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Reading

• Sutton, Richard S., and Barto, Andrew G. Reinforcement 
learning: An introduction. MIT press, 2018.

– http://www.incompleteideas.net/book/the-book-2nd.html

– Chapter 4

• Puterman, Martin L. Markov decision processes: discrete 
stochastic dynamic programming. John Wiley & Sons, 2014.

– Chapter 4

• David Silver lecture on Dynamic Programming

– https://www.youtube.com/watch?v=Nd1-UUMVfz4
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Overview

• The RL problem boils down to finding the policy that maximizes 
the values of all states

– i.e., the optimal policy

• The Bellman optimality equations provide a convenient 
property that the optimal policy must satisfy

• We will first prove the optimality equations

• We will also derive a tool for finding the optimal policy

– The Policy Improvement Theorem
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Optimal Policy

• A policy 𝜋 is better than another policy 𝜋′ if 

𝑣𝜋
𝑡 𝑠 ≥ 𝑣𝜋′

𝑡 𝑠 , ∀𝑠 ∈ 𝑆, ∀𝑡 ∈ 1, 𝑇

• A policy 𝜋∗ is optimal if there exists no better policy than 𝜋∗

• The state-value function corresponding to 𝜋∗ is denoted by 𝑣∗:
𝑣∗(𝑠) = max

𝜋
𝑣𝜋(𝑠)

– Similarly for 𝑞∗

• For (finite) MDPs, 𝑣∗ has a unique solution

• Similarly, in the infinite-horizon case, a policy 𝜋 is better than 
policy 𝜋′ if

𝑣𝜋 𝑠 ≥ 𝑣𝜋′ 𝑠 , ∀𝑠 ∈ 𝑆
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Policy Evaluation

• In order to find the optimal policy, we first need a way to 
evaluate policies

– i.e., compute the state-value function 𝑣𝜋(𝑠) for each state 𝑠

–Also compute the action-value function 𝑞𝜋(𝑠, 𝑎)

• Every time we change the policy, we need to evaluate it (in 
order to check if we improved it)

• So far, we’ve seen one way to compute state values

–How?

– For a given policy 𝜋, compute the matrix form of the value 
function vector
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Policy Evaluation: the infinite-horizon case

• In the infinite-horizon case, we can use the Bellman equation:

𝑣𝜋(𝑠) = 𝑅𝜋 𝑠 + 𝛾 ෍

𝑎,𝑠′

𝑃 𝑠, 𝑎, 𝑠′ 𝜋 𝑎 𝑠 𝑣𝜋 𝑠′

–which can be rewritten in matrix form:
𝑣𝜋 𝒔 = 𝑅𝜋 𝒔 + 𝛾𝑷𝜋𝑣𝜋(𝒔)

• Thus, the state value vector is:
𝑣𝜋 𝒔 = 𝑰 − 𝛾𝑷𝜋

−1𝑅𝜋(𝒔)
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Workday example, MDP -> MRP
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Gridworld example, MDP -> MRP
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Iterative Policy Evaluation

• Inverting 𝑰 − 𝛾𝑷 may be expensive if number of states is large

• Another approach is to use linear systems theory!

• Start from a random initialization for 𝑣 𝒔 = 𝑣0(𝒔)

• Look at linear system
𝑣𝑘 𝒔 = 𝑅 𝒔 + 𝛾𝑷𝑣𝑘−1 𝒔

• System is stable. Why?

–All entries (and eigenvalues) of 𝛾𝑷 are < 1 (for 𝛾 < 1)

• System converges to unique solution 𝑰 − 𝛾𝑷 −1𝑅(𝒔)

–Why?

– If 𝑣𝑘+1(𝒔) = 𝑣𝑘(𝒔) = 𝒗, then 𝒗 = 𝑅 𝒔 + 𝛾𝑷𝒗, i.e.,
𝒗 = 𝑰 − 𝛾𝑷 −1𝑅(𝒔)

• Keep in mind 𝑰 − 𝛾𝑷 is not invertible when 𝛾 = 1 9



Workday example, Iterative Value evolution

• Recall state values are (for 𝛾 = 0.9)
𝑰 − 𝛾𝑷 −1𝑅 𝒔 = 5.54 1 1 −0.69 4.49 𝑇

• Using iterative evaluation

– Starting with 𝒗0 = 0 0 0 0 0 𝑇

𝒗10 = 4.59 0.65 0.65 −1.58 3.64 𝑇

𝒗30 = 5.43 0.96 0.96 0 − 0.80 4.38 𝑇

𝒗50 = 5.53 0.99 0.99 0 − 0.70 4.47 𝑇

• After 50 iterations, converged within 0.01 if the true values
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• Recall state values are

