# **Bellman Optimality Equations**

# Reading

- Sutton, Richard S., and Barto, Andrew G. Reinforcement learning: An introduction. MIT press, 2018.
  - <a href="http://www.incompleteideas.net/book/the-book-2nd.html">http://www.incompleteideas.net/book/the-book-2nd.html</a>
  - Chapter 4
- Puterman, Martin L. *Markov decision processes: discrete stochastic dynamic programming*. John Wiley & Sons, 2014.
  - Chapter 4
- David Silver lecture on Dynamic Programming
  - https://www.youtube.com/watch?v=Nd1-UUMVfz4

#### **Overview**

- The RL problem boils down to finding the policy that maximizes the values of all states
  - -i.e., the optimal policy
- The Bellman optimality equations provide a convenient property that the optimal policy must satisfy
- We will first prove the optimality equations
- We will also derive a tool for finding the optimal policy
  - The Policy Improvement Theorem

# **Optimal Policy**

- A policy  $\pi$  is better than another policy  $\pi'$  if  $v_{\pi}^{t}(s) \geq v_{\pi'}^{t}(s), \forall s \in S, \forall t \in [1, T]$
- A policy  $\pi^*$  is optimal if there exists no better policy than  $\pi^*$
- The state-value function corresponding to  $\pi^*$  is denoted by  $v_*$ :

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

- Similarly for  $q_*$
- For (finite) MDPs,  $v_*$  has a unique solution
- Similarly, in the infinite-horizon case, a policy  $\pi$  is better than policy  $\pi'$  if

$$v_{\pi}(s) \geq v_{\pi'}(s), \forall s \in S$$

# **Policy Evaluation**

- In order to find the optimal policy, we first need a way to evaluate policies
  - –i.e., compute the state-value function  $v_{\pi}(s)$  for each state s
  - Also compute the action-value function  $q_{\pi}(s, a)$
- Every time we change the policy, we need to evaluate it (in order to check if we improved it)
- So far, we've seen one way to compute state values
  - -How?
  - For a given policy  $\pi$ , compute the matrix form of the value function vector

# Policy Evaluation: the infinite-horizon case

• In the infinite-horizon case, we can use the Bellman equation:

$$v_{\pi}(s) = R_{\pi}(s) + \gamma \sum_{a \le t} P(s, a, s') \pi(a|s) v_{\pi}(s')$$

– which can be rewritten in matrix form:

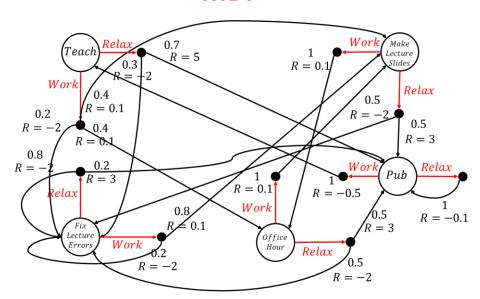
$$v_{\pi}(\mathbf{s}) = R_{\pi}(\mathbf{s}) + \gamma \mathbf{P}_{\pi} v_{\pi}(\mathbf{s})$$

Thus, the state value vector is:

$$v_{\pi}(\mathbf{s}) = (\mathbf{I} - \gamma \mathbf{P}_{\pi})^{-1} R_{\pi}(\mathbf{s})$$

# Workday example, MDP -> MRP

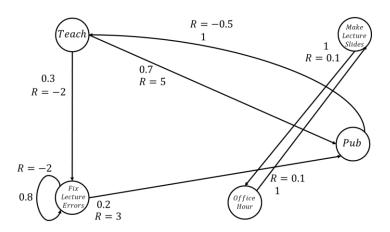
#### **MDP**



# **Policy**

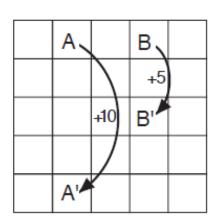
- Let's define  $\pi$  as follows:
  - $\pi(Teach) = Relax$
  - $\pi(OH) = Work$
  - $\pi(MLS) = Work$
  - $\pi(FLE) = Relax$
  - $\pi(Pub) = Work$

