Bellman Optimality Equations

Reading

e Sutton, Richard S., and Barto, Andrew G. Reinforcement
learning: An introduction. MIT press, 2018.

— http://www.incompleteideas.net/book/the-book-2nd.html
— Chapter 4

* Puterman, Martin L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons, 2014.

— Chapter 4

e David Silver lecture on Dynamic Programming
— https://www.youtube.com/watch?v=Nd1-UUMVfz4

http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html

Overview

* The RL problem boils down to finding the policy that maximizes
the values of all states

—i.e., the optimal policy

* The Bellman optimality equations provide a convenient
property that the optimal policy must satisfy

* We will first prove the optimality equations

* We will also derive a tool for finding the optimal policy
—The Policy Improvement Theorem

Optimal Policy

* A policy i is better than another policy 7’ if
vi(s) = vf;, (s),Vs € S,vt € [1,T]

* A policy ™ is optimal if there exists no better policy than t*

* The state-value function corresponding to ™ is denoted by v, :
v,(s) = max v, (s)
VA

—Similarly for g,
* For (finite) MDPs, v, has a unique solution

* Similarly, in the infinite-horizon case, a policy m is better than
policy 7' if
Ve(s) = v (s),VsES

Policy Evaluation

* |n order to find the optimal policy, we first need a way to
evaluate policies

—i.e., compute the state-value function v, (s) for each state s
— Also compute the action-value function g, (s, a)
* Every time we change the policy, we need to evaluate it (in
order to check if we improved it)
* So far, we’ve seen one way to compute state values
—How?

— For a given policy , compute the matrix form of the value
function vector

Policy Evaluation: the infinite-horizon case

* In the infinite-horizon case, we can use the Bellman equation:

va(s) = Ru(5) +¥) P(s,a,5")m(als)va(s")
a,s’
—which can be rewritten in matrix form:
Un(S) = Rn(s) + Vann(S)
* Thus, the state value vector is:
Ur(8) = (I —yPr) 'Ry (s)

Workday example, MDP -> MRP

MDP

* Let’s define m as follows:
 nw(Teach) = Relax
* m(OH) = Work
» n(MLS) = Work
» n(FLE) = Relax
* w(Pub) = Work

Gridworld example, MDP -> MRP

MDP

Right 1
Al |B\ ?—0—‘
\ + Down k=0
+1D] B' 1 R=0
/
Aul(

Policy

LD T
RERREE

I E

LLLLt

MRP

Iterative Policy Evaluation

* Inverting I — yP may be expensive if number of states is large
 Another approach is to use linear systems theory!
e Start from a random initialization for v(s) = vy(s)

* Look at linear system
vk (s) = R(s) + yPvy_41(s)
* System is stable. Why?
— All entries (and eigenvalues) of yP are < 1 (fory < 1)
* System converges to unique solution (I — yP)"1R(s)
—Why?

—If v, 11(8) = v (s) = v,thenv = R(s) + yPv, i.e,,
v=_—-yP) 1R(s)

* Keepin mind I — yP is not invertible wheny =1

Workday example, Iterative Value evolution

* Recall state values are (for y = 0.9)
(I—yP)"'R(s)=[554 1 1 —-0.69 4.49]"

* Using iterative evaluation

—Startingwithvy, =[0 0 0 0 0]F
V10 = [4.59 0.65 0.65 —1.58 3.64]"
V3o = [543 096 096 0—0.80 4.38]7
vso = [5.53 099 0.99 0-0.70 4.47]"

e After 50 iterations, converged within 0.01 if the true values

Gridworld Example, iterative value evolution

 Recall state values are

e Using iterative evaluation
—Starting from v, = 0 € R?®

. 1431 1590 1431
* V1o IS 12.88 1431 12.88
1159 12.88 1159

1044 1159 10.44

590 10.44 5.90

21.86 2429 21.86
. 1968 21.86 19.68

[]
vSO IS 17.71 19.68 17.71
1594 1771 1594
1429 1594 14.29

10.90
11.59
10.44
5.90
5.31

19.29
17.71
15.94
14.29
12.86

9.81
10.44
5.90
5.31
4.78

17.36
15.94
14.29
12.86
11.58

22.0

24.4

22.0

19.417.5

19.8/22.019.8

17.8/16.0

17.8

19.8

17.8

16.0

14.4

16.0

17.8

16.0

14.4

13.0

14.4

16.0

14.4

13.0

11.7

» After 50 iterations, converge within 0.15 of true values

* In general, can stop iterating when ||vk+1 — vk|| <€

—Where € is a hyperparameter

What about the finite-horizon case?

* Evaluate a policy recursively, starting from the last step T
— Use the Bellman equation
ve(s) = IEn[Rt+1 + VV71%_+1(St+1)|St = S]

* Remember, the policy and the value function may be time-
dependent in the finite-horizon case!

