
https://blog.fastforwardlabs.com/2016/08/22/under-
the-hood-of-the-variational-autoencoder-in-prose-
and-code.html

Variational Autoencoders, cont’d

• As we are approximating 𝑝𝜽(𝒛|𝒙) with 𝑞𝝓(𝒛|𝒙), we minimize

𝐷𝐾𝐿 𝑞𝝓 𝒛 𝒙𝑖 |𝑝𝜽 𝒛 𝒙𝑖 = 𝔼
log 𝑞𝝓 𝒛 𝒙𝑖

log 𝑝𝜽 𝒛 𝒙𝑖

 = 𝔼 log 𝑞𝝓 𝒛 𝒙𝑖 − 𝔼 log
𝑝𝜽 𝒙𝑖 𝒛 𝑝𝜽(𝒛)

𝑝𝜽(𝒙𝑖)

 = 𝔼 log
𝑞𝝓 𝒛 𝒙𝑖

𝑝𝜽 𝒛
− 𝔼 log 𝑝𝜽 𝒙𝑖 𝒛 + log 𝑝𝜽 𝒙𝑖

• So finally,
log 𝑝𝜽 𝒙𝑖 = 𝐷𝐾𝐿 𝑞𝝓 𝒛 𝒙𝑖 |𝑝𝜽 𝒛 𝒙𝑖 − 𝐷𝐾𝐿 𝑞𝝓 𝒛 𝒙𝑖 |𝑝𝜽 𝒛 + 𝔼 log 𝑝𝜽 𝒙𝑖 𝒛

= 𝐷𝐾𝐿 𝑞𝝓 𝒛 𝒙𝑖 |𝑝𝜽 𝒛 𝒙𝑖 + ℒ 𝜽, 𝝓; 𝒙𝑖

–where ℒ 𝜽, 𝝓; 𝒙𝑖 is called the variational lower bound
• The other term is always positive

–maximizing ℒ 𝜽, 𝝓; 𝒙𝑖 maximizes the log-likelihood!

28

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd International Conference on Learning Representations,
ICLR 2014

Variational Autoencoders, cont’d

• Look at the variational lower bound
ℒ 𝜽, 𝝓; 𝒙𝑖 = −𝐷𝐾𝐿(𝑞𝝓 𝒛 𝒙𝑖 | 𝑝 𝒛 + 𝔼𝑞𝝓

log 𝑝𝜽 𝒙𝑖 𝒛

• First, we need to assume something about 𝑝(𝒛)

– Typically, we assume 𝒛 ∼ 𝒩 0, 𝑰

– So, we need to choose 𝑞𝝓 𝒛 𝒙𝑖 so as to minimize the

distance to a Gaussian “prior”

• Similarly, we’ll assume 𝑞𝝓 𝒛 𝒙𝑖 is Gaussian also, i.e.,

𝒛~𝒩 𝜇𝝓 𝒙𝑖 , 𝜎𝝓 𝒙𝑖

– For each 𝒙𝑖, sample 𝜖𝑖~𝒩 0,1 and write
𝒛𝑖 = 𝜇𝝓 𝒙𝑖 + 𝜎𝝓 𝒙𝑖 ⋅ 𝜖𝑖

– Can now calculate gradient of ℒ 𝜽, 𝝓; 𝒙𝑖 for 𝒙𝑖 , 𝜖𝑖

29

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd International Conference on Learning Representations,
ICLR 2014

Full World Model

• Bottom part is the deterministic autoencoder

• Top left is a VAE

– Ideally, noise is sampled randomly at test time

–Authors claims using raw noise embeddings is unstable and
varies across games

30

Full World Model, cont’d

• Authors claims using raw noise embeddings is unstable and
varies across games

– Instead discretize embedding into bits

–And train a recurrent inference network to predict next bit

–At test time, only use inference network
• Not sure why this is stochastic anymore

31

Policy Training

• Alternate between sampling
from 𝑒𝑛𝑣 and 𝑒𝑛𝑣’

• Then train using a standard
model-free algorithm

–Authors used PPO

• One challenge is that env’
cannot be used for very long
trajectories since the noise will compound over time

– Cap trajectory length to 50 steps

• In first loop, train world model for 45K steps

– Then, use 15K real world steps until reaching target of 100K

• Agents interact with 𝑒𝑛𝑣’ for a total of 15.2M interactions
32

Experiments

• Proposed method drastically outperforms other approaches

–Graph shows number of steps needed to reach SimPLe’s
performance

33

PPO (model-free)Rainbow (model-based)

Experiments, cont’d

• Model-based methods eventually plateau with more steps

–Why?

– Probably because model isn’t good enough

– But useful as initialization for model-free methods (right)

34

Experiments, cont’d

• Peak SimPLe performance still well below model-free methods
given enough data

35

Summary

• Offline RL is a very challenging and somewhat ill-defined field

• Ideally, would like to learn a policy that is better than the
behavior policy used to collect the data

– Can’t learn actions that are not present in the dataset

–Optimal policy may require a sequence of optimal actions
(e.g., in a game)
• this sequence may not appear at all in the training data

• Unclear how to compare methods

– Limit number of interactions with real world or fix a dataset
that is somehow sufficient to learn optimal policy

• Offline RL can be particularly useful in safety-critical domains

– Enable safe exploration in the modeled environment
36

	Slide 1: Offline Reinforcement Learning
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: Setup
	Slide 5: Different Shades of RL
	Slide 6: Examples: Healthcare
	Slide 7: Examples: Learning Robotic Manipulation Skills
	Slide 8: Challenges with Offline RL
	Slide 9: Offline Evaluation
	Slide 10: Off-Policy Policy Gradients
	Slide 11: Offline RL via Dynamic Programming
	Slide 12: Dynamic Programming with Linear Q-function Approximations
	Slide 13: Distribution Shift with Dynamic Programming
	Slide 14: Mitigating Distribution Shift: Policy Constraints
	Slide 15: Policy Constraints, cont’d
	Slide 16: Offline Model-Based RL
	Slide 17: Model Exploitation and Distribution Shift
	Slide 18
	Slide 19: Overview
	Slide 20: Goal
	Slide 21: System Identification Aside
	Slide 22: Learning an Image Model
	Slide 23: Learning an Image Model, cont’d
	Slide 24: Autoencoders
	Slide 25: Variational Autoencoders
	Slide 26: Variational Autoencoders, cont’d
	Slide 27: Variational Autoencoders, cont’d
	Slide 28: Variational Autoencoders, cont’d
	Slide 29: Variational Autoencoders, cont’d
	Slide 30: Full World Model
	Slide 31: Full World Model, cont’d
	Slide 32: Policy Training
	Slide 33: Experiments
	Slide 34: Experiments, cont’d
	Slide 35: Experiments, cont’d
	Slide 36: Summary