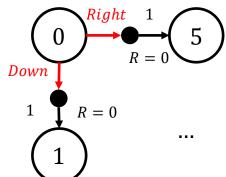
#### **MRP**



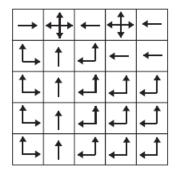
# **Gridworld example, MDP -> MRP**

#### **MDP**

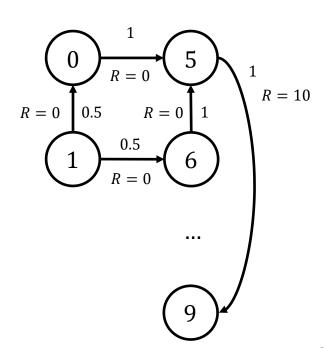




# **Policy**



#### **MRP**



# **Iterative Policy Evaluation**

- Inverting  $I \gamma P$  may be expensive if number of states is large
- Another approach is to use linear systems theory!
- Start from a random initialization for  $v(s) = v_0(s)$
- Look at linear system

$$v_k(s) = R(s) + \gamma P v_{k-1}(s)$$

- System is stable. Why?
  - -All entries (and eigenvalues) of  $\gamma P$  are < 1 (for  $\gamma$  < 1)
- System converges to unique solution  $(I \gamma P)^{-1}R(s)$ 
  - -Why?
  - -If  $v_{k+1}(s) = v_k(s) = v$ , then  $v = R(s) + \gamma P v$ , i.e.,  $v = (I \gamma P)^{-1} R(s)$ 
    - Keep in mind  $I \gamma P$  is not invertible when  $\gamma = 1$

# Workday example, Iterative Value evolution

• Recall state values are (for  $\gamma = 0.9$ )  $(I - \gamma P)^{-1}R(s) = [5.54 \ 1 \ 1 \ -0.69 \ 4.49]^T$ 

Using iterative evaluation

-Starting with 
$$\boldsymbol{v}_0 = [0 \quad 0 \quad 0 \quad 0]^T$$
 
$$\boldsymbol{v}_{10} = [4.59 \quad 0.65 \quad 0.65 \quad -1.58 \quad 3.64]^T$$
 
$$\boldsymbol{v}_{30} = [5.43 \quad 0.96 \quad 0.96 \quad 0 - 0.80 \quad 4.38]^T$$
 
$$\boldsymbol{v}_{50} = [5.53 \quad 0.99 \quad 0.99 \quad 0 - 0.70 \quad 4.47]^T$$

After 50 iterations, converged within 0.01 if the true values

# Gridworld Example, iterative value evolution

- Recall state values are
- Using iterative evaluation

– Starting from 
$$v_0 = \mathbf{0} \in \mathbb{R}^{25}$$

•  $v_{10}$  is

| 14.31 | 15.90 | 14.31 | 10.90 | 9.81  |
|-------|-------|-------|-------|-------|
| 12.88 | 14.31 | 12.88 | 11.59 | 10.44 |
| 11.59 | 12.88 | 11.59 | 10.44 | 5.90  |
| 10.44 | 11.59 | 10.44 | 5.90  | 5.31  |
| 5.90  | 10.44 | 5.90  | 5.31  | 4.78  |
|       |       |       |       |       |

•  $v_{50}$  is

| 21.86 | 24.29 | 21.86 | 19.29 | 17.36 |
|-------|-------|-------|-------|-------|
| 19.68 | 21.86 | 19.68 | 17.71 | 15.94 |
| 17.71 | 19.68 | 17.71 | 15.94 | 14.29 |
| 15.94 | 17.71 | 15.94 | 14.29 | 12.86 |
| 14.29 | 15.94 | 14.29 | 12.86 | 11.58 |
|       |       |       |       |       |

