
Bellman Optimality Equations

1

Reading

• Sutton, Richard S., and Barto, Andrew G. Reinforcement
learning: An introduction. MIT press, 2018.

– http://www.incompleteideas.net/book/the-book-2nd.html

– Chapter 4

• Puterman, Martin L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons, 2014.

– Chapter 4

• David Silver lecture on Dynamic Programming

– https://www.youtube.com/watch?v=Nd1-UUMVfz4

2

http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html

Overview

• The RL problem boils down to finding the policy that maximizes
the values of all states

– i.e., the optimal policy

• The Bellman optimality equations provide a convenient
property that the optimal policy must satisfy

• We will first prove the optimality equations

• We will also derive a tool for finding the optimal policy

– The Policy Improvement Theorem

3

Optimal Policy

• A policy 𝜋 is better than another policy 𝜋′ if

𝑣𝜋
𝑡 𝑠 ≥ 𝑣𝜋′

𝑡 𝑠 , ∀𝑠 ∈ 𝑆, ∀𝑡 ∈ 1, 𝑇

• A policy 𝜋∗ is optimal if there exists no better policy than 𝜋∗

• The state-value function corresponding to 𝜋∗ is denoted by 𝑣∗:
𝑣∗(𝑠) = max

𝜋
𝑣𝜋(𝑠)

– Similarly for 𝑞∗

• For (finite) MDPs, 𝑣∗ has a unique solution

• Similarly, in the infinite-horizon case, a policy 𝜋 is better than
policy 𝜋′ if

𝑣𝜋 𝑠 ≥ 𝑣𝜋′ 𝑠 , ∀𝑠 ∈ 𝑆

4

Policy Evaluation

• In order to find the optimal policy, we first need a way to
evaluate policies

– i.e., compute the state-value function 𝑣𝜋(𝑠) for each state 𝑠

–Also compute the action-value function 𝑞𝜋(𝑠, 𝑎)

• Every time we change the policy, we need to evaluate it (in
order to check if we improved it)

• So far, we’ve seen one way to compute state values

–How?

– For a given policy 𝜋, compute the matrix form of the value
function vector

5

Policy Evaluation: the infinite-horizon case

• In the infinite-horizon case, we can use the Bellman equation:

𝑣𝜋(𝑠) = 𝑅𝜋 𝑠 + 𝛾 ෍

𝑎,𝑠′

𝑃 𝑠, 𝑎, 𝑠′ 𝜋 𝑎 𝑠 𝑣𝜋 𝑠′

–which can be rewritten in matrix form:
𝑣𝜋 𝒔 = 𝑅𝜋 𝒔 + 𝛾𝑷𝜋𝑣𝜋(𝒔)

• Thus, the state value vector is:
𝑣𝜋 𝒔 = 𝑰 − 𝛾𝑷𝜋

−1𝑅𝜋(𝒔)

6

Workday example, MDP -> MRP

7

Policy

MDP

MRP

Gridworld example, MDP -> MRP

8

Policy

MDP

MRP

0

1

5
𝑅𝑖𝑔ℎ𝑡

𝐷𝑜𝑤𝑛

1

1

𝑅 = 0

𝑅 = 0

…

0

1

5
1

𝑅 = 0

…

9

6

1

1

𝑅 = 0 𝑅 = 0
𝑅 = 10

𝑅 = 0

0.5

0.5

Iterative Policy Evaluation

• Inverting 𝑰 − 𝛾𝑷 may be expensive if number of states is large

• Another approach is to use linear systems theory!

• Start from a random initialization for 𝑣 𝒔 = 𝑣0(𝒔)

• Look at linear system
𝑣𝑘 𝒔 = 𝑅 𝒔 + 𝛾𝑷𝑣𝑘−1 𝒔

• System is stable. Why?

–All entries (and eigenvalues) of 𝛾𝑷 are < 1 (for 𝛾 < 1)

• System converges to unique solution 𝑰 − 𝛾𝑷 −1𝑅(𝒔)

–Why?

