Temporal Difference Learning

Reading

- Sutton, Richard S., and Barto, Andrew G. Reinforcement learning: An introduction. MIT press, 2018.
 - http://www.incompleteideas.net/book/the-book-2nd.html
 - Chapters 6.1-6.4, 7
- David Silver lecture on Dynamic Programming
 - https://www.youtube.com/watch?v=PnHCvfgC_ZA&t=585s
 - Second part of the lecture (on TD learning)

Overview

- Dynamic programming (DP) requires full knowledge of the underlying MDP
 - Only possible for simple systems
- Monte Carlo methods require a lot of data to estimate state values
 - Also, not really online since need to wait for each episode to finish (and get the final reward)
 - Some tasks are continuous, others have very long episodes
 - Re-estimating state values for adapting policies requires yet more data
- Temporal Difference (TD) learning is the best of both worlds
 - Essentially a hybrid approach between the two
 - Main idea behind Q-learning also

Online State Value Estimation

- Suppose we have a fixed policy π and would like to estimate state values $v_{\pi}(s)$
- Suppose we start with some estimates V(s) and would like to update them online
- With Monte Carlo methods, we need to wait until the end of each episode
 - Already saw the incremental (off-policy) implementation:

$$V^{k}(s) = V^{k-1}(s) + \frac{\rho_{t:T,k}}{\sum_{j=1}^{k} \rho_{t:T,j}} \left(G_{t,k} - V^{k-1}(s) \right)$$

• Can replace the ho term with a "learning rate" lpha

$$V^{k}(s) = V^{k-1}(s) + \alpha \left(G_{t,k} - V^{k-1}(s) \right)$$

— where α is now a hyperparameter

Online State Value Estimation

- Suppose we don't want to wait until the end of the episode
 - -i.e., instead of using G_t , we'd like to use each R_t
 - Can update policy after every step (much more efficient)
- In Monte Carlo learning, the value estimate is updated based on the difference between new return and current estimate

$$\alpha \left(G_{t,k} - V^{k-1}(s) \right)$$

- How do we adapt this idea to the case of a one-step reward?
 - What property does v_{π} have?
 - -Bellman equation: $v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_t = s]$
 - Can replace the return with a bootstrapped estimate:

$$R_{t+1} + \gamma V^{k-1}(S_{t+1})$$

TD State Value Estimation

• Update $V(S_t)$ after each step in an episode $V'(S_t) = V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$

 Called a bootstrapping method because it is based in part on our existing estimates

Tabular TD(0) for estimating v_{π}

```
Input: the policy \pi to be evaluated Algorithm parameter: step size \alpha \in (0,1] Initialize V(s), for all s \in \mathbb{S}^+, arbitrarily except that V(terminal) = 0 Loop for each episode: Initialize S Loop for each step of episode: A \leftarrow \text{action given by } \pi \text{ for } S Take action A, observe R, S' V(S) \leftarrow V(S) + \alpha \left[R + \gamma V(S') - V(S)\right] S \leftarrow S' until S is terminal
```

TD as a hybrid method

- Similar to MC, TD updates estimates based on the difference between new and predicted data
 - A standard approach in general estimation theory
 - In some sense, this is a Bayesian method
 - Our bootstrapped estimate of $V(S_t)$ is the prior
- TD is also similar to DP, since it uses the Bellman equation
 - Makes use of the Markov property and the MDP structure
 - Implicitly estimating the MDP structure
- We'll see that TD has hyper-parameters that can shift it along the "line" between DP and MC

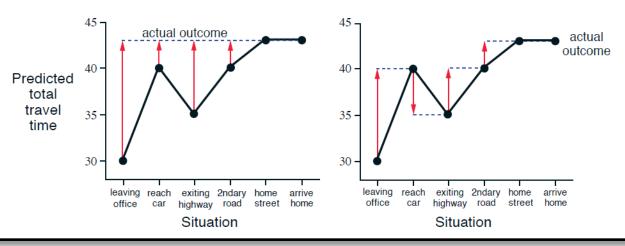
Example: Driving Home

- Suppose you leave your office at 6 on Friday
 - You have an ETA from previous trips
 - However, unforeseen events delay you
- You have pre-existing predicted time-to-go's for each situation (state)