22.0 24.4 22.0 19.4 17.5 19.8 22.0 19.8 17.8 16.0 17.8 19.8 17.8 16.0 14.4 16.0 17.8 16.0 14.4 13.0 14.4 16.0 14.4 13.0 11.7

- After 50 iterations, converge within 0.15 of true values
- In general, can stop iterating when  $||v_{k+1} v_k|| \le \epsilon$ 
  - Where  $\epsilon$  is a hyperparameter

#### What about the finite-horizon case?

- Evaluate a policy recursively, starting from the last step T
  - Use the Bellman equation

$$v_{\pi}^{t}(s) = \mathbb{E}_{\pi} [R_{t+1} + \gamma v_{\pi}^{t+1}(S_{t+1}) | S_{t} = s]$$

- Remember, the policy and the value function may be timedependent in the finite-horizon case!
- Will discuss this in more detail when we talk about Dynamic Programming

# **Bellman Optimality Equation**

- A policy  $\pi$  is better than another policy  $\pi'$  if  $v_{\pi}(s) \geq v_{\pi'}(s), \forall s \in S$
- A policy  $\pi^*$  is optimal if there exists no better policy than  $\pi^*$
- Turns out the optimal policy also has a nice recursive property

$$\pi_*(s) = \arg\max_a q_{\pi_*}(s, a)$$

- This is the Bellman Optimality Equation
- Pick the action with the highest value
- Obvious in a sense
  - But any policy that satisfies the Bellman optimality equation is optimal

# **Bellman Optimality Equation, proof**

Bellman optimality equation:

$$\pi_*(s) = \arg \max_{a} q_{\pi_*}(s, a)$$
  
=  $\arg \max_{a} \mathbb{E}_{\pi_*}[R_{t+1} + \gamma v_{\pi_*}(S_{t+1}) | S_t = s, A_t = a]$ 

- Proof by induction backward in time (for finite horizon T):
  - Base case (t = T 1):
    - Only one step to make
    - For any state s, the optimal action is  $\arg\max_a \mathbb{E}_{\pi_*}[R_T|S_{T-1}=s,A_{T-1}=a]=$   $= \arg\max_a q_{\pi_*}(s,a)$

• So  $\pi_*$  is optimal by construction

# **Bellman Optimality Equation, proof**

- Proof by induction backward in time (for finite horizon T):
  - Inductive case:
  - -Assume  $\pi_*$  is optimal at time t+1

• i.e., 
$$v_{\pi_*}^{t+1}(s) \ge v_{\pi'}^{t+1}(s), \forall s, \pi'$$

– What do we need to show?

$$v_{\pi_*}^t(s) \ge v_{\pi'}^t(s), \forall s, \pi'$$

– Using the Bellman equation for  $\pi_*$ :

$$v_{\pi_*}^t(s) = q_{\pi_*}^t(s, \pi_*(s))$$

$$= \max_{a} [q_{\pi_*}^t(s, a)]$$

$$= \max_{a} \left[ \mathbb{E}_{\pi_*} [R_{t+1} + \gamma v_{\pi_*}^{t+1}(S_{t+1}) \middle| S_t = s, A_t = a] \right]$$

# **Bellman Optimality Equation, proof**

- Proof by induction backward in time (for finite horizon T):
  - -Assume  $\pi_*$  is optimal at time t+1
    - i.e.,  $v_{\pi_*}^{t+1}(s) \ge v_{\pi'}^{t+1}(s), \forall s, \pi'$
  - Consider any other policy  $\pi'$

$$v_{\pi_*}^t(s) = \max_{a} \left[ \mathbb{E}_{\pi_*} \left[ R_{t+1} + \gamma v_{\pi_*}^{t+1}(S_{t+1}) \middle| S_t = s, A_t = a \right] \right]$$

$$= \max_{a} \left[ R_e(s, a) + \sum_{s'} \gamma v_{\pi_*}^{t+1}(s') P(s, a, s') \right]$$

$$\geq \max_{a} \left[ R_e(s, a) + \sum_{s'} \gamma v_{\pi_*}^{t+1}(s') P(s, a, s') \right]$$

