Bellman Optimality Equations
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learning: An introduction. MIT press, 2018.

— http://www.incompleteideas.net/book/the-book-2nd.html
— Chapter 4

* Puterman, Martin L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons, 2014.

— Chapter 4
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Overview

* The RL problem boils down to finding the policy that maximizes
the values of all states

—i.e., the optimal policy

* The Bellman optimality equations provide a convenient
property that the optimal policy must satisfy

* We will first prove the optimality equations

* We will also derive a tool for finding the optimal policy
—The Policy Improvement Theorem




Optimal Policy

* A policy i is better than another policy 7’ if
vi(s) = vf;, (s),Vs € S,vt € [1,T]

* A policy ™ is optimal if there exists no better policy than t*

* The state-value function corresponding to ™ is denoted by v, :
v,(s) = max v, (s)
VA

—Similarly for g,
* For (finite) MDPs, v, has a unique solution

* Similarly, in the infinite-horizon case, a policy m is better than
policy 7' if
Ve(s) = v (s),VsES




Policy Evaluation

* |n order to find the optimal policy, we first need a way to
evaluate policies

—i.e., compute the state-value function v, (s) for each state s
— Also compute the action-value function g, (s, a)
* Every time we change the policy, we need to evaluate it (in
order to check if we improved it)
* So far, we’ve seen one way to compute state values
—How?

— For a given policy , compute the matrix form of the value
function vector




Policy Evaluation: the infinite-horizon case

* In the infinite-horizon case, we can use the Bellman equation:

va(s) = Ru(5) +¥ ) P(s,a,5")m(als)va(s")
a,s’
—which can be rewritten in matrix form:
Un(S) = Rn(s) + Vann(S)
* Thus, the state value vector is:
Ur(8) = (I —yPr) 'Ry (s)




Workday example, MDP -> MRP

MDP

* Let’s define m as follows:
 nw(Teach) = Relax
* m(OH) = Work
» n(MLS) = Work
» n(FLE) = Relax
* w(Pub) = Work




Gridworld example, MDP -> MRP
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Iterative Policy Evaluation

* Inverting I — yP may be expensive if number of states is large
 Another approach is to use linear systems theory!
e Start from a random initialization for v(s) = vy(s)

* Look at linear system
vk (s) = R(s) + yPvy_41(s)
* System is stable. Why?
— All entries (and eigenvalues) of yP are < 1 (fory < 1)
* System converges to unique solution (I — yP)"1R(s)
—Why?

—If v, 11(8) = v (s) = v,thenv = R(s) + yPv, i.e,,
v=_—-yP) 1R(s)

* Keepin mind I — yP is not invertible wheny =1




Workday example, Iterative Value evolution

* Recall state values are (for y = 0.9)
(I—yP)"'R(s)=[554 1 1 —-0.69 4.49]"

* Using iterative evaluation

—Startingwithvy, =[0 0 0 0 0]F
V10 = [4.59 0.65 0.65 —1.58 3.64]"
V3o = [543 096 096 0—0.80 4.38]7
vso = [5.53 099 0.99 0-0.70 4.47]"

e After 50 iterations, converged within 0.01 if the true values




Gridworld Example, iterative value evolution

 Recall state values are

e Using iterative evaluation
—Starting from v, = 0 € R?®
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» After 50 iterations, converge within 0.15 of true values

* In general, can stop iterating when ||vk+1 — vk|| <€

—Where € is a hyperparameter




What about the finite-horizon case?

* Evaluate a policy recursively, starting from the last step T
— Use the Bellman equation
ve(s) = IEn[Rt+1 + VV71%_+1(St+1)|St = S]

* Remember, the policy and the value function may be time-
dependent in the finite-horizon case!

