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Reading

• Levine, Sergey, Aviral Kumar, George Tucker, and Justin Fu. 
"Offline reinforcement learning: Tutorial, review, and 
perspectives on open problems." arXiv preprint 
arXiv:2005.01643 (2020).

• Kaiser, Lukasz, Mohammad Babaeizadeh, Piotr Milos, Blazej 
Osinski, Roy H. Campbell, Konrad Czechowski, Dumitru Erhan 
et al. "Model-based reinforcement learning for atari." arXiv 
preprint arXiv:1903.00374 (2019).
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Overview

• Only seen online RL methods so far

– The algorithm interacts with the system and iteratively 
learns a better policy over time

• This approach is not very practical in many real-life applications

–Why?

–Data collection is expensive (think robotics, healthcare)

– Learning can be dangerous (e.g., autonomous driving, 
healthcare)

• Instead, it makes sense to collect a dataset a learn a policy 
from that dataset

– Similar to supervised learning on images, language, etc.
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Setup

• We have an MDP as before

–May or may not be finite

–MDP dynamics may or may not be known

• We are given a static dataset 𝒟 = {(𝑆𝑡
𝑖 , 𝐴𝑡

𝑖 , 𝑅𝑡+1
𝑖 , 𝑆𝑡+1

𝑖 )}

–where 𝑖 is the trajectory index

– and 𝑡 is the time within each trajectory

– similar to an experience replay buffer in deep RL, except it 
doesn’t change

• Similar to a supervised learning setting

• In essence, the offline RL problem amounts to figuring out the 
underlying reward structure and finding the optimal policy for 
it
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Different Shades of RL

• Ultimately, offline RL is a combination of off-policy RL and 
supervised learning

• Though one could envision a framework where the “training” 
dataset is gradually collected by carefully updating the 
behavior over time
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Examples: Healthcare

• Model the process of diagnosis and treatment of a patient

• Collect data of interventions and corresponding outcomes

• One example from my research is automated ventilator 
weaning

– Some patients cannot go back to spontaneous breathing 
after surgery

–Need to develop a gradual weaning method

–Have historic data on ventilator settings, outcomes, etc.

–Need to learn an optimal policy

– Problem is made extra hard since each patient is different
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Examples: Learning Robotic Manipulation Skills

• In controlled settings, online RL may actually be feasible

• Still hard to extend to modifications of the training setting or 
slightly different tasks

• With offline RL, we can collect all data from past experiments 
and learn a policy that generalizes to new settings

• The hope is to generalize better than online RL which 
effectively only works for the current environment

• Could be wishful thinking since new settings may be out of 
distribution
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Challenges with Offline RL

• Similar to off-policy RL with one major difference

– Cannot collect additional data

• Existing RL algorithms do not work well on fixed datasets

• Why?

• No exploration

– It is common to assume that training data is sufficient to 
learn an optimal policy, though it is hard to even formalize 
this assumption

• Once the target policy is changed, policy evaluation may be 
challenging if behavior policy was too different

– Essentially asking a counterfactual question, i.e., a “what if” 
question

8



Offline Evaluation

• Suppose our current policy is 𝜋

• Data was generated using behavior policy 𝑏

• How do we compute 𝑣𝜋(𝑠)?

• Off-policy evaluation with importance sampling!
𝑣𝜋 𝑠 = 𝔼𝑏[𝜌𝑡:𝑇−1𝐺𝑡|𝑆𝑡 = 𝑠]

–where 𝜌𝑡:𝑇−1 = ς𝑘=𝑡
𝑇−1 𝜋 𝐴𝑘 𝑆𝑘

𝑏 𝐴𝑘 𝑆𝑘

• This estimate has high variance that can be improved by 
normalizing the weights

• What is the main issue with this approach?

– Requires the training data to have explored most 
state/action pairs
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Off-Policy Policy Gradients

• Offline RL could use the off-policy gradient policy approach

• Recall the off-policy deterministic policy gradient

∇𝜽𝐽 𝜽 ≈ න
𝑆

𝑑𝑏 𝑠 ∇𝜽𝜋 𝑠; 𝜽 ∇𝑎𝑞𝜋 𝑠, 𝑎 ቚ
𝑎=𝜋(𝑠)

𝑑𝑠

• What is the challenge with this approach?

– If the behavior policy hasn’t explored enough, the policy 
gradient estimate will be very noisy

– Effectively, we’ll assign very small weights to most actions 
chosen by the target policy

–Ultimately, the same problem as importance sampling
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Offline RL via Dynamic Programming

• In principle, dynamic programming is a useful approach for 
offline RL

• If we could approximate the 𝑞 value for all state/action pairs, 
then we can use dynamic programming to find the optimal 
policy

• What are the challenges with this approach?