— Inequality true for any a, so true for max also

# **Bellman Optimality Equations, proof**

Proof by induction backward in time(for finite horizon T):

$$v_{\pi_*}^t(s) = \max_{a} \left[ \mathbb{E}_{\pi_*} \left[ R_{t+1} + \gamma v_{\pi_*}^{t+1}(S_{t+1}) \middle| S_t = s, A_t = a \right] \right]$$

$$= \max_{a} \left[ R(s, a) + \sum_{s'} \gamma v_{\pi_*}^{t+1}(s') P(s, a, s') \right]$$

$$\geq \max_{a} \left[ R(s, a) + \sum_{s'} \gamma v_{\pi'}^{t+1}(s') P(s, a, s') \right]$$

$$\geq R(s, \pi'(s)) + \sum_{s'} \gamma v_{\pi'}^{t+1}(s') P(s, \pi'(s), s')$$

Deterministic policy version

$$\geq R(s, \pi'(s)) + \sum_{s'} \gamma v_{\pi'}^{t+1}(s') P(s, \pi'(s), s')$$

$$= \mathbb{E}_{\pi'} \left[ R_{t+1} + \gamma v_{\pi'}^{t+1}(S_{t+1}) \middle| S_t = s, A_t = \pi'(s) \right]$$

$$= \mathbb{E}_{\pi'} \left[ R_{t+1} + \gamma v_{\pi'}^{t+1}(S_{t+1}) \middle| S_t = s \right]$$

$$= v_{\pi'}^t(s)$$

# **Bellman Optimality Equations, proof**

Proof by induction backward in time(for finite horizon T):

$$v_{\pi_*}^t(s) = \max_{a} \left[ \mathbb{E}_{\pi_*} [R_{t+1} + \gamma v_{\pi_*}^{t+1}(S_{t+1}) | S_t = s, A_t = a] \right]$$

$$= \max_{a} \left[ R(s, a) + \sum_{s'} \gamma v_{\pi_*}^{t+1}(s') P(s, a, s') \right]$$

$$\geq \max_{a} \left[ R(s, a) + \sum_{s'} \gamma v_{\pi'}^{t+1}(s') P(s, a, s') \right]$$

$$= \sum_{a'} \pi'(a'|s) \left[ R(s, a^*) + \sum_{s'} \gamma v_{\pi'}^{t+1}(s') P(s, a^*, s') \right]$$

$$\geq \sum_{a'} \pi'(a'|s) \left[ R(s, a') + \sum_{s'} \gamma v_{\pi'}^{t+1}(s') P(s, a', s') \right]$$

Stochastic policy version

$$\geq \sum_{a'} \pi'(a'|s) \left[ R(s,a') + \sum_{s'} \gamma v_{\pi'}^{t+1}(s') P(s,a',s') \right]$$

$$= v_{\pi'}^{t}(s)$$

where  $a^* = \arg\max_{s} [R(s, a) + \sum_{s'} \gamma v_{\pi'}^{t+1}(s') P(s, a, s')]$ 

# **Policy Improvement Theorem**

- The Bellman optimality equation tells us what properties the optimal policy must satisfy
  - But it doesn't tell us how to find that policy
- Suppose we have a current policy  $\pi$ , potentially not optimal
  - -Suppose we know  $v_{\pi}(s)$ ,  $q_{\pi}(s, a)$ ,  $\forall s, a$
  - How can we improve the policy for a given s?
  - Pick an action that has a higher q value
- We know  $v_{\pi}(s) = q_{\pi}(s, \pi(s))$ 
  - What if there existed an action a' s.t.