• Using iterative evaluation

– Starting from 𝒗0 = 𝟎 ∈ ℝ25

• 𝑣10 is

• 𝑣50 is

• After 50 iterations, converge within 0.15 of true values

• In general, can stop iterating when 𝑣𝑘+1 − 𝑣𝑘 ≤ 𝜖

–Where 𝜖 is a hyperparameter

Gridworld Example, iterative value evolution
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21.86 24.29 21.86 19.29 17.36

19.68 21.86 19.68 17.71 15.94

17.71 19.68 17.71 15.94 14.29

15.94 17.71 15.94 14.29 12.86

14.29 15.94 14.29 12.86 11.58

14.31 15.90 14.31 10.90 9.81

12.88 14.31 12.88 11.59 10.44

11.59 12.88 11.59 10.44 5.90

10.44 11.59 10.44 5.90 5.31

5.90 10.44 5.90 5.31 4.78



What about the finite-horizon case?

• Evaluate a policy recursively, starting from the last step 𝑇

–Use the Bellman equation

𝑣𝜋
𝑡 𝑠 = 𝔼𝜋 𝑅𝑡+1 + 𝛾𝑣𝜋

𝑡+1 𝑆𝑡+1 𝑆𝑡 = 𝑠

• Remember, the policy and the value function may be time-
dependent in the finite-horizon case!

• Will discuss this in more detail when we talk about Dynamic 
Programming
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Bellman Optimality Equation

• A policy 𝜋 is better than another policy 𝜋′ if 
𝑣𝜋 𝑠 ≥ 𝑣𝜋′ 𝑠 , ∀𝑠 ∈ 𝑆

• A policy 𝜋∗ is optimal if there exists no better policy than 𝜋∗

• Turns out the optimal policy also has a nice recursive property
𝜋∗ 𝑠 = 𝑎𝑟𝑔 max

𝑎
𝑞𝜋∗(𝑠, 𝑎)

– This is the Bellman Optimality Equation

– Pick the action with the highest value

–Obvious in a sense
• But any policy that satisfies the Bellman optimality equation is 

optimal
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Bellman Optimality Equation, proof

• Bellman optimality equation:
𝜋∗ 𝑠 = 𝑎𝑟𝑔 max

𝑎
𝑞𝜋∗

(𝑠, 𝑎) 

 = 𝑎𝑟𝑔 max
𝑎

𝔼𝜋∗
[𝑅𝑡+1 + 𝛾𝑣𝜋∗

(𝑆𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

• Proof by induction backward in time (for finite horizon 𝑇):

– Base case (𝑡 = 𝑇 − 1): 
• Only one step to make

• For any state 𝑠, the optimal action is 
𝑎𝑟𝑔 max

𝑎
𝔼𝜋∗

[𝑅𝑇|𝑆𝑇−1 = 𝑠, 𝐴𝑇−1 = 𝑎] = 

 = 𝑎𝑟𝑔 max
𝑎

𝑞𝜋∗
(𝑠, 𝑎)

• So 𝜋∗ is optimal by construction
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Bellman Optimality Equation, proof

• Proof by induction backward in time (for finite horizon 𝑇):

– Inductive case: 

–Assume 𝜋∗ is optimal at time 𝑡 + 1

• i.e., 𝑣𝜋∗
𝑡+1 𝑠 ≥ 𝑣𝜋′

𝑡+1 𝑠 , ∀𝑠, 𝜋′

–What do we need to show?

𝑣𝜋∗
𝑡 𝑠 ≥ 𝑣𝜋′

𝑡 𝑠 , ∀𝑠, 𝜋′

–Using the Bellman equation for 𝜋∗:
𝑣𝜋∗

𝑡 𝑠 = 𝑞𝜋∗
𝑡 𝑠, 𝜋∗ 𝑠  

= max
𝑎

𝑞𝜋∗
𝑡 𝑠, 𝑎  

 = max
𝑎

𝔼𝜋∗
𝑅𝑡+1 + 𝛾𝑣𝜋∗

𝑡+1 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎
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Bellman Optimality Equation, proof

• Proof by induction backward in time (for finite horizon 𝑇):