–May not have enough data for each state/action pair

–What type of approximation should we use?
• Linear approximation may be too simplistic

• Neural networks may overfit
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Dynamic Programming with Linear Q-function 

Approximations

• Suppose we approximate the Q-function with a linear function

• Let the features be 𝒇(𝑠, 𝑎)

–Want to learn parameters 𝝓 such that ො𝑞 𝑠, 𝑎 = 𝝓𝑇𝒇(𝑠, 𝑎)

• What is one way to learn these parameters?

– Least squares using the Bellman equation!
• Requires knowing the MDP transition function

• Recall that we can write the Bellman equation in matrix form:
𝑞 𝒔, 𝒂 = 𝑅 𝒔 + 𝛾𝑷𝑞(𝒔, 𝒂)

• Let 𝑭 be the matrix of all features. Then
𝑭𝝓 = 𝑅 𝒔 + 𝛾𝑷𝑭𝝓

• i.e.,

𝝓∗ = 𝑭 − 𝛾𝑷𝑭 𝑇 𝑭 − 𝛾𝑷𝑭
−1

𝑭 − 𝛾𝑷𝑭 𝑇𝑅(𝒔)
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Distribution Shift with Dynamic Programming

• Offline dynamic programming suffers from distribution shift

–Why?
• Same reason as any other offline method really

• 𝑄-estimates may be very wrong for some state-action pairs

– If behavior policy did not explore enough, dynamic 
programming will overfit (regardless of how much training 
data we have)
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Soft Actor Critic applied 
on offline data.

Notice the number of 
trajectories does not help, 
i.e., the issue is not 
overfitting on the training 
data (rather exploration)



Mitigating Distribution Shift: Policy Constraints

• The idea of policy constraints is to keep the learned policy 
similar to the behavior policy

–What does this achieve?

– The 𝑞 function will not be queried on state/action pairs that 
weren’t explored in the training set

• Of course, you want a significantly different policy since the 
behavior policy is likely far from optimal

• How do we achieve both?

– Constrained learning, e.g., actor-critic!

– Effectively learn the best policy that can be evaluated 
sufficiently well given the available data
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Policy Constraints, cont’d

• Suppose we use a standard actor-critic method

• Iteratively train a critic using (bootstrapped) least squares 

– Then obtain the optimal policy for the current critic

• How do we constrain the policy w.r.t. the behavior policy 𝑏?

– Can add a constraint such as KL divergence

– E.g., 𝐷𝐾𝐿(𝜋| 𝑏 ≤ 𝜖
• Requires knowing the probabilities of actions under 𝑏, 𝑏 𝑎 𝑠

• If not, can learn a prior 𝜋𝜽𝑏
 approximating behavior policy 𝑏

– E.g., by maximizing the log-likelihood of training data
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Offline Model-Based RL

• The goal of model-based RL is to learn the underlying MDP

– i.e., the transition probability matrix 𝑃 𝑠, 𝑎, 𝑠′

• While still suffering from distribution shift and exploration 
issues in training data, this is more promising than DP

–Why?

– Transition probabilities do not depend on behavior policy
• Unlike 𝑞 function approximations

• Model-based RL is similar to a vast area in control theory 
known as system identification

–Given training trajectories of states and controls, can you 
learn system dynamics 𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘)
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Model Exploitation and Distribution Shift

• Once a model is trained, it can be used as a standard simulator 
in model-free online RL

– It may still suffer from distribution shift, both through 
visiting states or actions that weren’t explored in the 
training data

• During RL training, the policy may exploit deficiencies in the 
model

–How?

– If the model has assigned an erroneously high reward to 
some transition, the policy may exploit that

• This also happens in unrealistic driving simulators

– E.g., car learns to drive through a tree and cut a corner
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• Kaiser, Lukasz, Mohammad Babaeizadeh, Piotr Milos, Blazej 
Osinski, Roy H. Campbell, Konrad Czechowski, Dumitru Erhan 
et al. "Model-based reinforcement learning for atari." arXiv 
preprint arXiv:1903.00374 (2019).
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Overview

• It is known that humans can learn Atari games in minutes

• RL methods typically require millions of training steps

• In this paper, the authors ask whether they can learn good 
policies with a budget of 100K steps

– Roughly 2 hours of play time

–No model-free method can get even close to this goal

• The idea is to use a model so as to minimize interaction with 
the Atari simulator