$$q_{\pi}(s, a') \ge q_{\pi}(s, \pi(s))$$

– Turns out the policy that selects a' is better

# Policy Improvement Theorem, cont'd

# Policy Improvement Theorem:

—A policy  $\pi'$  is as good as, or better than, another policy  $\pi$  if for all  $s \in S$ 

$$q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s)$$

# **Policy Improvement Theorem Proof**

• First recall that for a specific action a, the q value is:

$$q_{\pi}(s, a) = R_{e}(s, a) + \gamma \sum_{s'} P(s, a, s') v(s')$$

$$= R_{e}(s, a) + \gamma \boldsymbol{p}(s, a)^{T} v(\boldsymbol{s})$$

$$- \text{ where } \boldsymbol{p}(s, a)^{T} = [P(s, a, s_{1}), \dots, P(s, a, s_{N})]$$

- Wlog, suppose  $\pi'$  is different from  $\pi$  only at  $s_1$ , i.e.,  $q_{\pi}(s_1, \pi'(s_1)) \geq v_{\pi}(s_1)$
- Using the Bellman equation:

$$q_{\pi}(s_{1}, \pi'(s_{1})) = R_{e}(s_{1}, \pi'(s_{1})) + \gamma \mathbf{p}(s_{1}, \pi'(s_{1}))^{T} v_{\pi}(\mathbf{s})$$
$$v_{\pi}(s_{1}) = q_{\pi}(s_{1}, \pi(s_{1})) = R_{e}(s_{1}, \pi(s_{1})) + \gamma \mathbf{p}(s_{1}, \pi(s_{1}))^{T} v_{\pi}(\mathbf{s})$$

Then

$$R_e(s_1, \pi'(s_1)) + \gamma p(s_1, \pi'(s_1))^T v_{\pi}(s) \ge R_e(s_1, \pi(s_1)) + \gamma p(s_1, \pi(s_1))^T v_{\pi}(s)$$

# Policy Improvement Theorem Proof, cont'd

• Wlog, suppose  $\pi'$  is different from  $\pi$  only at  $s_1$ , i.e.,  $q_{\pi}(s_1, \pi'(s_1)) \geq v_{\pi}(s_1)$ 

Using the Bellman equation:

$$q_{\pi}(s_{1}, \pi'(s_{1})) = R_{e}(s_{1}, \pi'(s_{1})) + \gamma \mathbf{p}(s_{1}, \pi'(s_{1}))^{T} v_{\pi}(\mathbf{s})$$
$$v_{\pi}(s_{1}) = q_{\pi}(s_{1}, \pi(s_{1})) = R_{e}(s_{1}, \pi(s_{1})) + \gamma \mathbf{p}(s_{1}, \pi(s_{1}))^{T} v_{\pi}(\mathbf{s})$$

Then

$$R_e(s_1, \pi'(s_1)) + \gamma p(s_1, \pi'(s_1))^T v_{\pi}(s) \ge R_e(s_1, \pi(s_1)) + \gamma p(s_1, \pi(s_1))^T v_{\pi}(s)$$

• Stack remaining values for  $\pi$  in a vector as follows:

$$\begin{bmatrix} R_{e}(s_{1}, \pi'(s_{1})) + \gamma \boldsymbol{p}(s_{1}, \pi'(s_{1}))^{T} v_{\pi}(\boldsymbol{s}) \\ R_{e}(s_{2}, \pi(s_{2})) + \gamma \boldsymbol{p}(s_{2}, \pi(s_{2}))^{T} v_{\pi}(\boldsymbol{s}) \\ \dots \\ R_{e}(s_{N}, \pi(s_{N})) + \gamma \boldsymbol{p}(s_{N}, \pi(s_{N}))^{T} v_{\pi}(\boldsymbol{s}) \end{bmatrix} \geq \begin{bmatrix} R_{e}(s_{1}, \pi(s_{1})) + \gamma \boldsymbol{p}(s_{1}, \pi(s_{1}))^{T} v_{\pi}(\boldsymbol{s}) \\ R_{e}(s_{2}, \pi(s_{2})) + \gamma \boldsymbol{p}(s_{2}, \pi(s_{2}))^{T} v_{\pi}(\boldsymbol{s}) \\ \dots \\ R_{e}(s_{N}, \pi(s_{N})) + \gamma \boldsymbol{p}(s_{N}, \pi(s_{N}))^{T} v_{\pi}(\boldsymbol{s}) \end{bmatrix}$$

