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Reading

• Sutton, Richard S., and Barto, Andrew G. Reinforcement 
learning: An introduction. MIT press, 2018.

– http://www.incompleteideas.net/book/the-book-2nd.html

– Chapter 3

• Puterman, Martin L. Markov decision processes: discrete 
stochastic dynamic programming. John Wiley & Sons, 2014.

– Chapters 2, 3, 4

• David Silver lecture on Markov Reward Processes

– https://www.youtube.com/watch?v=lfHX2hHRMVQ

–Overall good, but with a bias for MRPs with a terminal state

• MRP/MDP formalization

–We’ll only talk about MRP in these slides
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Overview

• Markov reward processes (MRPs) are an extension of Markov 
chains

– You get a reward after each state transition

– You can calculate your expected reward over time

• Markov decision processes (MDPs) are an extension of MRPs

–Add actions to influence the transition probabilities

–Model the control problem

• Both models lead to classical recursive equalities known as the 
Bellman equations
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MRP for Workday Example
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Questions

• What is the expected reward in 𝑇𝑒𝑎𝑐ℎ after one step?
−2 ∗ 0.3 + 0.1 ∗ 0.3 + 0.1 ∗ 0.3 + 5 ∗ 0.1 = −0.04

• Ignoring the probabilities, which path maximizes the reward in 
the long run?

– Trick question

–Over a finite horizon, the path 𝑇𝑒𝑎𝑐ℎ − 𝑃𝑢𝑏 − 𝑇𝑒𝑎𝑐ℎ … 
brings the highest reward (4.5 every two hops)

–Over an infinite horizon, any cycle with positive rewards will 
result in an infinite reward
• E.g., 𝑀𝑎𝑘𝑒 𝐿𝑒𝑐𝑡𝑢𝑟𝑒 𝑆𝑙𝑖𝑑𝑒𝑠 − 𝑂𝑓𝑓𝑖𝑐𝑒 𝐻𝑜𝑢𝑟 − ⋯
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Probability Aside: Conditional Expectation

• Given two random variables 𝑋 and 𝑌, the conditional 
expectation of 𝑋 given 𝑌 is defined as:

𝔼 𝑋 𝑌 = 𝑦 = ෍

𝑥∈𝒳

𝑥ℙ 𝑋 = 𝑥 𝑌 = 𝑦

–where 𝒳 is the (discrete) set of all values 𝑋 can take

• For a specific value of 𝑌, what is the distribution of 𝑋

– E.g., given that it is raining, what is the distribution of traffic

• Technically, the conditional expectation is a random variable

– Takes on different values for different realizations of 𝑌

• Similarly, for any function 𝑓:

𝔼 𝑓(𝑋) 𝑌 = 𝑦 = ෍

𝑥∈𝒳

𝑓 𝑥 ℙ 𝑋 = 𝑥 𝑌 = 𝑦
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MRP Formalization

• An MRP is a 4-tuple (𝑆, 𝑃, 𝑅, 𝜂) where

• 𝑆 is the set of states (aka the state space)

• 𝑃: 𝑆 × 𝑆 → ℝ is the probabilistic transition function

• ℙ 𝑆𝑡 𝑆𝑡−1 = 𝑃 𝑆𝑡−1, 𝑆𝑡

• 𝑅: 𝑆 × 𝑆 → ℝ is the reward function
• 𝑅(𝑆𝑡−1, 𝑆𝑡) is the reward received when following transition from 

𝑆𝑡−1 to 𝑆𝑡

• Can also derive expected reward from 𝑠: 𝑅𝑒 𝑠 = 𝔼 𝑅𝑡+1 𝑆𝑡 = 𝑠

• By convention, the reward associated with some transition is 
actually received on the next step

• We use 𝑅𝑡 to denote the reward we get at time 𝑡

• The reward is typically determined by which state you land in

• 𝜂: 𝑆 → ℝ is the initial state distribution
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A MRP Trace/Episode/Run/Trajectory

• Each MRP run is also called a trace/episode in different fields

– Could be finite or infinite

• An example finite run:
𝑆0 = 𝑇𝑒𝑎𝑐ℎ, 𝑆1 = 𝑀𝑎𝑘𝑒 𝐿𝑒𝑐𝑡𝑢𝑟𝑒 𝑆𝑙𝑖𝑑𝑒𝑠, 𝑆2 = 𝐹𝑖𝑥 𝐿𝑒𝑐𝑡𝑢𝑟𝑒 𝐸𝑟𝑟𝑜𝑟𝑠,
𝑆3 = 𝑂𝑓𝑓𝑖𝑐𝑒 𝐻𝑜𝑢𝑟