* Will discuss this in more detail when we talk about Dynamic
Programming




Bellman Optimality Equation

* A policy 7 is better than another policy 7’ if
V() = v (s),VsES

* A policy ™" is optimal if there exists no better policy than "

* Turns out the optimal policy also has a nice recursive property
m.(s) = argmaxq, (s, a)
a
—This is the Bellman Optimality Equation
— Pick the action with the highest value

— Obvious in a sense

* But any policy that satisfies the Bellman optimality equation is
optimal




Bellman Optimality Equation, proof

* Bellman optimality equation:
m.(s) = argmaxq, (s, a)
a

= arg max By, [Resy + ¥r, (Ses1)ISe = 5,4¢ = a

* Proof by induction backward in time (for finite horizon T'):
—Basecase(t =T — 1):
* Only one step to make

* For any state s, the optimal action is
arg maxE; [R7|Sr—1 =S, Ar_1 = a] =
a

= arg max (. (s, a)
a

e So m, is optimal by construction




Bellman Optimality Equation, proof

* Proof by induction backward in time (for finite horizon T'):
—Inductive case:
— Assume T, is optimal attime t + 1
e e, vit(s) = v (s), Vs, 7'
—What do we need to show?
vg (s) = v;, (s),Vs, '

— Using the Bellman equation for m,:
vg () = qr,(s,1.(s))
= max|qr, (s, a)]

= max | By, [Re + Y (Se)|Se = 5,4¢ = a




Bellman Optimality Equation, proof

* Proof by induction backward in time (for finite horizon T'):

— Assume T, is optimal attime t + 1
e e, vit(s) = vT(s), Vs, 7'

— Consider any other policy 7’
Vg, (s) = max _[En* [Rt+1 + Vvﬁj1(5t+1)|5t = 5,4 = a]]

a

= max |R,(s,a) + z yviti(s")P(s,a,s")
S’

a

> max |R,(s,a) + Z yvitt(s"P(s,a,s’)
S,

—Inequality true for any a, so true for max also




Bellman Optimality Equations, proof

* Proof by induction backward in time(for finite horizon T)):
Vs, (s) = max Er, [Rt+1 + Vvﬁj1(5t+1)|5t =5,4; = a”

a

= max |R(s,a) + Z yvitt(s")P(s,a,s’)
Sl

> max |R(s,a) + Z yvf;fl(s’)P(s, a,s'’)
SI

a

Deterministic ) , 1 , "
policy version = R(S'” (5)) + z yv.i (sDP(s,m'(s),s")
S,
= IE7rr[Rt+1 + yv;;’l-l(st+1)|st =5,A; = ”’(S)]

= Ex/[Res1 + vV H(Se41)|Se = 5]

= v;, (s)
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Bellman Optimality Equations, proof

* Proof by induction backward in time(for finite horizon T):
vr, (s) = mU?X | L, [Rt+1 + VVr +1(St+1)|5t =S, At = a”

= max |R(s,a) + Z yvitt(s")P(s,a,s’)

> max |R(s,a) + Z yv”l(s’)P(s, a,s')

Stochastic — an(aqs) R(s,a*) + Zyvt'l'l(s’)P(s a*,s")
policy @ ,
version !
> z m'(a'ls)|R(s,a’") + Z }/le(S')P(S, a, S')]
= v;;, (s) _

where a* = argmax[R(S a)+ Y yvt+1(s')P(5, a,s’)]
a
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Policy Improvement Theorem

* The Bellman optimality equation tells us what properties the
optimal policy must satisfy

— But it doesn’t tell us how to find that policy

* Suppose we have a current policy i, potentially not optimal
—Suppose we know v(s), q.(s,a),Vs,a
—How can we improve the policy for a given s?
— Pick an action that has a higher g value

* We know v.(s) = q(s,m(s))
— What if there existed an action a’ s.t.
4rn(s,a’) = qz(s,m(s))
—Turns out the policy that selects a’ is better




Policy Improvement Theorem, cont’d

* Policy Improvement Theorem:

— A policy ' is as good as, or better than, another policy 7 if
foralls € §

QR(S' T[’(S)) = Vr(S)