— where the inequality is interpreted element-wise

# Policy Improvement Theorem Proof, cont'd

• Stack remaining values for  $\pi$  in a vector as follows:

$$\begin{bmatrix} R_{e}(s_{1}, \pi'(s_{1})) + \gamma \boldsymbol{p}(s_{1}, \pi'(s_{1}))^{T} v_{\pi}(\boldsymbol{s}) \\ R_{e}(s_{2}, \pi(s_{2})) + \gamma \boldsymbol{p}(s_{2}, \pi(s_{2}))^{T} v_{\pi}(\boldsymbol{s}) \\ \dots \\ R_{e}(s_{N}, \pi(s_{N})) + \gamma \boldsymbol{p}(s_{N}, \pi(s_{N}))^{T} v_{\pi}(\boldsymbol{s}) \end{bmatrix} \geq \begin{bmatrix} R_{e}(s_{1}, \pi(s_{1})) + \gamma \boldsymbol{p}(s_{1}, \pi(s_{1}))^{T} v_{\pi}(\boldsymbol{s}) \\ R_{e}(s_{2}, \pi(s_{2})) + \gamma \boldsymbol{p}(s_{2}, \pi(s_{2}))^{T} v_{\pi}(\boldsymbol{s}) \\ \dots \\ R_{e}(s_{N}, \pi(s_{N})) + \gamma \boldsymbol{p}(s_{N}, \pi(s_{N}))^{T} v_{\pi}(\boldsymbol{s}) \end{bmatrix}$$

In matrix form:

$$R_{\pi'}(s) + \gamma P_{\pi'} v_{\pi}(s) \ge R_{\pi}(s) + \gamma P_{\pi} v_{\pi}(s)$$

$$R_{\pi'}(s) + \gamma P_{\pi'} v_{\pi}(s) \ge v_{\pi}(s)$$

$$R_{\pi'}(s) \ge v_{\pi}(s) - \gamma P_{\pi'} v_{\pi}(s)$$

$$R_{\pi'}(s) \ge (I - \gamma P_{\pi'}) v_{\pi}(s)$$

- Pre-multiply both sides by  $\left( \boldsymbol{I} \gamma \boldsymbol{P}_{\pi'} \right)^{-1}$ 
  - Inequalities don't switch sides (don't have time to prove)

$$(I - \gamma P_{\pi'})^{-1} R_{\pi'}(s) \ge v_{\pi}(s)$$
$$v_{\pi'}(s) \ge v_{\pi}(s)$$

# Deterministic Policies: Greedy Policy Improvement

- Suppose we are given a deterministic policy  $\pi$
- We can greedily improve  $\pi$  for each state

$$\pi'(s) = arg \max_{a} q_{\pi}(s, a)$$
  
=  $arg \max_{a} \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s, A_t = a]$ 

- By the policy improvement theorem,  $\pi'$  is better than or equal to  $\pi$
- If  $\pi' = \pi$ , then  $\pi' = \pi^*$ :  $v_{\pi'}(s) = \max_{a} \left[ \mathbb{E}_{\pi} [R_{t+1} + \gamma v_{\pi'}(S_{t+1}) | S_t = s, A_t = a] \right]$   $= \max_{a} q_{\pi'}(s, a)$ 
  - Bellman optimality equation!

# **Summary**

- The Bellman optimality equations provide a property that any optimal policy must satisfy
  - But don't tell us how to find that policy
- The Policy Improvement Theorem provides a tool for greedy policy search
  - Improve the policy iteratively and re-evaluate
- It also provides the foundation for a class of algorithms based on dynamic programming
  - Next lecture