• Corresponding rewards are: 
𝑅1 = 0.1, 𝑅2 = −2, 𝑅3 = 0.1

– Total reward is −1.8

• In trace notation, the trajectory is:
𝑆0, 𝑅1, 𝑆1, 𝑅2, 𝑆2, 𝑅3, 𝑆3

• What is the probability of this run:
0.3 ∗ 0.2 ∗ 0.3 = 0.018
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A MRP Trace/Episode/Run/Trajectory

• An example infinite run: 
𝑆0 = 𝑇𝑒𝑎𝑐ℎ, 𝑆1 = 𝑃𝑢𝑏, 𝑆2 = 𝑇𝑒𝑎𝑐ℎ, 𝑆3 = 𝑃𝑢𝑏, …

• Corresponding rewards are:
𝑅1 = 5, 𝑅2 = −0.5, 𝑅3 = 5, …

– Total reward is infinite

• What is the probability of this trajectory?

0!

–Multiplying infinitely many numbers less than 1
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Goals and Rewards

• The reward is typically specified by the user to achieve a 
conceptual goal

– E.g., avoid crashes, compute an optimal trajectory

• On the one hand, this works very well since the reward 
function can be arbitrarily specific and complex

• On the other, it is quite hard because sometimes the reward 
encourages unexpected behaviors

– E.g., alternate between 𝑇𝑒𝑎𝑐ℎ and 𝑃𝑢𝑏 without making 
slides

– E.g., go through walls in (imperfect physics) simulators
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Finite vs Infinite Horizon

• An MRP can produce finite or infinite traces/episodes

– Both settings are valid (also in the MDP case)

–Note: book tries to combine them by assuming the system 
always has a sink goal state (not true for all MRPs/MDPs)

• In both cases, one can look at the return , i.e., total reward per 
trace

– In the finite case (with 𝑇 steps), return is: 
𝑅1 + 𝑅2 + ⋯ + 𝑅𝑇

– In the infinite case, the return is:

𝑅1 + 𝑅2 + ⋯ = ෍

𝑡=1

∞

𝑅𝑡

• What is a potential issue in the second case?
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Discounted Return

• Typically, we consider the discounted return:
𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ⋯

 = 𝑅𝑡+1 + 𝛾 𝑅𝑡+2 + 𝛾𝑅𝑡+3 + ⋯
 = 𝑅𝑡+1 + 𝛾𝐺𝑡+1 

–Discount factor 𝛾 ∈ (0,1)

• Why?

– Future rewards less important than current ones

–Mathematical convenience: don’t want infinite rewards

• Note that sum is finite if 𝑅𝑡 is bounded by some 𝑀 for all 𝑡:

𝐺𝑡 ≤ 𝑀 ෍

𝑘=0

∞

𝛾𝑘 =
𝑀

1 − 𝛾
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Value Function

• Intuitively, how *good* is your current state

• In the finite-horizon case, the value function is

𝑣𝑡 𝑠 ≔ 𝔼 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + ⋯ + 𝛾𝑇−𝑡+1𝑅𝑇 𝑆𝑡 = 𝑠

= 𝔼 𝐺𝑡 𝑆𝑡 = 𝑠  

• In the infinite-horizon case, it is
𝑣𝑡 𝑠 ≔ 𝔼 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + ⋯ 𝑆𝑡 = 𝑠

= 𝔼 𝐺𝑡 𝑆𝑡 = 𝑠  

• In both cases, it is the expected discounted return

• Value function may be time-dependent

– Book omits this important difference
• Value functions are time-independent for MRPs/MDPs with a 

terminal state

• Assuming terminal state doesn’t depend on time 13



Value Function Example

• Let 𝑇 = 2
𝑣1 𝑇𝑒𝑎𝑐ℎ = 𝔼 𝑅2 𝑆1 = 𝑇𝑒𝑎𝑐ℎ  
 = −2 ∗ 0.3 + 0.1 ∗ 0.3 + 0.1 ∗ 0.3 + 5 ∗ 0.1 = −0.04