–Assume 𝜋∗ is optimal at time 𝑡 + 1

• i.e., 𝑣𝜋∗
𝑡+1 𝑠 ≥ 𝑣𝜋′

𝑡+1 𝑠 , ∀𝑠, 𝜋′

– Consider any other policy 𝜋′ 

𝑣𝜋∗
𝑡 𝑠 = max

𝑎
𝔼𝜋∗

𝑅𝑡+1 + 𝛾𝑣𝜋∗
𝑡+1 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

 = max
𝑎

𝑅𝑒 𝑠, 𝑎 + ෍

𝑠′

𝛾𝑣𝜋∗
𝑡+1 𝑠′ 𝑃 𝑠, 𝑎, 𝑠′

 ≥ max
𝑎

𝑅𝑒 𝑠, 𝑎 + ෍

𝑠′

𝛾𝑣𝜋′
𝑡+1 𝑠′ 𝑃 𝑠, 𝑎, 𝑠′

– Inequality true for any 𝑎, so true for max also
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Bellman Optimality Equations, proof

• Proof by induction backward in time(for finite horizon 𝑇):
 𝑣𝜋∗

𝑡 𝑠 = max
𝑎

𝔼𝜋∗
𝑅𝑡+1 + 𝛾𝑣𝜋∗

𝑡+1 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

 = max
𝑎

𝑅 𝑠, 𝑎 + ෍

𝑠′

𝛾𝑣𝜋∗
𝑡+1 𝑠′ 𝑃 𝑠, 𝑎, 𝑠′

 ≥ max
𝑎

𝑅 𝑠, 𝑎 + ෍

𝑠′

𝛾𝑣𝜋′
𝑡+1 𝑠′ 𝑃 𝑠, 𝑎, 𝑠′

 ≥ 𝑅 𝑠, 𝜋′ 𝑠 + ෍

𝑠′

𝛾𝑣𝜋′
𝑡+1 𝑠′ 𝑃 𝑠, 𝜋′ 𝑠 , 𝑠′  

 = 𝔼𝜋′ 𝑅𝑡+1 + 𝛾𝑣𝜋′
𝑡+1 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝜋′ 𝑠

= 𝔼𝜋′ 𝑅𝑡+1 + 𝛾𝑣𝜋′
𝑡+1 𝑆𝑡+1 𝑆𝑡 = 𝑠  

= 𝑣𝜋′
𝑡 𝑠  
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Bellman Optimality Equations, proof

• Proof by induction backward in time(for finite horizon 𝑇):
 𝑣𝜋∗

𝑡 𝑠 = max
𝑎

𝔼𝜋∗
𝑅𝑡+1 + 𝛾𝑣𝜋∗

𝑡+1 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

 = max
𝑎

𝑅 𝑠, 𝑎 + ෍

𝑠′

𝛾𝑣𝜋∗
𝑡+1 𝑠′ 𝑃 𝑠, 𝑎, 𝑠′

 ≥ max
𝑎

𝑅 𝑠, 𝑎 + ෍

𝑠′

𝛾𝑣𝜋′
𝑡+1 𝑠′ 𝑃 𝑠, 𝑎, 𝑠′

 = ෍

𝑎′

𝜋′ 𝑎′ 𝑠 𝑅 𝑠, 𝑎∗ + ෍

𝑠′

𝛾𝑣𝜋′
𝑡+1 𝑠′ 𝑃 𝑠, 𝑎∗, 𝑠′

 ≥ ෍

𝑎′

𝜋′ 𝑎′ 𝑠 𝑅 𝑠, 𝑎′ + ෍

𝑠′

𝛾𝑣𝜋′
𝑡+1 𝑠′ 𝑃 𝑠, 𝑎′, 𝑠′

= 𝑣𝜋′
𝑡 𝑠  
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version

where 𝑎∗ = argmax
𝑎

𝑅 𝑠, 𝑎 + σ𝑠′ 𝛾𝑣𝜋′
𝑡+1 𝑠′ 𝑃 𝑠, 𝑎, 𝑠′
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Policy Improvement Theorem

• The Bellman optimality equation tells us what properties the 
optimal policy must satisfy

– But it doesn’t tell us how to find that policy

• Suppose we have a current policy 𝜋, potentially not optimal

– Suppose we know 𝑣𝜋 𝑠 , 𝑞𝜋 𝑠, 𝑎 , ∀𝑠, 𝑎

–How can we improve the policy for a given 𝑠?

