

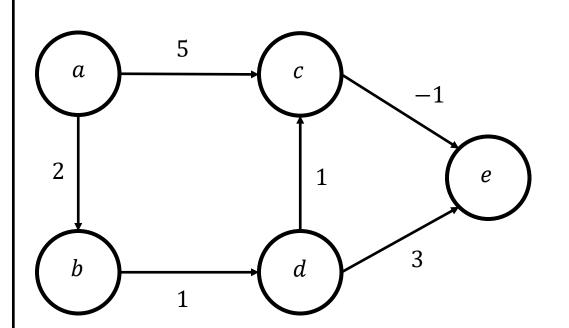
#### Reading

- Sutton, Richard S., and Barto, Andrew G. Reinforcement learning: An introduction. MIT press, 2018.
  - <a href="http://www.incompleteideas.net/book/the-book-2nd.html">http://www.incompleteideas.net/book/the-book-2nd.html</a>
  - Chapter 4
- Puterman, Martin L. *Markov decision processes: discrete stochastic dynamic programming*. John Wiley & Sons, 2014.
  - Chapters 4-6
- David Silver lecture on Dynamic Programming
  - https://www.youtube.com/watch?v=Nd1-UUMVfz4

# **Overview of Dynamical Programming**

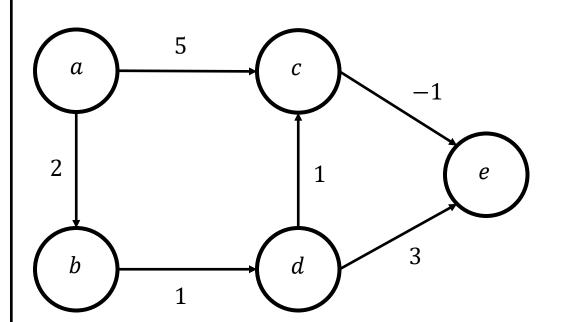
- A classical algorithm for computing solutions to problems that can be separated into subproblems with known solutions
  - E.g., all shortest paths
  - Essentially, store all subproblem solutions in a table and reuse them when necessary
- If we have a finite (state and action) MDP, we can find the optimal policy by incremental search
  - For example, in a finite-horizon setting:
    - Find the optimal policy for 1 step, then 2 steps, etc.
    - Actually done backwards in time
- Polynomial complexity in the number of states
  - Number of states can be large of course

- A famous application of dynamic programming
  - Compute shortest paths from a node to all other nodes in a graph
  - -E.g., all shortest paths from a to other nodes



| 1 step |   |  |  |
|--------|---|--|--|
| а      | 0 |  |  |
| b      | 2 |  |  |
| С      | 5 |  |  |
| d      | 8 |  |  |
| e      | 8 |  |  |

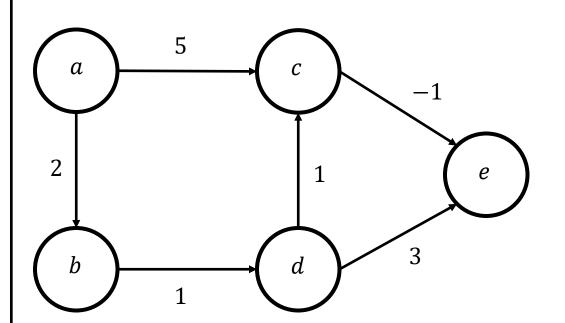
- A famous application of dynamic programming
  - Compute shortest paths from a node to all other nodes in a graph
  - -E.g., all shortest paths from a to other nodes



|   | 1 step | 2 steps | ; |
|---|--------|---------|---|
| а | 0      | 0       |   |
| b | 2      | 2       |   |
| С | 5      | 5       |   |
| d | 8      | 3       |   |
| e | 8      | 4       |   |

Loop through all 1-step nodes and see if you can reach other nodes in 1 step at lower cost