–Offline learning steps are not counted towards the 100K

19



Goal

• The real environment (i.e., the Atari simulator) is called 𝑒𝑛𝑣

• The goal is to sample from 𝑒𝑛𝑣 as little as possible

– Collecting data from real environments is expensive in 
general

• The authors aim to build a model environment 𝑒𝑛𝑣’ that will 
be used for large-scale sampling

– Essentially run model-free RL on 𝑒𝑛𝑣’

• In some sense, the RL algorithms remain the same

– The main difference is the use of a model so as to minimize 
interactions with the real environment
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System Identification Aside

• System identification is quite challenging for several reasons

• Suppose training data contains trajectories 𝑥𝑘
𝑡 , 𝑢𝑘

𝑡 , 𝑥𝑘+1
𝑡

–where 𝑡 is the trajectory index and 𝑘 is the time within the 
trajectory

• What challenges do you see when trying to approximate the 
real dynamics 𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘)?

• Samples within a trajectory are not independent

– Can’t just use them in a standard supervised fashion

• Data was generated using a behavior controller

–Need sufficient exploration so as to ensure good learning
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Learning an Image Model

• Learning a predictive model for images is particularly hard 

–Why?

–Output is high-dimensional

–A single image doesn’t store the full state (e.g., velocity)
• Need to stack multiple (4) images together as input

• Specifying the loss function is also not trivial

–Authors experiment with softmax and 𝐿2

– Regardless of the loss choice, what challenges do you see?

–When you average the loss over many pixels, non-important 
pixels may dominate

–Authors resolve this issue by capping the loss per pixel
• Results in better behaved gradients across all pixels
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Learning an Image Model, cont’d

• Neural networks that output high-dimensional objects, such as 
images, are called generative models

– Examples include generative adversarial networks (GANs) 
and variational autoencoders (VAEs)

– Foundation models are variants of the above

• Generative models use a number of layers that are not present 
in classification models

–Deconvolutional layers

–Attention

– Recurrent layers
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Autoencoders

• Idea is to use an encoder and decoder (autoencoder)

– Encode the input as a low-dimensional embedding and 
combine with actions

– Then decode the embedding into the predicted output

• Recurrent encoding allows one to use a single frame at a time 
since it’s able to remember the past

–Note that this model is deterministic
• May need stochasticity, e.g., for random environment events
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Oh, J., Guo, X., Lee, H., Lewis, R. L., & Singh, S. (2015). Action-conditional video prediction using deep networks in atari games. Advances 
in neural information processing systems, 28.



Variational Autoencoders

• Suppose we want to add stochasticity to the generative model

– i.e., we want to learn the data-generating process for a 
dataset 𝒟 = 𝒙1, … , 𝒙𝑁

–One approach is to assume there is a low-dimensional 
representation of the high-dimensional data
• E.g., an MNIST digit can be described by its shape, etc.

• Called latent variables

• Goal is to

– Sample latent variable 𝒛𝑖~𝑝(𝒛)

– Sample a high-dimensional example 𝒙𝑖~𝑝 𝒙 𝒛𝑖
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Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In 2nd International Conference on Learning Representations, 
ICLR 2014
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Variational Autoencoders, cont’d

• Goal is to

– Sample latent variable 𝒛𝑖~𝑝(𝒛)

– Sample a high-dimensional example 𝒙𝑖~𝑝 𝒙 𝒛𝑖

• What is the challenge?

–We don’t observe 𝒛’s

• Ideally, we would use marginalization

𝑝 𝒙 = ∫ 𝑝 𝒛 𝑝 𝒙 𝒛 𝑑𝒛

• Or Bayes rule

𝑝 𝒛 𝒙 =
𝑝 𝒙 𝒛 𝑝(𝒛)

𝑝 𝒙

– but hard to estimate quantities in a high-dimensional space
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Variational Autoencoders, cont’d

• The idea is to approximate 𝑝(𝒛|𝒙) with a model 𝑞𝝓(𝒛|𝒙)

– Similarly, approximate 𝑝 𝒙 𝒛  with a model 𝑝𝜽 𝒙 𝒛
• Where models are neural nets, of course

–And train both parts so that they become “compatible”
• Intuitively, want 𝑑𝑒𝑐(𝑒𝑛𝑐(𝑥)) = 𝑥
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Source: 
https://blog.fastforwardlabs.com/2016/08/22/under-
the-hood-of-the-variational-autoencoder-in-prose-
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Variational Autoencoders, cont’d

• As we are approximating 𝑝𝜽(𝒛|𝒙) with 𝑞𝝓(𝒛|𝒙), we minimize

𝐷𝐾𝐿 𝑞𝝓 𝒛 𝒙𝑖 |𝑝𝜽 𝒛 𝒙𝑖 = 𝔼
log 𝑞𝝓 𝒛 𝒙𝑖

log 𝑝𝜽 𝒛 𝒙𝑖
 

 = 𝔼 log 𝑞𝝓 𝒛 𝒙𝑖 − 𝔼 log
𝑝𝜽 𝒙𝑖 𝒛 𝑝𝜽(𝒛)