* Will discuss this in more detail when we talk about Dynamic
Programming

Bellman Optimality Equation

* A policy 7 is better than another policy 7’ if
V() = v (s),VsES

* A policy ™" is optimal if there exists no better policy than "

* Turns out the optimal policy also has a nice recursive property
m.(s) = argmaxq, (s, a)
a
—This is the Bellman Optimality Equation
— Pick the action with the highest value

— Obvious in a sense

* But any policy that satisfies the Bellman optimality equation is
optimal

Bellman Optimality Equation, proof

* Bellman optimality equation:
m.(s) = argmaxq, (s, a)
a

= arg max By, [Resy + ¥r, (Ses1)ISe = 5,4¢ = a

* Proof by induction backward in time (for finite horizon T'):
—Basecase(t =T — 1):
* Only one step to make

* For any state s, the optimal action is
arg maxE; [R7|Sr—1 =S, Ar_1 = a] =
a

= arg max (. (s, a)
a

e So m, is optimal by construction

Bellman Optimality Equation, proof

* Proof by induction backward in time (for finite horizon T'):
—Inductive case:
— Assume T, is optimal attime t + 1
e e, vit(s) = v (s), Vs, 7'
—What do we need to show?
vg (s) = v;, (s),Vs, '

— Using the Bellman equation for m,:
vg () = qr,(s,1.(s))
= max|qr, (s, a)]

= max | By, [Re + Y (Se)|Se = 5,4¢ = a

Bellman Optimality Equation, proof

* Proof by induction backward in time (for finite horizon T'):

— Assume T, is optimal attime t + 1
e e, vit(s) = vT(s), Vs, 7'

— Consider any other policy 7’
Vg, (s) = max _[En* [Rt+1 + Vvﬁj1(5t+1)|5t = 5,4 = a]]

a

= max |R,(s,a) + z yviti(s")P(s,a,s")
S’

a

> max |R,(s,a) + Z yvitt(s"P(s,a,s’)
S,

—Inequality true for any a, so true for max also

Bellman Optimality Equations, proof

* Proof by induction backward in time(for finite horizon T)):
Vs, (s) = max Er, [Rt+1 + Vvﬁj1(5t+1)|5t =5,4; = a”

a

= max |R(s,a) + Z yvitt(s")P(s,a,s’)
Sl

> max |R(s,a) + Z yvf;fl(s’)P(s, a,s'’)
SI

a

Deterministic) , 1 , "
policy version = R(S'” (5)) + z yv.i (sDP(s,m'(s),s")
S,
= IE7rr[Rt+1 + yv;;’l-l(st+1)|st =5,A; = ”’(S)]

= Ex/[Res1 + vV H(Se41)|Se = 5]

= v;, (s)

17

Bellman Optimality Equations, proof

* Proof by induction backward in time(for finite horizon T):
vr, (s) = mU?X | L, [Rt+1 + VVr +1(St+1)|5t =S, At = a”

= max |R(s,a) + Z yvitt(s")P(s,a,s’)

> max |R(s,a) + Z yv”l(s’)P(s, a,s')

Stochastic — an(aqs) R(s,a*) + Zyvt'l'l(s’)P(s a*,s")
policy @ ,
version !
> z m'(a'ls)|R(s,a’") + Z }/le(S')P(S, a, S')]
= v;;, (s) _

where a* = argmax[R(S a)+ Y yvt+1(s')P(5, a,s’)]
a

18

Policy Improvement Theorem

* The Bellman optimality equation tells us what properties the
optimal policy must satisfy

— But it doesn’t tell us how to find that policy

* Suppose we have a current policy i, potentially not optimal
—Suppose we know v(s), q.(s,a),Vs,a
—How can we improve the policy for a given s?
— Pick an action that has a higher g value

* We know v.(s) = q(s,m(s))
— What if there existed an action a’ s.t.
4rn(s,a’) = qz(s,m(s))
—Turns out the policy that selects a’ is better

Policy Improvement Theorem, cont’d

* Policy Improvement Theorem:

— A policy ' is as good as, or better than, another policy 7 if
foralls € §

QR(S' T[’(S)) = Vr(S)

20

Policy Improvement Theorem Proof

First recall that for a specific action a, the g value is:
q-(s,a) = R,(s,a) + yZP(s a, s)v(s")
= R,(s,a) + yp(s a)Tv(s)
—where p(s,a)’ =[P(s,a,s,), ..., P(s,a,sy)]
* Wlog, suppose 7' is different from m only at s4, i.e.,
Qn(slin,(sl)) = v (S1)
* Using the Bellman equation:
!/ / !/ T
qTL’(Ser[(Sl)) — Re(Sl,T[(Sl)) + yp(Ser[(Sl)) Un(S)
T
vr(sy) = Qn(51rﬂ(51)) = Re(51»7T(S1)) + Vp(51;7T(51)) v (S)
Then
Re(s1,7'(50)) +¥P(51,7'(51)) ¥(8) 2 Re(s1,7(51)) +¥p(51,7(51)) v (S)

