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Reading

• Sutton, Richard S., and Barto, Andrew G. Reinforcement 
learning: An introduction. MIT press, 2018.

– http://www.incompleteideas.net/book/the-book-2nd.html

– Chapter 4

• Puterman, Martin L. Markov decision processes: discrete 
stochastic dynamic programming. John Wiley & Sons, 2014.

– Chapters 4-6

• David Silver lecture on Dynamic Programming

– https://www.youtube.com/watch?v=Nd1-UUMVfz4
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Overview of Dynamical Programming

• A classical algorithm for computing solutions to problems that 
can be separated into subproblems with known solutions

– E.g., all shortest paths

– Essentially, store all subproblem solutions in a table and 
reuse them when necessary

• If we have a finite (state and action) MDP, we can find the 
optimal policy by incremental search

– For example, in a finite-horizon setting:
• Find the optimal policy for 1 step, then 2 steps, etc.

• Actually done backwards in time

• Polynomial complexity in the number of states

–Number of states can be large of course
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Dynamic Programming: Shortest Paths

• A famous application of dynamic programming

– Compute shortest paths from a node to all other nodes in a 
graph

– E.g., all shortest paths from 𝑎 to other nodes
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Dynamic Programming: Shortest Paths

• A famous application of dynamic programming

– Compute shortest paths from a node to all other nodes in a 
graph

– E.g., all shortest paths from 𝑎 to other nodes
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Dynamic Programming: Shortest Paths

• A famous application of dynamic programming

– Compute shortest paths from a node to all other nodes in a 
graph

– E.g., all shortest paths from 𝑎 to other nodes
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Dynamic Programming: Shortest Paths

• A famous application of dynamic programming

– Compute shortest paths from a node to all other nodes in a 
graph

– E.g., all shortest paths from 𝑎 to other nodes
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Dynamic Programming: Shortest Paths

• Repeat until no more improvements can be made

– For each node 𝑛, go through all edges 𝑛, 𝑛′

• If 𝑐𝑜𝑠𝑡 𝑎, 𝑛′ > 𝑐𝑜𝑠𝑡 𝑎, 𝑛 + 𝑐𝑜𝑠𝑡 𝑛, 𝑛′

• Set 𝑐𝑜𝑠𝑡 𝑎, 𝑛′ = 𝑐𝑜𝑠𝑡 𝑎, 𝑛 + 𝑐𝑜𝑠𝑡 𝑛, 𝑛′

• What is the worst-case complexity of the algorithm?

– Complexity is 𝑂(𝑛3), where 𝑛 is the number of nodes

• Each loop requires O 𝑛2  operations

– For each node, go through all other nodes and see if a shorter path 
exists

• A total of 𝑛 − 1 loops

– Longest path to any node is 𝑛 − 1 steps

• Turns out the same algorithm can be applied to MDPs

– Find the optimal policy from any node
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Workday Example

• Suppose 𝑇 = 2

• What is 𝑣∗
𝑇−1 𝑃𝑢𝑏 ?

 𝑞∗
𝑇−1 𝑃𝑢𝑏, 𝑊𝑜𝑟𝑘 = −0.5

 𝑞∗
𝑇−1 𝑃𝑢𝑏, 𝑅𝑒𝑙𝑎𝑥 = −0.1

• 𝑅𝑒𝑙𝑎𝑥 is better

• What is 𝑣∗
𝑇−1(𝑂𝐻)?

𝑞∗
𝑇−1 𝑂𝐻, 𝑅𝑒𝑙𝑎𝑥 = 0.5

• What is 𝑣∗
𝑇−1(𝐹𝐿𝐸)?

𝑞∗
𝑇−1 𝐹𝐿𝐸, 𝑊𝑜𝑟𝑘 = −0.32

• Similarly, 𝑞∗
𝑇−1 𝑀𝐿𝑆, 𝑅𝑒𝑙𝑎𝑥  = 0.5

• Similarly, 𝑞∗
𝑇−1 𝑇𝑒𝑎𝑐ℎ, 𝑅𝑒𝑙𝑎𝑥 = 2.9
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Workday Example

• Suppose 𝛾 = 0.9

• What is 𝑣∗
0 𝑃𝑢𝑏 ?

 𝑞∗
0 𝑃𝑢𝑏, 𝑊𝑜𝑟𝑘 =

 −0.5 + 0.9 ∗ 𝑣∗
1 𝑇𝑒𝑎𝑐ℎ

 = 2.11

 𝑞∗
0 𝑃𝑢𝑏, 𝑅𝑒𝑙𝑎𝑥 =

 −0.1 + 0.9 ∗ 𝑣∗
1 𝑃𝑢𝑏

 = −0.19

• What is 𝑣∗
0 𝐹𝐿𝐸 ?

