Dynamic Programming

Reading

e Sutton, Richard S., and Barto, Andrew G. Reinforcement
learning: An introduction. MIT press, 2018.

— http://www.incompleteideas.net/book/the-book-2nd.html
— Chapter 4

* Puterman, Martin L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons, 2014.

— Chapters 4-6

e David Silver lecture on Dynamic Programming
— https://www.youtube.com/watch?v=Nd1-UUMVfz4

http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html

Overview of Dynamical Programming

* A classical algorithm for computing solutions to problems that
can be separated into subproblems with known solutions

—E.g., all shortest paths
— Essentially, store all subproblem solutions in a table and
reuse them when necessary
* If we have a finite (state and action) MDP, we can find the
optimal policy by incremental search

— For example, in a finite-horizon setting:
* Find the optimal policy for 1 step, then 2 steps, etc.
e Actually done backwards in time

e Polynomial complexity in the number of states
— Number of states can be large of course

Dynamic Programming: Shortest Paths

e A famous application of dynamic programming
— Compute shortest paths from a node to all other nodes in a

graph
—E.g., all shortest paths from a to other nodes
1 step
a 0
b 2
R

Dynamic Programming: Shortest Paths

e A famous application of dynamic programming

— Compute shortest paths from a node to all other nodes in a
graph
—E.g., all shortest paths from a to other nodes

1 step 2 steps

5
a a 0 0
-/ b |2 2
2 c 5 5
w\ d oo 3
b e 00 4

1

Loop through all 1-step nodes and see if you can reach other nodes in 1 step at lower cost)

Dynamic Programming: Shortest Paths

e A famous application of dynamic programming

— Compute shortest paths from a node to all other nodes in a
graph

—E.g., all shortest paths from a to other nodes

1 step 2 steps 3 steps

a 0 0 0
b 2 2 2
c 5 5 4
d o 3 3
e o 4 4

Dynamic Programming: Shortest Paths

e A famous application of dynamic programming

— Compute shortest paths from a node to all other nodes in a
graph
—E.g., all shortest paths from a to other nodes

1 step 2 steps 3 steps 4 steps

a 0 0 0 0
b 2 2 2 2
c 5 5 4 4
d o 3 3 3
e 00 4 4 3

Cost to e through c is updated to 3

Dynamic Programming: Shortest Paths

* Repeat until no more improvements can be made
— For each node n, go through all edges (n,n’)

* If cost(a,n’) > cost(a,n) + cost(n,n")
* Set cost(a,n’) = cost(a,n) + cost(n,n’)

* What is the worst-case complexity of the algorithm?
— Complexity is 0(n>), where n is the number of nodes

* Each loop requires O(nz) operations

— For each node, go through all other nodes and see if a shorter path
exists

* Atotal of n — 1 loops

— Longest path to any node is n — 1 steps

* Turns out the same algorithm can be applied to MDPs
— Find the optimal policy from any node

Workday Example

 Suppose T = 2

* Whatis v/ ~1(Pub)?
gl =1 (Pub,Work) = —0.5
qT~1(Pub,Relax) = —0.1 "
* Relax is better

« Whatis v "1(0OH)?
gl~1(0OH,Relax) = 0.5

* Whatis v! ~1(FLE)?
gl ~Y(FLE,Work) = —0.32

e Similarly, gI "*(MLS, Relax) = 0.5
e Similarly, g "*(Teach, Relax) = 2.9

Workday Example

* Supposey = 0.9

* What is v2(Pub)?

q2(Pub, Work) =
—0.5 4+ 0.9 * vl (Teach)
= 2.11

q2(Pub, Relax) =
—0.1 + 0.9 * vl (Pub)

= —0.19

* Whatis v2(FLE)? t=0 t=

qS (FLE,Work) = Teach 2.9 _

(0.2+—-2+4+0.8%0.1) + OH 0.5 o)

0.2 0.9 x v} (FLE) + 0.8 * 0.9 * v} (MLS) = ®
MLS 0.5 o

= —0.0176 o
FLE —0.32 @

q,?(FLE,Relax) =—-1-09%0.276 = —1.25 Pub —0.1

Workday Example

* Supposey = 0.9

 The other action values
computed similarly

t=20 =
Teach 2.9
OH 0.5
MLS 0.5
FLE —0.0176 —0.32
Pub 2.11 -0.1

3|ge1 anjep

Finite-Horizon Dynamic Programming Summary

Iterate backwards, starting from last decisionstep T — 1

e First, compute gl ~1(s, a) for each state/action pair
—i.e., compute the one-step expected reward
—Thenset vl 71(s) = max ql=1(s,a)