– If 𝑣𝑘+1(𝒔) = 𝑣𝑘(𝒔) = 𝒗, then 𝒗 = 𝑅 𝒔 + 𝛾𝑷𝒗, i.e.,
𝒗 = 𝑰 − 𝛾𝑷 −1𝑅(𝒔)

• Keep in mind 𝑰 − 𝛾𝑷 is not invertible when 𝛾 = 1 9

Workday example, Iterative Value evolution

• Recall state values are (for 𝛾 = 0.9)
𝑰 − 𝛾𝑷 −1𝑅 𝒔 = 5.54 1 1 −0.69 4.49 𝑇

• Using iterative evaluation

– Starting with 𝒗0 = 0 0 0 0 0 𝑇

𝒗10 = 4.59 0.65 0.65 −1.58 3.64 𝑇

𝒗30 = 5.43 0.96 0.96 0 − 0.80 4.38 𝑇

𝒗50 = 5.53 0.99 0.99 0 − 0.70 4.47 𝑇

• After 50 iterations, converged within 0.01 if the true values

10

• Recall state values are

• Using iterative evaluation

– Starting from 𝒗0 = 𝟎 ∈ ℝ25

• 𝑣10 is

• 𝑣50 is

• After 50 iterations, converge within 0.15 of true values

• In general, can stop iterating when 𝑣𝑘+1 − 𝑣𝑘 ≤ 𝜖

–Where 𝜖 is a hyperparameter

Gridworld Example, iterative value evolution

11

21.86 24.29 21.86 19.29 17.36

19.68 21.86 19.68 17.71 15.94

17.71 19.68 17.71 15.94 14.29

15.94 17.71 15.94 14.29 12.86

14.29 15.94 14.29 12.86 11.58

14.31 15.90 14.31 10.90 9.81

12.88 14.31 12.88 11.59 10.44

11.59 12.88 11.59 10.44 5.90

10.44 11.59 10.44 5.90 5.31

5.90 10.44 5.90 5.31 4.78

What about the finite-horizon case?

• Evaluate a policy recursively, starting from the last step 𝑇

–Use the Bellman equation

𝑣𝜋
𝑡 𝑠 = 𝔼𝜋 𝑅𝑡+1 + 𝛾𝑣𝜋

𝑡+1 𝑆𝑡+1 𝑆𝑡 = 𝑠

• Remember, the policy and the value function may be time-
dependent in the finite-horizon case!

• Will discuss this in more detail when we talk about Dynamic
Programming

12

Bellman Optimality Equation

• A policy 𝜋 is better than another policy 𝜋′ if
𝑣𝜋 𝑠 ≥ 𝑣𝜋′ 𝑠 , ∀𝑠 ∈ 𝑆

• A policy 𝜋∗ is optimal if there exists no better policy than 𝜋∗

• Turns out the optimal policy also has a nice recursive property
𝜋∗ 𝑠 = 𝑎𝑟𝑔 max

𝑎
𝑞𝜋∗(𝑠, 𝑎)

– This is the Bellman Optimality Equation

– Pick the action with the highest value

–Obvious in a sense
• But any policy that satisfies the Bellman optimality equation is

optimal

13

Bellman Optimality Equation, proof

• Bellman optimality equation:
𝜋∗ 𝑠 = 𝑎𝑟𝑔 max

𝑎
𝑞𝜋∗

(𝑠, 𝑎)

 = 𝑎𝑟𝑔 max
𝑎

𝔼𝜋∗
[𝑅𝑡+1 + 𝛾𝑣𝜋∗

(𝑆𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

• Proof by induction backward in time (for finite horizon 𝑇):

– Base case (𝑡 = 𝑇 − 1):
• Only one step to make

• For any state 𝑠, the optimal action is
𝑎𝑟𝑔 max

𝑎
𝔼𝜋∗

[𝑅𝑇|𝑆𝑇−1 = 𝑠, 𝐴𝑇−1 = 𝑎] =

 = 𝑎𝑟𝑔 max
𝑎

𝑞𝜋∗
(𝑠, 𝑎)

• So 𝜋∗ is optimal by construction

14

Bellman Optimality Equation, proof

• Proof by induction backward in time (for finite horizon 𝑇):

– Inductive case:

–Assume 𝜋∗ is optimal at time 𝑡 + 1

• i.e., 𝑣𝜋∗
𝑡+1 𝑠 ≥ 𝑣𝜋′

𝑡+1 𝑠 , ∀𝑠, 𝜋′

–What do we need to show?