• But
𝑣0 𝑇𝑒𝑎𝑐ℎ = 

= 𝔼 𝑅1 + 𝛾𝑅2 𝑆0 = 𝑇𝑒𝑎𝑐ℎ  

–Note that 𝔼 𝑅1 𝑆0 = 𝑇𝑒𝑎𝑐ℎ = 𝔼 𝑅2 𝑆1 = 𝑇𝑒𝑎𝑐ℎ = −0.04

–What about 𝔼 𝛾𝑅2 𝑆0 = 𝑇𝑒𝑎𝑐ℎ ?
𝔼 𝛾𝑅2 𝑆0 = 𝑇𝑒𝑎𝑐ℎ = 

 = 𝛾 ෍

𝑟

𝑟ℙ 𝑅2 = 𝑟 𝑆0 = 𝑇𝑒𝑎𝑐ℎ

 = 𝛾 ෍

𝑟

𝑟 ෍

𝑠

ℙ 𝑅2 = 𝑟, 𝑆1 = 𝑠 𝑆0 = 𝑇𝑒𝑎𝑐ℎ
14



Value Function Example, cont’d

𝔼 𝛾𝑅2 𝑆0 = 𝑇𝑒𝑎𝑐ℎ = 

 = 𝛾 ෍

𝑟

𝑟 ෍

𝑠

ℙ 𝑅2 = 𝑟, 𝑆1 = 𝑠 𝑆0 = 𝑇𝑒𝑎𝑐ℎ

 = 𝛾 ෍

𝑟

𝑟 ෍

𝑠

ℙ 𝑅2 = 𝑟 𝑆1 = 𝑠, 𝑆0 = 𝑇𝑒𝑎𝑐ℎ ℙ 𝑆1 = 𝑠 𝑆0 = 𝑇𝑒𝑎𝑐ℎ

 = 𝛾 ෍

𝑟

𝑟 ෍

𝑠

ℙ 𝑅2 = 𝑟 𝑆1 = 𝑠 ℙ 𝑆1 = 𝑠 𝑆0 = 𝑇𝑒𝑎𝑐ℎ

 = 𝛾 ෍

𝑠

ℙ 𝑆1 = 𝑠 𝑆0 = 𝑇𝑒𝑎𝑐ℎ ෍

𝑟

𝑟ℙ 𝑅2 = 𝑟 𝑆1 = 𝑠

 = 𝛾 ෍

𝑠

ℙ 𝑆1 = 𝑠 𝑆0 = 𝑇𝑒𝑎𝑐ℎ 𝔼[𝑅2|𝑆1 = 𝑠]
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Value Function Example, cont’d

𝔼 𝛾𝑅2 𝑆0 = 𝑇𝑒𝑎𝑐ℎ = 𝛾 ෍

𝑠

ℙ 𝑆1 = 𝑠 𝑆0 = 𝑇𝑒𝑎𝑐ℎ 𝔼[𝑅2|𝑆1 = 𝑠]

 = 𝛾 ෍

𝑠

ℙ 𝑆1 = 𝑠 𝑆0 = 𝑇𝑒𝑎𝑐ℎ 𝑣1 𝑠

• We already know 𝑣1 𝑇𝑒𝑎𝑐ℎ = −0.04

– But this is not used since ℙ 𝑆1 = 𝑇𝑒𝑎𝑐ℎ 𝑆0 = 𝑇𝑒𝑎𝑐ℎ = 0
• 𝑣1 𝑂𝐻 = 3 ∗ 0.2 + 0.1 ∗ 0.4 − 2 ∗ 0.4 = −0.16

• 𝑣1 𝑃𝑢𝑏 = −1 ∗ 0.9 − 0.5 ∗ 0.1 = −0.95

• 𝑣1 𝑀𝐿𝑆 = −2 ∗ 0.2 + 0.1 ∗ 0.5 + 3 ∗ 0.3 = 0.55

• 𝑣1 𝐹𝐿𝐸 = −2 ∗ 0.5 + 3 ∗ 0.2 + 0.1 ∗ 0.3 = −0.37

• So finally 

𝔼 𝛾𝑅2 𝑆0 = 𝑇𝑒𝑎𝑐ℎ = 

 = 𝛾(−0.16 ∗ 0.3 − 0.95 ∗ 0.1 + 0.55 ∗ 0.3 − 0.37 ∗ 0.3)
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Value Function Example, cont’d

• Finally,
𝑣0 𝑇𝑒𝑎𝑐ℎ = 𝔼 𝑅1 + 𝛾𝑅2 𝑆0 = 𝑇𝑒𝑎𝑐ℎ  

 = −0.04 + 𝛾(−0.089)

– For 𝛾 = 0.9, 𝑣0 𝑇𝑒𝑎𝑐ℎ = −0.1201

• So, for 𝑇 = 2, 𝑣0 𝑇𝑒𝑎𝑐ℎ < 𝑣1(𝑇𝑒𝑎𝑐ℎ)

• What about larger 𝑇?