* Fort < T — 1, use Bellman equation to compute gi(s, a)

q:(s,a) = IE*[Rt+1 + va+1(5t+1)|5t =S, A; = a]

—Then set vf(s) = maxqi(s,a)
a

What is the complexity of dynamic programming?
0(TS?A)
—where S is the number of states, A is the number of actions
—for each state, loop through all actions and all other states

Dynamic Programming Assumptions

* So far dynamic programming only works for the case of
— Finite horizon
— Finite-state space
— Finite-action space

 Finite-state and —action spaces hard to relax (for now)
* But we can modify algorithm for infinite horizon

* Policy iteration!

Policy Iteration

* The greedy policy improvement theorem suggests an
algorithm for finding the optimal policy through iterating

— Start from a policy, compute its value function, improve
greedily for one state, repeat...

E I E I E I E
T"TD —> .E.?ﬂ'[) —>' :'Tl —> -Uﬂ-l } :":[_2 } e —> .T'[_* —> -U*

— Terminate when you find optimal policy

* |s this guaranteed to terminate?
—Yes, there are finitely many policies in a finite-state MDP

 Policy iteration is trickier in the finite-horizon case
— Need to evaluate/improve the policy at each time t
— Use finite-horizon dynamic programming in that case

Policy Iteration, Workday Example

 What are the optimal actions in the long run?
 w,.(Teach) = Relax
 7,(OH) = Relax
e 7,(MLS) = Relax
 w,(FLE) = Work
e w,(Pub) = Work

* Corresponding values are
v, (s) =[9.18 6.31 6.31 5.15 7.76]

15

Policy Iteration Summary

e Start with a random policy

* Repeat until you find the optimal policy:
— Loop through all states
— For each state s, loop through all actions

* If you find an action a for which g (s, a) > v(s)
* Modify such that w(s) = a

— Recalculate values v,;, for modified policy 7’

e Can do this step either after each action change or after a full loop
over all states

—If you did not change the policy at all, terminate

* You found the optimal!

Value lteration

* Policy iteration requires evaluating each new policy
—i.e., need to compute v, (s) for all states
— May take significant time

* Another approach is to use the Bellman optimality equation
v,(s) = maxq,.(s,a)
a

= m;lx[]E*[Rt+1 + Y0 (St IS = 5, A = a]]
* The Bellman optimality equation suggests the recursion
Vi41(8) = mC?X[IE[RtH + YU (Se+ IS = 5,4 = a]]

— Starting from any v,

Bellman Operator

* Consider the mapping
Lv = ma?x[IE[RHl + yv(Si11)IS: =5, A = a]]

This is known as the Bellman operator

* It is what enables the recursion
Vi41(8) = mC?X[IE[RtH + YU (Se+ IS = 5,4 = a]]
= Ly,
* Essentially an application of the Policy Improvement Theorem
over the state value

— Except the v’s may not be the values of any actual policy
* Yet...

Value lteration, cont’d

* The Bellman optimality equation suggests the recursion
Vis1(S) = maaX[IE[Rt+1 + YR (Ser IS = 5,4 = a]]

* The sequence is guaranteed to converge

— Consider the Bellman operator
Lv = mC?X[IE[Rt+1 +yv(Se41)|S: = 5,4 = a]]

— Bellman operator can be shown to be contractive

* j.e., any 2 sequences get closer to each other after each iteration

—The sequence vj, converges to a unique v, for all v,

* The unique v, satisfies the Bellman optimality equation
v,(s) = mC?X[IE[Rt+1 + YU (Se4+)8 = 5,4 = a]]

—So it is the value function corresponding to the optimal
policy

Value lteration Considerations

e Given a value function, the corresponding policy is
n(s) = argmaxg qr(s,a)
= argmaxg Ex[Res1 +v0r(Ses IS, = 5,4, = al

a

= argmax |R,(s,a) + 2 yv,(s")P(s,a,s’)
S’

* Note that a v}, may not have the actual state values of the
policy it represents

—There are finitely many policies but infinitely many v,

— Ultimately, we don’t care what the v, are as long as the
policy is optimal

— Of course, when the v, converge, the values will converge
to the values of the optimal policy

Value Iteration Summary

 Start from an arbitrary v,

* For each state s, update v, as follows:
Vis1(S) = mC?X[IE[Rt+1 + Ui (Ser IS =5, 4c = a]]

lterate until v, —vi| < €
—Where € is a hyperparameter
— Can use your favorite norm above, e.g., L,

* Unlike policy iteration, no need to invert large matrices
—Though may require many more iterations

— Depending on MDP structure, value iteration may scale
better than policy iteration

Workday Comparison

* The workday example has 5 states and 2 actions

—How many policies are there in total?