𝑣𝜋∗
𝑡 𝑠 ≥ 𝑣𝜋′

𝑡 𝑠 , ∀𝑠, 𝜋′

–Using the Bellman equation for 𝜋∗:
𝑣𝜋∗

𝑡 𝑠 = 𝑞𝜋∗
𝑡 𝑠, 𝜋∗ 𝑠

= max
𝑎

𝑞𝜋∗
𝑡 𝑠, 𝑎

 = max
𝑎

𝔼𝜋∗
𝑅𝑡+1 + 𝛾𝑣𝜋∗

𝑡+1 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

15

Bellman Optimality Equation, proof

• Proof by induction backward in time (for finite horizon 𝑇):

–Assume 𝜋∗ is optimal at time 𝑡 + 1

• i.e., 𝑣𝜋∗
𝑡+1 𝑠 ≥ 𝑣𝜋′

𝑡+1 𝑠 , ∀𝑠, 𝜋′

– Consider any other policy 𝜋′

𝑣𝜋∗
𝑡 𝑠 = max

𝑎
𝔼𝜋∗

𝑅𝑡+1 + 𝛾𝑣𝜋∗
𝑡+1 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

 = max
𝑎

𝑅𝑒 𝑠, 𝑎 + ෍

𝑠′

𝛾𝑣𝜋∗
𝑡+1 𝑠′ 𝑃 𝑠, 𝑎, 𝑠′

 ≥ max
𝑎

𝑅𝑒 𝑠, 𝑎 + ෍

𝑠′

𝛾𝑣𝜋′
𝑡+1 𝑠′ 𝑃 𝑠, 𝑎, 𝑠′

– Inequality true for any 𝑎, so true for max also

16

Bellman Optimality Equations, proof

• Proof by induction backward in time(for finite horizon 𝑇):
 𝑣𝜋∗

𝑡 𝑠 = max
𝑎

𝔼𝜋∗
𝑅𝑡+1 + 𝛾𝑣𝜋∗

𝑡+1 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

 = max
𝑎

𝑅 𝑠, 𝑎 + ෍

𝑠′

𝛾𝑣𝜋∗
𝑡+1 𝑠′ 𝑃 𝑠, 𝑎, 𝑠′

 ≥ max
𝑎

𝑅 𝑠, 𝑎 + ෍

𝑠′

𝛾𝑣𝜋′
𝑡+1 𝑠′ 𝑃 𝑠, 𝑎, 𝑠′

 ≥ 𝑅 𝑠, 𝜋′ 𝑠 + ෍

𝑠′

𝛾𝑣𝜋′
𝑡+1 𝑠′ 𝑃 𝑠, 𝜋′ 𝑠 , 𝑠′

 = 𝔼𝜋′ 𝑅𝑡+1 + 𝛾𝑣𝜋′
𝑡+1 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝜋′ 𝑠

= 𝔼𝜋′ 𝑅𝑡+1 + 𝛾𝑣𝜋′
𝑡+1 𝑆𝑡+1 𝑆𝑡 = 𝑠

= 𝑣𝜋′
𝑡 𝑠

17

Deterministic
policy version

Bellman Optimality Equations, proof

• Proof by induction backward in time(for finite horizon 𝑇):
 𝑣𝜋∗

𝑡 𝑠 = max
𝑎

𝔼𝜋∗
𝑅𝑡+1 + 𝛾𝑣𝜋∗

𝑡+1 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

 = max
𝑎

𝑅 𝑠, 𝑎 + ෍

𝑠′

𝛾𝑣𝜋∗
𝑡+1 𝑠′ 𝑃 𝑠, 𝑎, 𝑠′

 ≥ max
𝑎

𝑅 𝑠, 𝑎 + ෍

𝑠′

𝛾𝑣𝜋′
𝑡+1 𝑠′ 𝑃 𝑠, 𝑎, 𝑠′

 = ෍

𝑎′

𝜋′ 𝑎′ 𝑠 𝑅 𝑠, 𝑎∗ + ෍

𝑠′

𝛾𝑣𝜋′
𝑡+1 𝑠′ 𝑃 𝑠, 𝑎∗, 𝑠′

 ≥ ෍

𝑎′

𝜋′ 𝑎′ 𝑠 𝑅 𝑠, 𝑎′ + ෍

𝑠′

𝛾𝑣𝜋′
𝑡+1 𝑠′ 𝑃 𝑠, 𝑎′, 𝑠′

= 𝑣𝜋′
𝑡 𝑠

18

Stochastic
policy
version

where 𝑎∗ = argmax
𝑎

𝑅 𝑠, 𝑎 + σ𝑠′ 𝛾𝑣𝜋′
𝑡+1 𝑠′ 𝑃 𝑠, 𝑎, 𝑠′

1

Policy Improvement Theorem

• The Bellman optimality equation tells us what properties the
optimal policy must satisfy

– But it doesn’t tell us how to find that policy

• Suppose we have a current policy 𝜋, potentially not optimal

– Suppose we know 𝑣𝜋 𝑠 , 𝑞𝜋 𝑠, 𝑎 , ∀𝑠, 𝑎

–How can we improve the policy for a given 𝑠?

– Pick an action that has a higher 𝑞 value

• We know 𝑣𝜋 𝑠 = 𝑞𝜋(𝑠, 𝜋(𝑠))

–What if there existed an action 𝑎′ s.t.
𝑞𝜋 𝑠, 𝑎′ ≥ 𝑞𝜋(𝑠, 𝜋(𝑠))

– Turns out the policy that selects 𝑎′ is better

19

Policy Improvement Theorem, cont’d

• Policy Improvement Theorem:

–A policy 𝜋′ is as good as, or better than, another policy 𝜋 if
for all 𝑠 ∈ 𝑆

𝑞𝜋 𝑠, 𝜋′ 𝑠 ≥ 𝑣𝜋(𝑠)

20

Policy Improvement Theorem Proof

• First recall that for a specific action 𝑎, the 𝑞 value is:

𝑞𝜋 𝑠, 𝑎 = 𝑅𝑒 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑃 𝑠, 𝑎, 𝑠′ 𝑣 𝑠′

 = 𝑅𝑒 𝑠, 𝑎 + 𝛾𝒑 𝑠, 𝑎 𝑇𝑣 𝒔

–where 𝒑 𝑠, 𝑎 𝑇 = 𝑃 𝑠, 𝑎, 𝑠1 , … , 𝑃 𝑠, 𝑎, 𝑠𝑁

• Wlog, suppose 𝜋′ is different from 𝜋 only at 𝑠1, i.e.,
𝑞𝜋 𝑠1, 𝜋′ 𝑠1 ≥ 𝑣𝜋(𝑠1)

• Using the Bellman equation:

𝑞𝜋 𝑠1, 𝜋′ 𝑠1 = 𝑅𝑒 𝑠1, 𝜋′ 𝑠1 + 𝛾𝒑 𝑠1, 𝜋′ 𝑠1
𝑇

𝑣𝜋 𝒔

 𝑣𝜋 𝑠1 = 𝑞𝜋 𝑠1, 𝜋 𝑠1 = 𝑅𝑒 𝑠1, 𝜋 𝑠1 + 𝛾𝒑 𝑠1, 𝜋 𝑠1
𝑇

𝑣𝜋 𝒔

• Then
𝑅𝑒 𝑠1, 𝜋′ 𝑠1 + 𝛾𝒑 𝑠1 , 𝜋′ 𝑠1

𝑇
𝑣𝜋 𝒔 ≥ 𝑅𝑒 𝑠1, 𝜋 𝑠1 + 𝛾𝒑 𝑠1, 𝜋 𝑠1

𝑇
𝑣𝜋 𝒔

21

Policy Improvement Theorem Proof, cont’d

• Wlog, suppose 𝜋′ is different from 𝜋 only at 𝑠1, i.e.,
𝑞𝜋 𝑠1, 𝜋′ 𝑠1 ≥ 𝑣𝜋(𝑠1)

• Using the Bellman equation:

𝑞𝜋 𝑠1, 𝜋′ 𝑠1 = 𝑅𝑒 𝑠1, 𝜋′ 𝑠1 + 𝛾𝒑 𝑠1, 𝜋′ 𝑠1
𝑇

𝑣𝜋 𝒔

 𝑣𝜋 𝑠1 = 𝑞𝜋 𝑠1, 𝜋 𝑠1 = 𝑅𝑒 𝑠1, 𝜋 𝑠1 + 𝛾𝒑 𝑠1, 𝜋 𝑠1
𝑇

𝑣𝜋 𝒔

• Then
𝑅𝑒 𝑠1, 𝜋′ 𝑠1 + 𝛾𝒑 𝑠1 , 𝜋′ 𝑠1

𝑇
𝑣𝜋 𝒔 ≥ 𝑅𝑒 𝑠1, 𝜋 𝑠1 + 𝛾𝒑 𝑠1, 𝜋 𝑠1

𝑇
𝑣𝜋 𝒔

• Stack remaining values for 𝜋 in a vector as follows:
𝑅𝑒 𝑠1, 𝜋′ 𝑠1 + 𝛾𝒑 𝑠1, 𝜋′ 𝑠1

𝑇
𝑣𝜋 𝒔

𝑅𝑒 𝑠2, 𝜋 𝑠2 + 𝛾𝒑 𝑠2, 𝜋 𝑠2
𝑇

𝑣𝜋 𝒔
…

𝑅𝑒 𝑠𝑁, 𝜋 𝑠𝑁 + 𝛾𝒑 𝑠𝑁, 𝜋 𝑠𝑁
𝑇

𝑣𝜋 𝒔

≥

𝑅𝑒 𝑠1, 𝜋 𝑠1 + 𝛾𝒑 𝑠1, 𝜋 𝑠1
𝑇

𝑣𝜋 𝒔

𝑅𝑒 𝑠2, 𝜋 𝑠2 + 𝛾𝒑 𝑠2, 𝜋 𝑠2
𝑇

𝑣𝜋 𝒔
…

𝑅𝑒 𝑠𝑁, 𝜋 𝑠𝑁 + 𝛾𝒑 𝑠𝑁, 𝜋 𝑠𝑁
𝑇

𝑣𝜋 𝒔

–where the inequality is interpreted element-wise

22

Policy Improvement Theorem Proof, cont’d

• Stack remaining values for 𝜋 in a vector as follows:
𝑅𝑒 𝑠1, 𝜋′ 𝑠1 + 𝛾𝒑 𝑠1, 𝜋′ 𝑠1