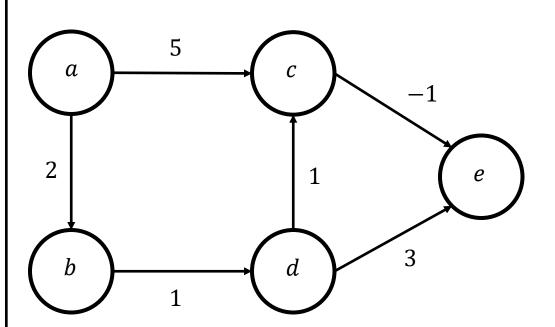
- A famous application of dynamic programming
  - Compute shortest paths from a node to all other nodes in a graph
  - -E.g., all shortest paths from a to other nodes



1 step 2 steps 3 steps

| а | 0 | 0 | 0 |
|---|---|---|---|
| b | 2 | 2 | 2 |
| С | 5 | 5 | 4 |
| d | 8 | 3 | 3 |
| е | 8 | 4 | 4 |

- A famous application of dynamic programming
  - Compute shortest paths from a node to all other nodes in a graph
  - -E.g., all shortest paths from a to other nodes



1 step 2 steps 3 steps 4 steps

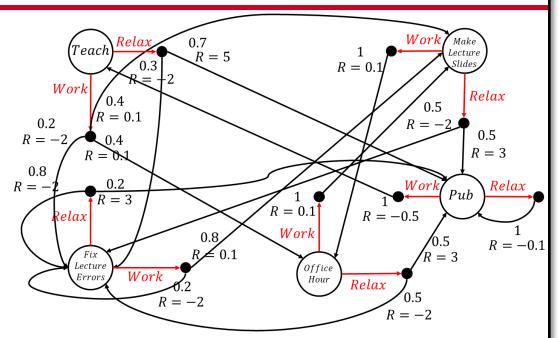
|   | • | • | • |   |
|---|---|---|---|---|
| а | 0 | 0 | 0 | 0 |
| b | 2 | 2 | 2 | 2 |
| С | 5 | 5 | 4 | 4 |
| d | 8 | 3 | 3 | 3 |
| е | 8 | 4 | 4 | 3 |

Cost to *e* through *c* is updated to 3

- Repeat until no more improvements can be made
  - For each node n, go through all edges (n, n')
    - If cost(a, n') > cost(a, n) + cost(n, n')
    - Set cost(a, n') = cost(a, n) + cost(n, n')
- What is the worst-case complexity of the algorithm?
  - Complexity is  $O(n^3)$ , where n is the number of nodes
    - Each loop requires  $O(n^2)$  operations
      - For each node, go through all other nodes and see if a shorter path exists
    - A total of n-1 loops
      - Longest path to any node is n-1 steps
- Turns out the same algorithm can be applied to MDPs
  - Find the optimal policy from any node

## **Workday Example**

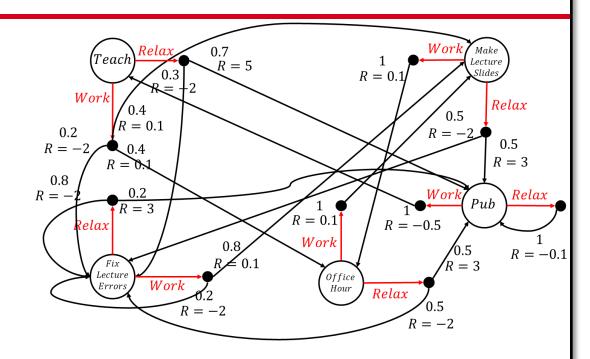
- Suppose T=2
- What is  $v_*^{T-1}(Pub)$ ?  $q_*^{T-1}(Pub, Work) = -0.5$   $q_*^{T-1}(Pub, Relax) = -0.1$ 
  - *Relax* is better
- What is  $v_*^{T-1}(OH)$ ?  $q_*^{T-1}(OH, Relax) = 0.5$
- What is  $v_*^{T-1}(FLE)$ ?  $q_*^{T-1}(FLE, Work) = -0.32$
- Similarly,  $q_*^{T-1}(MLS, Relax) = 0.5$
- Similarly,  $q_*^{T-1}(Teach, Relax) = 2.9$



# **Workday Example**

- Suppose  $\gamma = 0.9$
- What is  $v_*^0(Pub)$ ?

$$q_*^0(Pub, Work) =$$
 $-0.5 + 0.9 * v_*^1(Teach)$ 
 $= 2.11$ 
 $q_*^0(Pub, Relax) =$ 
 $-0.1 + 0.9 * v_*^1(Pub)$ 
 $= -0.19$ 



• What is  $v_*^0(FLE)$ ?