– Pick an action that has a higher 𝑞 value

• We know 𝑣𝜋 𝑠 = 𝑞𝜋(𝑠, 𝜋(𝑠))

–What if there existed an action 𝑎′ s.t. 
𝑞𝜋 𝑠, 𝑎′ ≥ 𝑞𝜋(𝑠, 𝜋(𝑠))

– Turns out the policy that selects 𝑎′ is better
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Policy Improvement Theorem, cont’d

• Policy Improvement Theorem:

–A policy 𝜋′ is as good as, or better than, another policy 𝜋 if 
for all 𝑠 ∈ 𝑆

𝑞𝜋 𝑠, 𝜋′ 𝑠 ≥ 𝑣𝜋(𝑠)
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Policy Improvement Theorem Proof

• First recall that for a specific action 𝑎, the 𝑞 value is:

𝑞𝜋 𝑠, 𝑎 = 𝑅𝑒 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃 𝑠, 𝑎, 𝑠′ 𝑣 𝑠′

 = 𝑅𝑒 𝑠, 𝑎 + 𝛾𝒑 𝑠, 𝑎 𝑇𝑣 𝒔

–where 𝒑 𝑠, 𝑎 𝑇 = 𝑃 𝑠, 𝑎, 𝑠1 , … , 𝑃 𝑠, 𝑎, 𝑠𝑁

• Wlog, suppose 𝜋′ is different from 𝜋 only at 𝑠1, i.e.,
𝑞𝜋 𝑠1, 𝜋′ 𝑠1 ≥ 𝑣𝜋(𝑠1)

• Using the Bellman equation:

𝑞𝜋 𝑠1, 𝜋′ 𝑠1 = 𝑅𝑒 𝑠1, 𝜋′ 𝑠1 + 𝛾𝒑 𝑠1, 𝜋′ 𝑠1
𝑇

𝑣𝜋 𝒔  

 𝑣𝜋 𝑠1 = 𝑞𝜋 𝑠1, 𝜋 𝑠1 = 𝑅𝑒 𝑠1, 𝜋 𝑠1 + 𝛾𝒑 𝑠1, 𝜋 𝑠1
𝑇

𝑣𝜋 𝒔

• Then
𝑅𝑒 𝑠1, 𝜋′ 𝑠1 + 𝛾𝒑 𝑠1 , 𝜋′ 𝑠1

𝑇
𝑣𝜋 𝒔 ≥ 𝑅𝑒 𝑠1, 𝜋 𝑠1 + 𝛾𝒑 𝑠1, 𝜋 𝑠1

𝑇
𝑣𝜋 𝒔
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Policy Improvement Theorem Proof, cont’d

• Wlog, suppose 𝜋′ is different from 𝜋 only at 𝑠1, i.e.,
𝑞𝜋 𝑠1, 𝜋′ 𝑠1 ≥ 𝑣𝜋(𝑠1)

• Using the Bellman equation:

𝑞𝜋 𝑠1, 𝜋′ 𝑠1 = 𝑅𝑒 𝑠1, 𝜋′ 𝑠1 + 𝛾𝒑 𝑠1, 𝜋′ 𝑠1
𝑇

𝑣𝜋 𝒔  

 𝑣𝜋 𝑠1 = 𝑞𝜋 𝑠1, 𝜋 𝑠1 = 𝑅𝑒 𝑠1, 𝜋 𝑠1 + 𝛾𝒑 𝑠1, 𝜋 𝑠1
𝑇

𝑣𝜋 𝒔

• Then
𝑅𝑒 𝑠1, 𝜋′ 𝑠1 + 𝛾𝒑 𝑠1 , 𝜋′ 𝑠1

𝑇
𝑣𝜋 𝒔 ≥ 𝑅𝑒 𝑠1, 𝜋 𝑠1 + 𝛾𝒑 𝑠1, 𝜋 𝑠1

𝑇
𝑣𝜋 𝒔

• Stack remaining values for 𝜋 in a vector as follows:
𝑅𝑒 𝑠1, 𝜋′ 𝑠1 + 𝛾𝒑 𝑠1, 𝜋′ 𝑠1