20




Policy Improvement Theorem Proof

First recall that for a specific action a, the g value is:
q-(s,a) = R,(s,a) + yZP(s a, s )v(s")
= R,(s,a) + yp(s a)Tv(s)
—where p(s,a)’ =[P(s,a,s,), ..., P(s,a,sy)]
* Wlog, suppose 7' is different from m only at s4, i.e.,
Qn(slin,(sl)) = v (S1)
* Using the Bellman equation:
!/ / !/ T
qTL’(Ser[ (Sl)) — Re(Sl,T[ (Sl)) + yp(Ser[ (Sl)) Un(S)
T
vr(sy) = Qn(51rﬂ(51)) = Re(51»7T(S1)) + Vp(51;7T(51)) v (S)
Then
Re(s1,7'(50)) +¥P(51,7'(51)) ¥(8) 2 Re(s1,7(51)) +¥p(51,7(51)) v (S)




Policy Improvement Theorem Proof, cont’d

* Wlog, suppose 7' is different from 7 only at s, i.e.,
Qn(sl:ﬂ,(sl)) = Un(sl)
* Using the Bellman equation:
!/ !/ !/ T
qTC(Ser[ (Sl)) — Re(Sl,T[ (Sl)) + )/p(Sl,ﬂ (51)) UTL'(S)
T
U (51) = CIn(S1;7T(S1)) = Re(51»ﬂ(51)) + VP(S1»7T(S1)) U (S)
* Then
Re(s1, (1)) + ¥p (51,7 (51) vr(8) = Re(51,7(51)) + vp(51,7(51)) v (s)

» Stack remaining values for  in a vector as follows:
_Re(slrﬂ’(sl)) + VP(Sl;”’(Sﬂ)TUn(S)_ _ Re(51;7T(51)) + VP(51»7T(S1))TV1T(S) _
Re(sz»ﬂ(sz)) + VP(SZ» ”(52))T17n($) > | Re (52»”(52)) + VP(SZ;”(SZ))T%(S)

R (SN» T[(SN)) + VP(SN»ﬂ(SN))TUn(S)_ _Re(SN» 7T(51v)) + VP(SN»”(SN))TVn(S)_

—where the inequality is interpreted element-wise




Policy Improvement Theorem Proof, cont’d

e Stack remaining values for  in a vector as follows:
Re (51,7 (51)) + ¥p(50,7'(51)) vr(8)| [ Re(s1,7(50)) +¥p(s51,7(51)) vre(S) |
Re(sz;”(sz)) + Vp(Sz;Tf(Sz))TVn(S) > Re(sz'”(sz)) + yp(sz,n(sz))Tvn(s)

Re(sn, (sw)) + ¥P(swm(sy)) 12 ()] [Re(snm(sn)) + v0(sn m(sn)) ve(s)|

* In matrix form:
Rn’(s) + yPnrvn(s) = Rn(s) + )/ann(S)
Rn’(s) + yPn’vn(S) = Un(S)
Rn’(s) = Un(s) - VPn’vn(S)
R, (s) = (I — yPnr)vn(s)

* Pre-multiply both sides by (I — )/P,Tr)_1
* Inequalities don’t switch sides (don’t have time to prove)
(I=yP) "Ry(s) = vy(s)
Unr(S) > v.(S)
—QED




Deterministic Policies: Greedy Policy
Improvement

* Suppose we are given a deterministic policy

* We can greedily improve m for each state
n'(s) = argmax q,(s,a)
a

= arg max Er[Rey1 + VU (St41)IS: = 5,4 = aj
* By the policy improvement theorem, ' is better than or equal

tom
e Ift’ =m, thent' = 1*;
U (S) = mC?X[IEn[Rt+1 + YU (Se4+1)S: = 5, A = a]]
= max g, (s,a)

— Bellman optimality equation!




Summary

* The Bellman optimality equations provide a property that any
optimal policy must satisfy

— But don’t tell us how to find that policy
* The Policy Improvement Theorem provides a tool for greedy
policy search
—Improve the policy iteratively and re-evaluate

* It also provides the foundation for a class of algorithms based
on dynamic programming

— Next lecture
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