 𝑞∗
0 𝐹𝐿𝐸, 𝑊𝑜𝑟𝑘 =

0.2 ∗ −2 + 0.8 ∗ 0.1 +
 0.2 ∗ 0.9 ∗ 𝑣∗

1 𝐹𝐿𝐸 + 0.8 ∗ 0.9 ∗ 𝑣∗
1 𝑀𝐿𝑆 =

 = −0.0176

 𝑞∗
0 𝐹𝐿𝐸, 𝑅𝑒𝑙𝑎𝑥 = −1 − 0.9 ∗ 0.276 = −1.25
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Workday Example

• Suppose 𝛾 = 0.9

• The other action values
computed similarly
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Finite-Horizon Dynamic Programming Summary

• Iterate backwards, starting from last decision step 𝑇 − 1

• First, compute 𝑞∗
𝑇−1(𝑠, 𝑎) for each state/action pair

– i.e., compute the one-step expected reward

– Then set 𝑣∗
𝑇−1 𝑠 = max

𝑎
𝑞∗

𝑇−1(𝑠, 𝑎)

• For 𝑡 < 𝑇 − 1, use Bellman equation to compute 𝑞∗
𝑡(𝑠, 𝑎)

𝑞∗
𝑡 𝑠, 𝑎 = 𝔼∗ 𝑅𝑡+1 + 𝛾𝑣∗

𝑡+1 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

– Then set 𝑣∗
𝑡 𝑠 = max

𝑎
𝑞∗

𝑡(𝑠, 𝑎)

• What is the complexity of dynamic programming?

𝑂 𝑇𝑆2𝐴

–where 𝑆 is the number of states, 𝐴 is the number of actions

– for each state, loop through all actions and all other states
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Dynamic Programming Assumptions

• So far dynamic programming only works for the case of

– Finite horizon

– Finite-state space

– Finite-action space

• Finite-state and –action spaces hard to relax (for now)

• But we can modify algorithm for infinite horizon

• Policy iteration!
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Policy Iteration

• The greedy policy improvement theorem suggests an 
algorithm for finding the optimal policy through iterating

– Start from a policy, compute its value function, improve 
greedily for one state, repeat…

– Terminate when you find optimal policy

• Is this guaranteed to terminate?

– Yes, there are finitely many policies in a finite-state MDP

• Policy iteration is trickier in the finite-horizon case

–Need to evaluate/improve the policy at each time 𝑡

–Use finite-horizon dynamic programming in that case
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Policy Iteration, Workday Example

• What are the optimal actions in the long run?
• 𝜋∗ 𝑇𝑒𝑎𝑐ℎ = 𝑅𝑒𝑙𝑎𝑥

• 𝜋∗ 𝑂𝐻 = 𝑅𝑒𝑙𝑎𝑥

• 𝜋∗ 𝑀𝐿𝑆 = 𝑅𝑒𝑙𝑎𝑥

• 𝜋∗ 𝐹𝐿𝐸 = 𝑊𝑜𝑟𝑘

• 𝜋∗ 𝑃𝑢𝑏 = 𝑊𝑜𝑟𝑘

• Corresponding values are
𝑣∗ 𝑠 = [9.18 6.31 6.31 5.15 7.76]
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Policy Iteration Summary

• Start with a random policy 𝜋

• Repeat until you find the optimal policy:

– Loop through all states

– For each state 𝑠, loop through all actions
• If you find an action 𝑎 for which 𝑞𝜋 𝑠, 𝑎 > 𝑣𝜋(𝑠)

• Modify 𝜋 such that 𝜋 𝑠 = 𝑎

– Recalculate values 𝑣𝜋′ for modified policy 𝜋′
• Can do this step either after each action change or after a full loop 

over all states

– If you did not change the policy at all, terminate
• You found the optimal!
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Value Iteration

• Policy iteration requires evaluating each new policy

– i.e., need to compute 𝑣𝜋(𝑠) for all states

–May take significant time

• Another approach is to use the Bellman optimality equation
𝑣∗ 𝑠 = max

𝑎
𝑞∗(𝑠, 𝑎) 

 = max
𝑎

𝔼∗ 𝑅𝑡+1 + 𝛾𝑣∗ 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

• The Bellman optimality equation suggests the recursion

𝑣𝑘+1 𝑠 = max
𝑎

𝔼 𝑅𝑡+1 + 𝛾𝑣𝑘 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

– Starting from any 𝑣0
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Bellman Operator

• Consider the mapping

𝐿𝑣 =  max
𝑎

𝔼 𝑅𝑡+1 + 𝛾𝑣 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

• This is known as the Bellman operator

• It is what enables the recursion

𝑣𝑘+1 𝑠 = max
𝑎

𝔼 𝑅𝑡+1 + 𝛾𝑣𝑘 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

= 𝐿𝑣𝑘 

• Essentially an application of the Policy Improvement Theorem 
over the state value

– Except the 𝑣’s may not be the values of any actual policy
• Yet…
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Value Iteration, cont’d

• The Bellman optimality equation suggests the recursion

𝑣𝑘+1 𝑠 = max
𝑎

𝔼 𝑅𝑡+1 + 𝛾𝑣𝑘 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

• The sequence is guaranteed to converge

– Consider the Bellman operator

𝐿𝑣 =  max
𝑎

𝔼 𝑅𝑡+1 + 𝛾𝑣 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

– Bellman operator can be shown to be contractive
• i.e., any 2 sequences get closer to each other after each iteration