	$Elapsed\ Time$	Predicted	Predicted
State	(minutes)	$Time\ to\ Go$	$Total\ Time$
leaving office, friday at 6	0	30	30
reach car, raining	5	35	40
exiting highway	20	15	35
2ndary road, behind truck	30	10	40
entering home street	40	3	43
arrive home	43	0	43

Example: Driving Home

- TD allows you to update your estimates after each event
 - E.g., you reach the car, and it is raining
 - You update your ETA based on the new information
- MC may introduce very large changes since it doesn't factor in intermediate states
 - Value updates may have great variance
 - An outlier data point, e.g., a slow truck, may cause a big change in the MC estimates



Advantages of TD Prediction

- No need to know the MDP, unlike DP
- Can be performed online, unlike Monte Carlo methods
- Usually more data-efficient than Monte Carlo methods since current estimate $V(S_t)$ can act as a prior
- Can update the state values after every step
 - May bring significant benefits if we also adapt the policy
 - A better policy may lead to seeing better rewards and faster learning overall
- MC minimizes the square error on the training set
 - -TD converges to the maximum-likelihood estimate
- Both MC and TD converge to the true values given enough data
 - Proof is a bit technical, relies on stochastic processes

Advantages of TD Prediction, Example

- Consider the following Markov Reward Process
 - There's a 0.5 chance of taking each transition
 - Reward of 1 only when we reach the right square

- What are the values of the various states?
 - -Clearly, v(C) = 0.5 (equal chance of reaching each side)
 - Use matrix form of Bellman equation: v(s) = R + Pv(s)

- Where
$$\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.5 & 0 & 0.5 & 0 & 0 & 0 & 0 \\ 0 & 0.5 & 0 & 0.5 & 0 & 0 & 0 \\ 0 & 0 & 0.5 & 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0 & 0.5 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & 0 & 0.5 & 0 & 0.5 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \mathbf{R} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0.5 \\ 0 \end{bmatrix}$$

Advantages of TD Prediction, Example

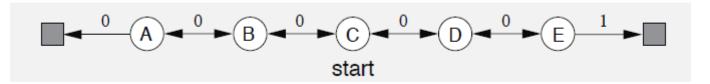
- Consider the following Markov Reward Process
 - There's a 0.5 chance of taking each transition
 - Reward of 1 only when we reach the right square

- Need to use iterative policy evaluation method
 - -Why?
 - Matrix I P is not invertible
 - Has an eigenvalue of 0
- Without discounting, state values are:

$$v_{\pi}(C) = 0.5, v_{\pi}(A) = \frac{1}{6}, v_{\pi}(B) = \frac{2}{6}, v_{\pi}(D) = \frac{4}{6}, v_{\pi}(E) = \frac{5}{6}$$

Advantages of TD Prediction, Example

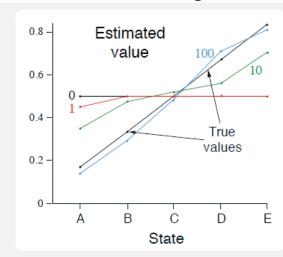
 Consider the following Markov Chain (with 0.5 chance of taking each transition)

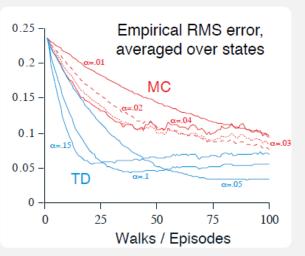


– Without discounting, state values are:

$$v_{\pi}(C) = 0.5, v_{\pi}(A) = \frac{1}{6}, v_{\pi}(B) = \frac{2}{6}, v_{\pi}(D) = \frac{4}{6}, v_{\pi}(E) = \frac{5}{6}$$

TD converges after ~100 episodes





TD Convergence Properties

- How does the learning rate α affect convergence?
 - Smaller α means slower convergence
 - Larger α means faster convergence but algorithm converges with bigger estimation error
- In order to truly converge to the optimal values, one needs to decrease α progressively
 - Will discuss in more detail when we get to Q learning