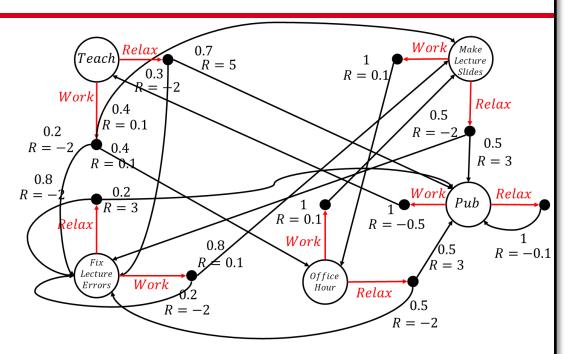
$$q_*^0(FLE, Work) =$$
 $(0.2 * -2 + 0.8 * 0.1) +$ 
 $0.2 * 0.9 * v_*^1(FLE) + 0.8 * 0.9 * v_*^1(MLS) =$ 
 $= -0.0176$ 
 $q_*^0(FLE, Relax) = -1 - 0.9 * 0.276 = -1.25$ 

|       | · + | _ 1 |
|-------|-----|-----|
| t = 0 | ) t | = 1 |

|       |       | _           |
|-------|-------|-------------|
| Teach | 2.9   | _           |
| ОН    | 0.5   | 'alue       |
| MLS   | 0.5   | Value table |
| FLE   | -0.32 | le          |
| Pub   | -0.1  | 4.0         |
|       | •     | 10          |

# **Workday Example**

- Suppose  $\gamma = 0.9$
- The other action values computed similarly



|       | $\iota - \iota$ | <i>u</i> – 1 | _     |
|-------|-----------------|--------------|-------|
| Teach |                 | 2.9          | _     |
| ОН    |                 | 0.5          | Value |
| MLS   |                 | 0.5          | table |
| FLE   | -0.0176         | -0.32        | le    |
| Pub   | 2.11            | -0.1         |       |

t = 0

t = 1

Π.

## **Finite-Horizon Dynamic Programming Summary**

- Iterate backwards, starting from last decision step T-1
- First, compute  $q_*^{T-1}(s, a)$  for each state/action pair
  - -i.e., compute the one-step expected reward
  - -Then set  $v_*^{T-1}(s) = \max_a q_*^{T-1}(s, a)$
- For t < T-1, use Bellman equation to compute  $q_*^t(s,a)$   $q_*^t(s,a) = \mathbb{E}_* \left[ R_{t+1} + \gamma v_*^{t+1}(S_{t+1}) \middle| S_t = s, A_t = a \right]$ 
  - -Then set  $v_*^t(s) = \max_a q_*^t(s, a)$
- What is the complexity of dynamic programming?  $O(TS^2A)$ 
  - where S is the number of states, A is the number of actions
  - for each state, loop through all actions and all other states

## **Dynamic Programming Assumptions**

- So far dynamic programming only works for the case of
  - Finite horizon
  - Finite-state space
  - Finite-action space
- Finite-state and –action spaces hard to relax (for now)
- But we can modify algorithm for infinite horizon
- Policy iteration!