𝑇
𝑣𝜋 𝒔

𝑅𝑒 𝑠2, 𝜋 𝑠2 + 𝛾𝒑 𝑠2, 𝜋 𝑠2
𝑇

𝑣𝜋 𝒔
…

𝑅𝑒 𝑠𝑁, 𝜋 𝑠𝑁 + 𝛾𝒑 𝑠𝑁, 𝜋 𝑠𝑁
𝑇

𝑣𝜋 𝒔

≥

𝑅𝑒 𝑠1, 𝜋 𝑠1 + 𝛾𝒑 𝑠1, 𝜋 𝑠1
𝑇

𝑣𝜋 𝒔

𝑅𝑒 𝑠2, 𝜋 𝑠2 + 𝛾𝒑 𝑠2, 𝜋 𝑠2
𝑇

𝑣𝜋 𝒔
…

𝑅𝑒 𝑠𝑁, 𝜋 𝑠𝑁 + 𝛾𝒑 𝑠𝑁, 𝜋 𝑠𝑁
𝑇

𝑣𝜋 𝒔

• In matrix form:
𝑅𝜋′ 𝒔 + 𝛾𝑷𝜋′𝑣𝜋 𝒔 ≥ 𝑅𝜋 𝒔 + 𝛾𝑷𝜋𝑣𝜋 𝒔
𝑅𝜋′ 𝒔 + 𝛾𝑷𝜋′𝑣𝜋 𝒔 ≥ 𝑣𝜋 𝒔

 𝑅𝜋′ 𝒔 ≥ 𝑣𝜋 𝒔 − 𝛾𝑷𝜋′𝑣𝜋 𝒔

 𝑅𝜋′ 𝒔 ≥ 𝑰 − 𝛾𝑷𝜋′ 𝑣𝜋 𝒔

• Pre-multiply both sides by 𝑰 − 𝛾𝑷𝜋′
−1

• Inequalities don’t switch sides (don’t have time to prove)

𝑰 − 𝛾𝑷𝜋′
−1

𝑅𝜋′ 𝒔 ≥ 𝑣𝜋(𝒔)

 𝑣𝜋′ 𝐬 ≥ 𝑣𝜋(𝒔)

–QED 25

Deterministic Policies: Greedy Policy

Improvement

• Suppose we are given a deterministic policy 𝜋

• We can greedily improve 𝜋 for each state
𝜋′ 𝑠 = 𝑎𝑟𝑔 max

𝑎
𝑞𝜋(𝑠, 𝑎)

 = 𝑎𝑟𝑔 max
𝑎

𝔼𝜋[𝑅𝑡+1 + 𝛾𝑣𝜋(𝑆𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

• By the policy improvement theorem, 𝜋′ is better than or equal
to 𝜋

• If 𝜋′ = 𝜋, then 𝜋′ = 𝜋∗:

𝑣𝜋′ 𝑠 = max
𝑎

𝔼𝜋 𝑅𝑡+1 + 𝛾𝑣𝜋′ 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= max
𝑎

𝑞𝜋′(𝑠, 𝑎)

– Bellman optimality equation!

26

Summary

• The Bellman optimality equations provide a property that any
optimal policy must satisfy

– But don’t tell us how to find that policy

• The Policy Improvement Theorem provides a tool for greedy
policy search

– Improve the policy iteratively and re-evaluate

• It also provides the foundation for a class of algorithms based
on dynamic programming

–Next lecture

27

	Slide 1: Bellman Optimality Equations
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: Optimal Policy
	Slide 5: Policy Evaluation
	Slide 6: Policy Evaluation: the infinite-horizon case
	Slide 7: Workday example, MDP -> MRP
	Slide 8: Gridworld example, MDP -> MRP
	Slide 9: Iterative Policy Evaluation
	Slide 10: Workday example, Iterative Value evolution
	Slide 11: Gridworld Example, iterative value evolution
	Slide 12: What about the finite-horizon case?
	Slide 13: Bellman Optimality Equation
	Slide 14: Bellman Optimality Equation, proof
	Slide 15: Bellman Optimality Equation, proof
	Slide 16: Bellman Optimality Equation, proof
	Slide 17: Bellman Optimality Equations, proof
	Slide 18: Bellman Optimality Equations, proof
	Slide 19: Policy Improvement Theorem
	Slide 20: Policy Improvement Theorem, cont’d
	Slide 21: Policy Improvement Theorem Proof
	Slide 22: Policy Improvement Theorem Proof, cont’d
	Slide 25: Policy Improvement Theorem Proof, cont’d
	Slide 26: Deterministic Policies: Greedy Policy Improvement
	Slide 27: Summary