TD Batch Estimation

- Suppose we have fixed data from N episodes
 - Each episode is the usual S_1 , A_1 , R_2 , ...
- Can apply TD estimation in batch fashion
 - Iterate through the episodes until convergence
 - TD guaranteed to converge
 - Guaranteed to converge to the true values as $N \to \infty$

Example: Difference between MC and TD

 Suppose we have an unknown MDP and observe the following 8 episodes with rewards

$$B$$
, 1

- What is your guess for the value at B?
 - -A guess of 6/8 seems reasonable
- What is your guess for the value at A?
 - Both 6/8 and 0 seem reasonable

Example: Difference between MC and TD

 Suppose we have an unknown MDP and observe the following 8 episodes with rewards

• Both MC and TD output 6/8 for v(B)

- -Why?
- When we have a terminal state, TD is essentially MC
- If you use a constant α , you won't actually converge
 - Will bounce around 6/8
 - -In true MC, $\alpha = 1/(1+k)$

Example: Difference between MC and TD, cont'd

 Suppose we have an unknown MDP and observe the following 8 episodes with rewards

$$B$$
, 0

- MC will output 0 for v(A)
 - -Why?
 - Only run that visited A had a return of 0

Example: Difference between MC and TD, cont'd

 Suppose we have an unknown MDP and observe the following 8 episodes with rewards

$$B$$
, 1

$$B$$
, 0

- TD will output 6/8 for v(A)
 - Why?
 - Eventually, V(B) will converge to 6/8
 - When we process episode 1 after that (with $\alpha = 0.1$):
 - (Assuming currently V(A)=0 for simplicity) $V'(A)=V(A)+\alpha\big(0+V(B)-V(A)\big)=3/40$
 - Keep iterating and V(A) will bounce around V(B)

SARSA: On-policy TD Control

- On-policy control idea is the same as before
 - Estimate the state/action values
 - For each state, choose the action with the highest value
- Action value recursion is the same as the state one:

$$Q'(S_t, A_t) = Q(S_t, A_t) + \alpha [R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$$

- Requires also knowing the next action A_{t+1}
 - This makes it on-policy
- Uses every quintuplet S_t , A_t , R_{t+1} , S_{t+1} , A_{t+1}
 - Hence the name
- To ensure exploration, still need ϵ -greedy policies

SARSA: On-policy TD Control, cont'd

- After every step, alternate between policy evaluation and policy iteration
- Guaranteed to converge
 - (will see a sketch of the proof for Q-learning)

```
Sarsa (on-policy TD control) for estimating Q \approx q_*

Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0

Initialize Q(s,a), for all s \in \mathbb{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0

Loop for each episode:

Initialize S

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Loop for each step of episode:

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)

Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma Q(S',A') - Q(S,A)]
S \leftarrow S'; A \leftarrow A';

until S is terminal
```

n-step bootstrapping

- MC methods wait for the return at the end of the episode
- TD updates its estimates and policies after every step
- TD learning may be noisy as it updates estimate too frequently
 - Smoothing over multiple steps would bring better results
- Can we have something in between?
 - -Something that updates estimates/policies after n steps?
 - Yes, n-step bootstrapping!
 - Same idea as TD learning but applied over n steps

n-step return

The MC return is

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-t-1} R_T$$

- The TD return is just R_{t+1}
- What is the n-step TD return?

$$G_{t:t+n} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n}$$

The MC evaluation recursion is

$$V'(S_t) = V(S_t) + \alpha (G_t - V(S_t))$$

• The TD recursion is

$$V'(S_t) = V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

What is the n-step recursion?

$$V'(S_t) = V(S_t) + \alpha \left(G_{t:t+n} + \gamma^n V(S_{t+n}) - V(S_t) \right)$$

n-step TD Prediction

What is the *n*-step recursion?