## **Policy Iteration**

- The greedy policy improvement theorem suggests an algorithm for finding the optimal policy through iterating
  - Start from a policy, compute its value function, improve greedily for one state, repeat...

$$\pi_0 \xrightarrow{\mathrm{E}} v_{\pi_0} \xrightarrow{\mathrm{I}} \pi_1 \xrightarrow{\mathrm{E}} v_{\pi_1} \xrightarrow{\mathrm{I}} \pi_2 \xrightarrow{\mathrm{E}} \cdots \xrightarrow{\mathrm{I}} \pi_* \xrightarrow{\mathrm{E}} v_*$$

- Terminate when you find optimal policy
- Is this guaranteed to terminate?
  - Yes, there are finitely many policies in a finite-state MDP
- Policy iteration is trickier in the finite-horizon case
  - Need to evaluate/improve the policy at each time t
  - Use finite-horizon dynamic programming in that case

## **Policy Iteration, Workday Example**

- What are the optimal actions in the long run?
  - $\pi_*(Teach) = Relax$
  - $\pi_*(OH) = Relax$
  - $\pi_*(MLS) = Relax$
  - $\pi_*(FLE) = Work$
  - $\pi_*(Pub) = Work$
- Corresponding values are

$$v_*(s) = [9.18 \ 6.31 \ 6.31 \ 5.15 \ 7.76]$$

## **Policy Iteration Summary**

- Start with a random policy  $\pi$
- Repeat until you find the optimal policy:
  - Loop through all states
  - For each state s, loop through all actions
    - If you find an action a for which  $q_{\pi}(s,a) > v_{\pi}(s)$
    - Modify  $\pi$  such that  $\pi(s) = a$
  - Recalculate values  $v_{\pi'}$  for modified policy  $\pi'$ 
    - Can do this step either after each action change or after a full loop over all states
  - If you did not change the policy at all, terminate
    - You found the optimal!

#### Value Iteration

- Policy iteration requires evaluating each new policy
  - –i.e., need to compute  $v_{\pi}(s)$  for all states
  - May take significant time
- Another approach is to use the Bellman optimality equation

$$v_*(s) = \max_{a} q_*(s, a)$$
  
=  $\max_{a} \left[ \mathbb{E}_* [R_{t+1} + \gamma v_*(S_{t+1}) | S_t = s, A_t = a] \right]$ 

• The Bellman optimality equation suggests the recursion

$$v_{k+1}(s) = \max_{a} \left[ \mathbb{E}[R_{t+1} + \gamma v_k(S_{t+1}) | S_t = s, A_t = a] \right]$$

– Starting from any  $v_0$ 

#### **Bellman Operator**

Consider the mapping

$$Lv = \max_{a} \left[ \mathbb{E}[R_{t+1} + \gamma v(S_{t+1}) | S_t = s, A_t = a] \right]$$

- This is known as the Bellman operator
- It is what enables the recursion

$$v_{k+1}(s) = \max_{a} \left[ \mathbb{E}[R_{t+1} + \gamma v_k(S_{t+1}) | S_t = s, A_t = a] \right]$$
  
=  $Lv_k$ 

- Essentially an application of the Policy Improvement Theorem over the state value
  - Except the v's may not be the values of any actual policy
    - Yet...

#### Value Iteration, cont'd

• The Bellman optimality equation suggests the recursion  $v_{k+1}(s) = \max_{s} \left[ \mathbb{E}[R_{t+1} + \gamma v_k(S_{t+1}) | S_t = s, A_t = a] \right]$ 

- The sequence is guaranteed to converge
  - Consider the Bellman operator

$$Lv = \max_{a} \left[ \mathbb{E}[R_{t+1} + \gamma v(S_{t+1}) | S_t = s, A_t = a] \right]$$

- Bellman operator can be shown to be contractive
  - i.e., any 2 sequences get closer to each other after each iteration
- —The sequence  $v_k$  converges to a unique  $v_*$  for all  $v_0$
- The unique  $v_*$  satisfies the Bellman optimality equation  $v_*(s) = \max_a \left[ \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) | S_t = s, A_t = a] \right]$ 
  - So it is the value function corresponding to the optimal policy

#### **Value Iteration Considerations**

Given a value function, the corresponding policy is

$$\pi(s) = \operatorname{argmax}_{a} q_{\pi}(s, a)$$

$$= \operatorname{argmax}_{a} \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_{t} = s, A_{t} = a]$$

$$= \operatorname{argmax}_{a} \left[ R_{e}(s, a) + \sum_{s'} \gamma v_{\pi}(s') P(s, a, s') \right]$$