– The sequence 𝑣𝑘 converges to a unique 𝑣∗ for all 𝑣0

• The unique 𝑣∗ satisfies the Bellman optimality equation

𝑣∗ 𝑠 = max
𝑎

𝔼 𝑅𝑡+1 + 𝛾𝑣∗ 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

– So it is the value function corresponding to the optimal 
policy 19



Value Iteration Considerations

• Given a value function, the corresponding policy is
𝜋 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 𝑞𝜋 𝑠, 𝑎  

 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 𝔼𝜋 𝑅𝑡+1 + 𝛾𝑣𝜋 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

 = 𝑎𝑟𝑔max
𝑎

𝑅𝑒 𝑠, 𝑎 + ෍

𝑠′

𝛾𝑣𝜋 𝑠′ 𝑃 𝑠, 𝑎, 𝑠′

• Note that a 𝑣𝑘 may not have the actual state values of the 
policy it represents

– There are finitely many policies but infinitely many 𝑣𝑘

–Ultimately, we don’t care what the 𝑣𝑘 are as long as the 
policy is optimal

–Of course, when the 𝑣𝑘 converge, the values will converge 
to the values of the optimal policy
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Value Iteration Summary

• Start from an arbitrary 𝑣0

• For each state 𝑠, update 𝑣𝑘+1 as follows:

𝑣𝑘+1 𝑠 = max
𝑎

𝔼 𝑅𝑡+1 + 𝛾𝑣𝑘 𝑆𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

• Iterate until 𝑣𝑘+1 − 𝑣𝑘 < 𝜖

–Where 𝜖 is a hyperparameter

– Can use your favorite norm above, e.g., 𝐿∞

• Unlike policy iteration, no need to invert large matrices

– Though may require many more iterations

–Depending on MDP structure, value iteration may scale 
better than policy iteration
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Workday Comparison

• The workday example has 5 states and 2 actions

–How many policies are there in total?
25 = 32

– Policy iteration likely to converge in several iterations

• Value iteration takes several dozen iterations to converge to 
true values

– From an initial state of all 0’s

– Though you don’t need to converge fully until you uncover 
the optimal policy

• Grid world has a bigger policy space
425

–Optimal policy is very simple, so policy iteration still fast
22



Asynchronous Dynamic Programming

• Dynamic programming can’t scale to very large state spaces

–Will require an infeasible number of iterations

• How can we improve scalability?

–Asynchronous dynamic programming!

– i.e., only update some, hopefully “important”, state values

• How do we choose which values to update?

– Simplest approach is random sampling 
• May bring some improvements, but unlikely to help in general

• At least guaranteed to converge to optimal values

– Can focus on specific parts of the state space
• E.g., work backwards from goal states, if possible

• Or only update states whose values will change significantly
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Asynchronous Dynamic Programming, cont’d

• Updating only states whose values will change significantly is 
known as prioritized sweeping

– For example, use an agent to experience the MDP and thus 
guide which states to use DP for

– This is getting closer to an actual RL setting where the Q-
values are learned rather than calculated directly

• Any challenges with this approach?

– If state space is large, hard to find/define important states
• Ultimately, this is the exploration problem

– Calculating expectations in value iteration may be very slow 
in a large state space

• Will discuss more effective approaches next!
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Deterministic vs Stochastic Policy

• So far, we have mainly focused on deterministic policies

– Both policy and value iteration will find the optimal 
*deterministic* policy

– But could a stochastic policy be better?

– Turns out the answer is no – it suffices to look at 
deterministic policies only
• Of course, you might need a stochastic policy to explore – more 

next time!

• Theorem: Suppose there exists an optimal stochastic policy 𝜋𝑠 
for a given MDP. Then there also exists an optimal 
deterministic policy 𝜋𝑑.

– Proof is fairly involved, so we will skip it
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Markovian Policies vs History-Based Policies

• Question: can you come up with a better policy if you’re given 
the full history of the execution so far?

• It turns out the answer is once again no

– This should make sense intuitively since MDP transitions are 
only affected by the current state

• Theorem: Suppose there exists an optimal (stochastic) history-
based policy 𝜋ℎ. Then there also exists an optimal Markovian 
deterministic policy 𝜋𝑑.

– Proof is fairly involved, so we will skip it

• Note: Deterministic policies may not be sufficient in case of 
partially observed MDPs

– E.g., a self-driving car with a single camera can only observe 
objects within the current image 26



Summary

• Dynamic programming is a powerful iterative algorithm

• Very popular in some fields of computer science and 
engineering

–Widely used in control, in a similar way to RL

• Vanilla algorithm only works for finite-space MDPs

–Overall iteration idea is still mainstream RL, however

• All algorithms discussed so far also need the user to know the 
MDP structure

–Not realistic in many cases

–Will relax this assumption next
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