𝑝𝜽(𝒙𝑖)

 = 𝔼 log
𝑞𝝓 𝒛 𝒙𝑖

𝑝𝜽 𝒛
− 𝔼 log 𝑝𝜽 𝒙𝑖 𝒛 + log 𝑝𝜽 𝒙𝑖

• So finally,
log 𝑝𝜽 𝒙𝑖 = 𝐷𝐾𝐿 𝑞𝝓 𝒛 𝒙𝑖 |𝑝𝜽 𝒛 𝒙𝑖 − 𝐷𝐾𝐿 𝑞𝝓 𝒛 𝒙𝑖 |𝑝𝜽 𝒛 + 𝔼 log 𝑝𝜽 𝒙𝑖 𝒛

= 𝐷𝐾𝐿 𝑞𝝓 𝒛 𝒙𝑖 |𝑝𝜽 𝒛 𝒙𝑖 + ℒ 𝜽, 𝝓; 𝒙𝑖  

–where ℒ 𝜽, 𝝓; 𝒙𝑖  is called the variational lower bound
• The other term is always positive

–maximizing ℒ 𝜽, 𝝓; 𝒙𝑖  maximizes the log-likelihood!
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Variational Autoencoders, cont’d

• Look at the variational lower bound
ℒ 𝜽, 𝝓; 𝒙𝑖 = −𝐷𝐾𝐿(𝑞𝝓 𝒛 𝒙𝑖 | 𝑝 𝒛 + 𝔼𝑞𝝓

log 𝑝𝜽 𝒙𝑖 𝒛

• First, we need to assume something about 𝑝(𝒛)

– Typically, we assume 𝒛 ∼ 𝒩 0, 𝑰

– So, we need to choose 𝑞𝝓 𝒛 𝒙𝑖  so as to minimize the 

distance to a Gaussian “prior”

• Similarly, we’ll assume 𝑞𝝓 𝒛 𝒙𝑖  is Gaussian also, i.e.,

𝒛~𝒩 𝜇𝝓 𝒙𝑖 , 𝜎𝝓 𝒙𝑖

– For each 𝒙𝑖, sample 𝜖𝑖~𝒩 0,1  and write
𝒛𝑖 = 𝜇𝝓 𝒙𝑖 + 𝜎𝝓 𝒙𝑖 ⋅ 𝜖𝑖

– Can now calculate gradient of ℒ 𝜽, 𝝓; 𝒙𝑖  for 𝒙𝑖 , 𝜖𝑖
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Full World Model

• Bottom part is the deterministic autoencoder

• Top left is a VAE

– Ideally, noise is sampled randomly at test time

–Authors claims using raw noise embeddings is unstable and 
varies across games
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Full World Model, cont’d

• Authors claims using raw noise embeddings is unstable and 
varies across games

– Instead discretize embedding into bits

–And train a recurrent inference network to predict next bit

–At test time, only use inference network
• Not sure why this is stochastic anymore
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Policy Training

• Alternate between sampling
from 𝑒𝑛𝑣 and 𝑒𝑛𝑣’

• Then train using a standard
model-free algorithm

–Authors used PPO

• One challenge is that env’ 
cannot be used for very long
trajectories since the noise will compound over time

– Cap trajectory length to 50 steps

• In first loop, train world model for 45K steps

– Then, use 15K real world steps until reaching target of 100K

• Agents interact with 𝑒𝑛𝑣’ for a total of 15.2M interactions
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Experiments

• Proposed method drastically outperforms other approaches

–Graph shows number of steps needed to reach SimPLe’s 
performance
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Experiments, cont’d

• Model-based methods eventually plateau with more steps

–Why?

– Probably because model isn’t good enough

– But useful as initialization for model-free methods (right)
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Experiments, cont’d

• Peak SimPLe performance still well below model-free methods 
given enough data
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Summary

• Offline RL is a very challenging and somewhat ill-defined field

• Ideally, would like to learn a policy that is better than the 
behavior policy used to collect the data

– Can’t learn actions that are not present in the dataset

–Optimal policy may require a sequence of optimal actions 
(e.g., in a game)
• this sequence may not appear at all in the training data

• Unclear how to compare methods

– Limit number of interactions with real world or fix a dataset 
that is somehow sufficient to learn optimal policy

• Offline RL can be particularly useful in safety-critical domains

– Enable safe exploration in the modeled environment
36
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