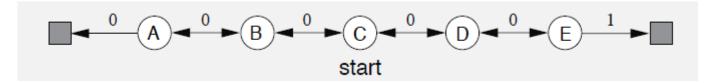
$$V'(S_t) = V(S_t) + \alpha \left(G_{t:t+n} + \gamma^n V(S_{t+n}) - V(S_t) \right)$$

- Note that we need to wait for n steps to receive $G_{t:t+n}$
 - -As $n \rightarrow \infty$, n-step TD converges to MC
- Larger n allow us to get a better estimate of $v_{\pi}(s)$
 - Adding stability at the expense of slower convergence

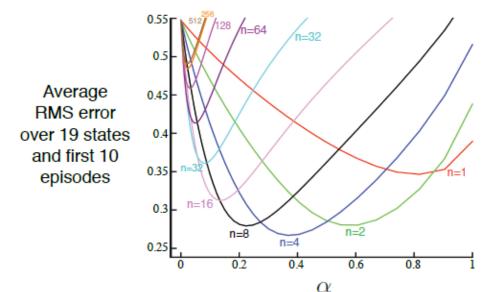
```
n-step TD for estimating V \approx v_{\pi}
Input: a policy \pi
Algorithm parameters: step size \alpha \in (0, 1], a positive integer n
Initialize V(s) arbitrarily, for all s \in S
All store and access operations (for S_t and R_t) can take their index mod n+1
Loop for each episode:
   Initialize and store S_0 \neq \text{terminal}
   T \leftarrow \infty
   Loop for t = 0, 1, 2, ...:
      If t < T, then:
           Take an action according to \pi(\cdot|S_t)
           Observe and store the next reward as R_{t+1} and the next state as S_{t+1}
           If S_{t+1} is terminal, then T \leftarrow t+1
      \tau \leftarrow t - n + 1 (\tau is the time whose state's estimate is being updated)
           G \leftarrow \sum_{i=\tau+1}^{\min(\tau+n,T)} \gamma^{i-\tau-1} R_i
           If \tau + n < T, then: G \leftarrow G + \gamma^n V(S_{\tau + n})
                                                                                               (G_{\tau:\tau+n})
           V(S_{\tau}) \leftarrow V(S_{\tau}) + \alpha \left[ G - V(S_{\tau}) \right]
   Until \tau = T - 1
```

Example: Random Walk

Recall random walk example



- -Suppose we have 19 states instead of 5, i.e., 9 on each side
- And suppose reward is -1 on the left
- Lowest error for n=4
 - Best trade-off in this case
- MC $(n = \infty)$ is pretty much the worst



n-step SARSA: On-policy Control

- Same idea as before
 - Estimate the state/action values
 - For each state, choose the action with the highest value
- Action value recursion is the same as the state one:

$$Q'(S_t, A_t) = Q(S_t, A_t) + \alpha [G_{t:t+n} + \gamma^n Q(S_{t+n}, A_{t+n}) - Q(S_t, A_t)]$$

```
n-step Sarsa for estimating Q \approx q_* or q_{\pi}
Initialize Q(s, a) arbitrarily, for all s \in S, a \in A
Initialize \pi to be \varepsilon-greedy with respect to Q, or to a fixed given policy
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0, a positive integer n
All store and access operations (for S_t, A_t, and R_t) can take their index mod n+1
Loop for each episode:
   Initialize and store S_0 \neq \text{terminal}
   Select and store an action A_0 \sim \pi(\cdot|S_0)
   Loop for t = 0, 1, 2, ...:
      If t < T, then:
           Take action A_t
           Observe and store the next reward as R_{t+1} and the next state as S_{t+1}
           If S_{t+1} is terminal, then:
               T \leftarrow t + 1
               Select and store an action A_{t+1} \sim \pi(\cdot | S_{t+1})
       \tau \leftarrow t - n + 1 (\tau is the time whose estimate is being updated)
           G \leftarrow \sum_{i=\tau+1}^{\min(\tau+n,T)} \gamma^{i-\tau-1} R_i
           If \tau + n < T, then G \leftarrow G + \gamma^n Q(S_{\tau+n}, A_{\tau+n})
                                                                                                 (G_{\tau:\tau+n})
           Q(S_{\tau}, A_{\tau}) \leftarrow Q(S_{\tau}, A_{\tau}) + \alpha \left[G - Q(S_{\tau}, A_{\tau})\right]
           If \pi is being learned, then ensure that \pi(\cdot|S_{\tau}) is \varepsilon-greedy wrt Q
    Until \tau = T - 1
```