17



Finite Horizon Bellman Equation

• We derived a recursive definition of 𝑣 for the case 𝑇 = 2:

𝑣0 𝑠 = 𝔼 𝑅1|𝑆0 = 𝑠 + 𝛾 ෍

𝑠′

ℙ 𝑆1 = 𝑠′ 𝑆0 = 𝑠 𝑣1 𝑠′

= 𝔼 𝑅1 + 𝛾𝑣1 𝑆1 𝑆0 = 𝑠  

• This recursion applies for all 𝑡
𝑣𝑡 𝑠 = 𝔼 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + ⋯ + 𝛾𝑇−𝑡+1𝑅𝑇 𝑆𝑡 = 𝑠  

= 𝔼 𝑅𝑡+1 + 𝛾(𝑅𝑡+2 + ⋯ + 𝛾𝑇−𝑡𝑅𝑇) 𝑆𝑡 = 𝑠  

= 𝔼 𝑅𝑡+1 + 𝛾𝐺𝑡+1 𝑆𝑡 = 𝑠  

• Note that

𝔼 𝐺𝑡+1 𝑆𝑡 = 𝑠 = ෍

𝑔

𝑔ℙ[𝐺𝑡+1 = 𝑔|𝑆𝑡 = 𝑠] 

 = ෍

𝑔

𝑔 ෍

𝑠′

ℙ[𝐺𝑡+1 = 𝑔, 𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠]

• Where 𝑔 loops through all (finitely many) values of 𝐺𝑡+1 18



Finite Horizon Bellman Equation, cont’d

• This recursion applies for all 𝑡
𝑣𝑡 𝑠 = 𝔼 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + ⋯ + 𝛾𝑇−2𝑅𝑇 𝑆𝑡 = 𝑠  

= 𝔼 𝑅𝑡+1 + 𝛾(𝑅𝑡+2 + ⋯ + 𝛾𝑇−3𝑅𝑇) 𝑆𝑡 = 𝑠

= 𝔼 𝑅𝑡+1 + 𝛾𝐺𝑡+1 𝑆𝑡 = 𝑠  

• Note that

𝔼 𝐺𝑡+1 𝑆𝑡 = 𝑠 = ෍

𝑔

𝑔 ෍

𝑠′

ℙ[𝐺𝑡+1 = 𝑔, 𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠] 

 = ෍

𝑔

𝑔 ෍

𝑠′

ℙ[𝐺𝑡+1 = 𝑔|𝑆𝑡+1 = 𝑠′, 𝑆𝑡 = 𝑠]ℙ[𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠]

 = ෍

𝑠′

ℙ 𝑆𝑡+1 = 𝑠′ 𝑆𝑡 = 𝑠 ෍

𝑔

𝑔ℙ 𝐺𝑡+1 = 𝑔 𝑆𝑡+1 = 𝑠′

 = ෍

𝑠′

ℙ 𝑆𝑡+1 = 𝑠′ 𝑆𝑡 = 𝑠 𝑣𝑡+1(𝑠′) = 𝔼 𝑣𝑡+1 𝑆𝑡+1 𝑆𝑡 = 𝑠
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Finite Horizon Bellman Equation, cont’d

• This recursion applies for all 𝑡

𝑣𝑡 𝑠 = 𝔼 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + ⋯ + 𝛾𝑇−2𝑅𝑇 𝑆𝑡 = 𝑠  

= 𝔼 𝑅𝑡+1 + 𝛾(𝑅𝑡+2 + ⋯ + 𝛾𝑇−3𝑅𝑇) 𝑆𝑡 = 𝑠

= 𝔼 𝑅𝑡+1 + 𝛾𝐺𝑡+1 𝑆𝑡 = 𝑠  

• Note that
𝔼 𝐺𝑡+1 𝑆𝑡 = 𝑠 = 𝔼 𝑣𝑡+1 𝑆𝑡+1 𝑆𝑡 = 𝑠

• So, the (finite-horizon) Bellman equation is

𝑣𝑡 𝑠 = 𝔼 𝑅𝑡+1 + 𝛾𝑣𝑡+1 𝑆𝑡+1 𝑆𝑡 = 𝑠

20



Infinite-Horizon MRPs

• Recall the definition of the value function
𝑣𝑡 𝑠 ≔ 𝔼 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + ⋯ 𝑆𝑡 = 𝑠

= 𝔼 𝐺𝑡 𝑆𝑡 = 𝑠  

• Sum (and expectation) is finite when 𝑅𝑡 are bounded

• It turns out that in the infinite horizon case 𝑣 does not depend 
on time, i.e.,

𝑣𝑡 𝑠 = 𝑣𝑡+𝑘(𝑠)