- Note that a  $v_k$  may not have the actual state values of the policy it represents
  - —There are finitely many policies but infinitely many  $v_k$
  - Ultimately, we don't care what the  $v_k$  are as long as the policy is optimal
  - Of course, when the  $v_k$  converge, the values will converge to the values of the optimal policy

## **Value Iteration Summary**

- Start from an arbitrary  $v_0$
- For each state s, update  $v_{k+1}$  as follows:

$$v_{k+1}(s) = \max_{a} \left[ \mathbb{E}[R_{t+1} + \gamma v_k(S_{t+1}) | S_t = s, A_t = a] \right]$$

- Iterate until  $|v_{k+1} v_k| < \epsilon$ 
  - Where  $\epsilon$  is a hyperparameter
  - Can use your favorite norm above, e.g.,  $L_{\infty}$
- Unlike policy iteration, no need to invert large matrices
  - Though may require many more iterations
  - Depending on MDP structure, value iteration may scale better than policy iteration

## **Workday Comparison**

- The workday example has 5 states and 2 actions
  - How many policies are there in total?

$$2^5 = 32$$

- Policy iteration likely to converge in several iterations
- Value iteration takes several dozen iterations to converge to true values
  - From an initial state of all 0's
  - Though you don't need to converge fully until you uncover the optimal policy
- Grid world has a bigger policy space

4<sup>25</sup>

Optimal policy is very simple, so policy iteration still fast

## **Asynchronous Dynamic Programming**

- Dynamic programming can't scale to very large state spaces
  - Will require an infeasible number of iterations
- How can we improve scalability?
  - Asynchronous dynamic programming!
  - -i.e., only update some, hopefully "important", state values
- How do we choose which values to update?
  - Simplest approach is random sampling
    - May bring some improvements, but unlikely to help in general
    - At least guaranteed to converge to optimal values
  - Can focus on specific parts of the state space
    - E.g., work backwards from goal states, if possible
    - Or only update states whose values will change significantly

# Asynchronous Dynamic Programming, cont'd

- Updating only states whose values will change significantly is known as prioritized sweeping
  - For example, use an agent to experience the MDP and thus guide which states to use DP for
  - This is getting closer to an actual RL setting where the Qvalues are learned rather than calculated directly
- Any challenges with this approach?
  - If state space is large, hard to find/define important states
    - Ultimately, this is the exploration problem
  - Calculating expectations in value iteration may be very slow in a large state space
- Will discuss more effective approaches next!

## **Deterministic vs Stochastic Policy**

- So far, we have mainly focused on deterministic policies
  - Both policy and value iteration will find the optimal \*deterministic\* policy
  - But could a stochastic policy be better?
  - Turns out the answer is no it suffices to look at deterministic policies only
    - Of course, you might need a stochastic policy to explore more next time!
- **Theorem**: Suppose there exists an optimal stochastic policy  $\pi_s$  for a given MDP. Then there also exists an optimal deterministic policy  $\pi_d$ .
  - Proof is fairly involved, so we will skip it

## Markovian Policies vs History-Based Policies

- Question: can you come up with a better policy if you're given the full history of the execution so far?
- It turns out the answer is once again no
  - This should make sense intuitively since MDP transitions are only affected by the current state
- **Theorem**: Suppose there exists an optimal (stochastic) history-based policy  $\pi_h$ . Then there also exists an optimal Markovian deterministic policy  $\pi_d$ .
  - Proof is fairly involved, so we will skip it
- Note: Deterministic policies may not be sufficient in case of partially observed MDPs
  - E.g., a self-driving car with a single camera can only observe objects within the current image

#### **Summary**

- Dynamic programming is a powerful iterative algorithm
- Very popular in some fields of computer science and engineering
  - Widely used in control, in a similar way to RL
- Vanilla algorithm only works for finite-space MDPs
  - Overall iteration idea is still mainstream RL, however
- All algorithms discussed so far also need the user to know the MDP structure
  - Not realistic in many cases
  - Will relax this assumption next