Policy Improvement Theorem Proof, cont’d

* Wlog, suppose 7' is different from 7 only at s, i.e.,
Qn(sl:ﬂ,(sl)) = Un(sl)
* Using the Bellman equation:
!/ !/ !/ T
qTC(Ser[(Sl)) — Re(Sl,T[(Sl)) +)/p(Sl,ﬂ (51)) UTL'(S)
T
U (51) = CIn(S1;7T(S1)) = Re(51»ﬂ(51)) + VP(S1»7T(S1)) U (S)
* Then
Re(s1, (1)) + ¥p (51,7 (51) vr(8) = Re(51,7(51)) + vp(51,7(51)) v (s)

» Stack remaining values for in a vector as follows:
Re(slrﬂ’(sl)) + VP(Sl;”’(Sﬂ)TUn(S) _ Re(51;7T(51)) + VP(51»7T(S1))TV1T(S) _
Re(sz»ﬂ(sz)) + VP(SZ» ”(52))T17n($) > | Re (52»”(52)) + VP(SZ;”(SZ))T%(S)

R (SN» T[(SN)) + VP(SN»ﬂ(SN))TUn(S)_ _Re(SN» 7T(51v)) + VP(SN»”(SN))TVn(S)_

—where the inequality is interpreted element-wise

Policy Improvement Theorem Proof, cont’d

e Stack remaining values for in a vector as follows:
Re (51,7 (51)) + ¥p(50,7'(51)) vr(8)| [Re(s1,7(50)) +¥p(s51,7(51)) vre(S) |
Re(sz;”(sz)) + Vp(Sz;Tf(Sz))TVn(S) > Re(sz'”(sz)) + yp(sz,n(sz))Tvn(s)

Re(sn, (sw)) + ¥P(swm(sy)) 12 ()] [Re(snm(sn)) + v0(sn m(sn)) ve(s)|

* In matrix form:
Rn’(s) + yPnrvn(s) = Rn(s) +)/ann(S)
Rn’(s) + yPn’vn(S) = Un(S)
Rn’(s) = Un(s) - VPn’vn(S)
R, (s) = (I — yPnr)vn(s)

* Pre-multiply both sides by (I —)/P,Tr)_1
* Inequalities don’t switch sides (don’t have time to prove)
(I=yP) "Ry(s) = vy(s)
Unr(S) > v.(S)
—QED

Deterministic Policies: Greedy Policy
Improvement

* Suppose we are given a deterministic policy

* We can greedily improve m for each state
n'(s) = argmax q,(s,a)
a

= arg max Er[Rey1 + VU (St41)IS: = 5,4 = aj
* By the policy improvement theorem, ' is better than or equal

tom
e Ift’ =m, thent' = 1*;
U (S) = mC?X[IEn[Rt+1 + YU (Se4+1)S: = 5, A = a]]
= max g, (s,a)

— Bellman optimality equation!

Summary

* The Bellman optimality equations provide a property that any
optimal policy must satisfy

— But don’t tell us how to find that policy
* The Policy Improvement Theorem provides a tool for greedy
policy search
—Improve the policy iteratively and re-evaluate

* It also provides the foundation for a class of algorithms based
on dynamic programming

— Next lecture

	Slide 1: Bellman Optimality Equations
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: Optimal Policy
	Slide 5: Policy Evaluation
	Slide 6: Policy Evaluation: the infinite-horizon case
	Slide 7: Workday example, MDP -> MRP
	Slide 8: Gridworld example, MDP -> MRP
	Slide 9: Iterative Policy Evaluation
	Slide 10: Workday example, Iterative Value evolution
	Slide 11: Gridworld Example, iterative value evolution
	Slide 12: What about the finite-horizon case?
	Slide 13: Bellman Optimality Equation
	Slide 14: Bellman Optimality Equation, proof
	Slide 15: Bellman Optimality Equation, proof
	Slide 16: Bellman Optimality Equation, proof
	Slide 17: Bellman Optimality Equations, proof
	Slide 18: Bellman Optimality Equations, proof
	Slide 19: Policy Improvement Theorem
	Slide 20: Policy Improvement Theorem, cont’d
	Slide 21: Policy Improvement Theorem Proof
	Slide 22: Policy Improvement Theorem Proof, cont’d
	Slide 25: Policy Improvement Theorem Proof, cont’d
	Slide 26: Deterministic Policies: Greedy Policy Improvement
	Slide 27: Summary