25 = 32

— Policy iteration likely to converge in several iterations

* Value iteration takes several dozen iterations to converge to
true values
—From an initial state of all 0’s
—Though you don’t need to converge fully until you uncover
the optimal policy
* Grid world has a bigger policy space
425
— Optimal policy is very simple, so policy iteration still fast

Asynchronous Dynamic Programming

* Dynamic programming can’t scale to very large state spaces
— Will require an infeasible number of iterations

* How can we improve scalability?
— Asynchronous dynamic programming!
—i.e., only update some, hopefully “important”, state values

 How do we choose which values to update?
—Simplest approach is random sampling

* May bring some improvements, but unlikely to help in general
* At least guaranteed to converge to optimal values
— Can focus on specific parts of the state space

* E.g., work backwards from goal states, if possible
e Or only update states whose values will change significantly

Asynchronous Dynamic Programming, cont’d

* Updating only states whose values will change significantly is
known as prioritized sweeping

— For example, use an agent to experience the MDP and thus
guide which states to use DP for

—This is getting closer to an actual RL setting where the Q-
values are learned rather than calculated directly
* Any challenges with this approach?
— If state space is large, hard to find/define important states

» Ultimately, this is the exploration problem

— Calculating expectations in value iteration may be very slow
in a large state space

* Will discuss more effective approaches next!

Deterministic vs Stochastic Policy

e So far, we have mainly focused on deterministic policies
— Both policy and value iteration will find the optimal
deterministic policy
— But could a stochastic policy be better?

—Turns out the answer is no — it suffices to look at
deterministic policies only

* Of course, you might need a stochastic policy to explore — more
next time!

* Theorem: Suppose there exists an optimal stochastic policy 7
for a given MDP. Then there also exists an optimal
deterministic policy .

— Proof is fairly involved, so we will skip it

Markovian Policies vs History-Based Policies

* Question: can you come up with a better policy if you’re given
the full history of the execution so far?
* |t turns out the answer is once again no
— This should make sense intuitively since MDP transitions are
only affected by the current state

 Theorem: Suppose there exists an optimal (stochastic) history-
based policy ;. Then there also exists an optimal Markovian
deterministic policy .

— Proof is fairly involved, so we will skip it
* Note: Deterministic policies may not be sufficient in case of
partially observed MDPs

—E.g., a self-driving car with a single camera can only observe
objects within the current image

Summary

* Dynamic programming is a powerful iterative algorithm
* Very popular in some fields of computer science and
engineering
— Widely used in control, in a similar way to RL

* Vanilla algorithm only works for finite-space MDPs
— Overall iteration idea is still mainstream RL, however
 All algorithms discussed so far also need the user to know the
MDP structure
— Not realistic in many cases
— Will relax this assumption next

	Slide 1: Dynamic Programming
	Slide 2: Reading
	Slide 3: Overview of Dynamical Programming
	Slide 4: Dynamic Programming: Shortest Paths
	Slide 5: Dynamic Programming: Shortest Paths
	Slide 6: Dynamic Programming: Shortest Paths
	Slide 7: Dynamic Programming: Shortest Paths
	Slide 8: Dynamic Programming: Shortest Paths
	Slide 9: Workday Example
	Slide 10: Workday Example
	Slide 11: Workday Example
	Slide 12: Finite-Horizon Dynamic Programming Summary
	Slide 13: Dynamic Programming Assumptions
	Slide 14: Policy Iteration
	Slide 15: Policy Iteration, Workday Example
	Slide 16: Policy Iteration Summary
	Slide 17: Value Iteration
	Slide 18: Bellman Operator
	Slide 19: Value Iteration, cont’d
	Slide 20: Value Iteration Considerations
	Slide 21: Value Iteration Summary
	Slide 22: Workday Comparison
	Slide 23: Asynchronous Dynamic Programming
	Slide 24: Asynchronous Dynamic Programming, cont’d
	Slide 25: Deterministic vs Stochastic Policy
	Slide 26: Markovian Policies vs History-Based Policies
	Slide 27: Summary