𝑇
𝑣𝜋 𝒔

𝑅𝑒 𝑠2, 𝜋 𝑠2 + 𝛾𝒑 𝑠2, 𝜋 𝑠2
𝑇

𝑣𝜋 𝒔
…

𝑅𝑒 𝑠𝑁, 𝜋 𝑠𝑁 + 𝛾𝒑 𝑠𝑁, 𝜋 𝑠𝑁
𝑇

𝑣𝜋 𝒔

≥

𝑅𝑒 𝑠1, 𝜋 𝑠1 + 𝛾𝒑 𝑠1, 𝜋 𝑠1
𝑇

𝑣𝜋 𝒔

𝑅𝑒 𝑠2, 𝜋 𝑠2 + 𝛾𝒑 𝑠2, 𝜋 𝑠2
𝑇

𝑣𝜋 𝒔
…

𝑅𝑒 𝑠𝑁, 𝜋 𝑠𝑁 + 𝛾𝒑 𝑠𝑁, 𝜋 𝑠𝑁
𝑇

𝑣𝜋 𝒔

–where the inequality is interpreted element-wise
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Policy Improvement Theorem Proof, cont’d

• Stack remaining values for 𝜋 in a vector as follows:
𝑅𝑒 𝑠1, 𝜋′ 𝑠1 + 𝛾𝒑 𝑠1, 𝜋′ 𝑠1

𝑇
𝑣𝜋 𝒔

𝑅𝑒 𝑠2, 𝜋 𝑠2 + 𝛾𝒑 𝑠2, 𝜋 𝑠2
𝑇

𝑣𝜋 𝒔
…

𝑅𝑒 𝑠𝑁, 𝜋 𝑠𝑁 + 𝛾𝒑 𝑠𝑁, 𝜋 𝑠𝑁
𝑇

𝑣𝜋 𝒔

≥

𝑅𝑒 𝑠1, 𝜋 𝑠1 + 𝛾𝒑 𝑠1, 𝜋 𝑠1
𝑇

𝑣𝜋 𝒔

𝑅𝑒 𝑠2, 𝜋 𝑠2 + 𝛾𝒑 𝑠2, 𝜋 𝑠2
𝑇

𝑣𝜋 𝒔
…

𝑅𝑒 𝑠𝑁, 𝜋 𝑠𝑁 + 𝛾𝒑 𝑠𝑁, 𝜋 𝑠𝑁
𝑇

𝑣𝜋 𝒔

• In matrix form:
𝑅𝜋′ 𝒔 + 𝛾𝑷𝜋′𝑣𝜋 𝒔 ≥ 𝑅𝜋 𝒔 + 𝛾𝑷𝜋𝑣𝜋 𝒔  
𝑅𝜋′ 𝒔 + 𝛾𝑷𝜋′𝑣𝜋 𝒔 ≥ 𝑣𝜋 𝒔  

 𝑅𝜋′ 𝒔 ≥ 𝑣𝜋 𝒔 − 𝛾𝑷𝜋′𝑣𝜋 𝒔

 𝑅𝜋′ 𝒔 ≥ 𝑰 − 𝛾𝑷𝜋′ 𝑣𝜋 𝒔

• Pre-multiply both sides by 𝑰 − 𝛾𝑷𝜋′
−1

• Inequalities don’t switch sides (don’t have time to prove)

𝑰 − 𝛾𝑷𝜋′
−1

𝑅𝜋′ 𝒔 ≥ 𝑣𝜋(𝒔)

 𝑣𝜋′ 𝐬 ≥ 𝑣𝜋(𝒔)

–QED 25



Deterministic Policies: Greedy Policy 

Improvement

• Suppose we are given a deterministic policy 𝜋

• We can greedily improve 𝜋 for each state
𝜋′ 𝑠 = 𝑎𝑟𝑔 max

𝑎
𝑞𝜋(𝑠, 𝑎) 

 = 𝑎𝑟𝑔 max
𝑎

𝔼𝜋[𝑅𝑡+1 + 𝛾𝑣𝜋(𝑆𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

• By the policy improvement theorem, 𝜋′ is better than or equal 
to 𝜋

• If 𝜋′ = 𝜋, then 𝜋′ = 𝜋∗:

𝑣𝜋′ 𝑠 = max
𝑎

𝔼𝜋 𝑅𝑡+1 + 𝛾𝑣𝜋′ 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= max
𝑎

𝑞𝜋′(𝑠, 𝑎) 

– Bellman optimality equation!
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Summary

• The Bellman optimality equations provide a property that any 
optimal policy must satisfy

– But don’t tell us how to find that policy

• The Policy Improvement Theorem provides a tool for greedy 
policy search

– Improve the policy iteratively and re-evaluate

• It also provides the foundation for a class of algorithms based 
on dynamic programming

–Next lecture
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