– for any integer 𝑘

– This is only true for stationary MDP/MRP
• i.e., probabilities don’t change over time

–We will drop the superscript in the infinite-horizon case

21



Infinite-horizon Bellman Equation

• The Bellman equation in the infinite-horizon case is similar
𝑣 𝑠 = 𝔼 𝑅𝑡+1 + 𝛾𝑣 𝑆𝑡+1 𝑆𝑡 = 𝑠

– The time 𝑡 here is implicit
• Only need it to distinguish the previous from the next state/reward

– But the function 𝑣 is the same

– Proof is quite involved (proof in book is incomplete)

– The discounted reward 𝐺𝑡 no longer takes on finitely many 
values

22



Bellman Equation Matrix Form

• The Bellman equation in the infinite-horizon case is
𝑣 𝑠 = 𝔼 𝑅𝑡+1 + 𝛾𝑣 𝑆𝑡+1 𝑆𝑡 = 𝑠

• If we expand the expectation, we get:

𝑣 𝑠 = 𝑅𝑒(𝑠) + 𝛾 ෍

𝑠′

ℙ[𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠]𝑣(𝑠′)

= 𝑅𝑒 𝑠 + 𝛾 ෍

𝑠′

𝑃 𝑠, 𝑠′ 𝑣(𝑠′) 

• Let 𝒔 be the vector of all states

– E.g., 𝒔 = [𝑇𝑒𝑎𝑐ℎ, 𝑀𝐿𝑆, 𝐹𝐿𝐸, 𝑂𝐻, 𝑃𝑢𝑏]

• We can write the Bellman equation in matrix form
𝑣 𝒔 = 𝑅𝑒 𝒔 + 𝛾𝑷𝑣(𝒔)

23



Bellman Equation Matrix Form, cont’d

• We can write the Bellman equation in matrix form
𝑣 𝒔 = 𝑅𝑒 𝒔 + 𝛾𝑷𝑣(𝒔)

• How do we solve for 𝑣 𝒔 ?

–Note that
𝑰 − 𝛾𝑷 𝑣 𝒔 = 𝑅𝑒(𝒔)

– i.e.,
𝑣 𝒔 = 𝑰 − 𝛾𝑷 −1𝑅𝑒(𝒔)

– Is 𝑰 − 𝛾𝑷 always invertible?
• Yes, because 𝛾𝑷 has a maximum eigenvalue of 𝛾 < 1

• If eigenvalues of 𝑷 are 𝜆𝑖, the eigenvalues of 𝑰 − 𝛾𝑷 are 1 − 𝛾𝜆𝑖

• For any eigenvector 𝒗𝑖 of 𝑷: 
𝑰 − 𝛾𝑷 𝒗𝑖 = 1 − 𝛾𝜆𝑖 𝒗𝑖
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Workday Example, Infinite Horizon

• Recall that

𝑷 =

0 0.3 0.3 0.3 0.1
0 0 0.4 0.4 0.2
0 0.5 0 0.2 0.3
0 0.3 0 0.5 0.2

0.1 0 0 0 0.9

, 𝑅𝑒 𝒔 =

−0.04
−0.95
0.55 

−0.37
−0.14

• For 𝛾 = 0.9, 
𝑰 − 𝛾𝑷 −1𝑅𝑒 𝒔 = −2.10 −2.79 −1.64 −2.16 −1.73 𝑇

• For 𝛾 = 0.5,
𝑰 − 𝛾𝑷 −1𝑅𝑒 𝒔 = −0.31 −1.10 0.16 −0.75 −0.28 𝑇

• Higher 𝛾’s generate lower state values. Why?

– If you get stuck in 𝑃𝑢𝑏 or 𝐹𝐿𝐸, self-transitions with negative 
rewards count for more
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Finite vs Infinite Horizon

• Most of RL algorithms are built assuming infinite horizons

– Theory is cleaner

– Stronger claims (e.g., time-independent policies are 
sufficient)

• Most RL in practice is used in finite-horizon scenarios

–Games, control tasks, protein folding

• What gives?

– Practitioners are somewhat lucky

– Either end time is conditioned on reaching a specific state
• E.g., when we want to reach a goal or win a game

–Or the same state is rarely visited at different times
• E.g., when you are driving, you don’t usually go in circles
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Finite vs Infinite Horizon, cont’d

• Whenever you have a finite horizon, you need to be careful

– Is it possible to visit the same state multiple times?
• If so, is the value different?

– Is it possible to get stuck in some weird behavior
• E.g., maybe we can’t reach the goal in time, so we just stay put in 

order to not crash

• We’ll discuss more when we get to MDPs
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