Temporal Difference Learning

Reading

e Sutton, Richard S., and Barto, Andrew G. Reinforcement
learning: An introduction. MIT press, 2018.

— http://www.incompleteideas.net/book/the-book-2nd.html
— Chapters 6.1-6.4, 7

e David Silver lecture on Dynamic Programming
— https://www.youtube.com/watch?v=PnHCvfgC_ZA&t=585s
—Second part of the lecture (on TD learning)

http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html

Overview

* Dynamic programming (DP) requires full knowledge of the
underlying MDP

— Only possible for simple systems
* Monte Carlo methods require a lot of data to estimate state
values

— Also, not really online since need to wait for each episode to
finish (and get the final reward)

* Some tasks are continuous, others have very long episodes
— Re-estimating state values for adapting policies requires yet
more data
 Temporal Difference (TD) learning is the best of both worlds
— Essentially a hybrid approach between the two
— Main idea behind Q-learning also

Online State Value Estimation

* Suppose we have a fixed policy T and would like to estimate
state values v, (s)

* Suppose we start with some estimates V' (s) and would like to
update them online

* With Monte Carlo methods, we need to wait until the end of
each episode
— Already saw the incremental (off-policy) implementation:

VE(s) = VE1(s) + otk (Gt,k - Vk-l(s))

j:]_ ptT,]

* Can replace the p term with a “learning rate” «
VE(s) = VE1(s) + a (Gt,k — Vk‘l(s))

—where a is now a hyperparameter

Online State Value Estimation

» Suppose we don’t want to wait until the end of the episode
—i.e., instead of using G;, we’d like to use each R;
— Can update policy after every step (much more efficient)

* In Monte Carlo learning, the value estimate is updated based
on the difference between new return and current estimate

a(Gee = V()

 How do we adapt this idea to the case of a one-step reward?
—What property does v, have?
—Bellman equation: v, (s) = E_ [R;+1 + YV (St+1)|S; = 5]

— Can replace the return with a bootstrapped estimate:
Reyr + YV 1(Se41)

TD State Value Estimation

* Update V(S;) after each step in an episode
V'(Se) = V(Se) + alRerq + YV (St41) — V(Sp)]

* Called a bootstrapping method because it is based in part on
our existing estimates

Tabular TD(0) for estimating v,

Input: the policy 7 to be evaluated
Algorithm parameter: step size a € (0, 1]
Initialize V (s), for all s € 8T, arbitrarily except that V' (terminal) = 0
Loop for each episode:
Initialize S
Loop for each step of episode:
A + action given by 7 for S
Take action A, observe R, S’
V(S)+«V(S)+ Q’[R +4V(S") — V(S)]
S+ 5

until S is terminal

TD as a hybrid method

* Similar to MC, TD updates estimates based on the difference
between new and predicted data

— A standard approach in general estimation theory
—In some sense, this is a Bayesian method
* Our bootstrapped estimate of V(S;) is the prior
* TD is also similar to DP, since it uses the Bellman equation
— Makes use of the Markov property and the MDP structure
— Implicitly estimating the MDP structure

 We'll see that TD has hyper-parameters that can shift it along
the “line” between DP and MC

Example: Driving Home

» Suppose you leave your office at 6 on Friday
—You have an ETA from previous trips
— However, unforeseen events delay you

* You have pre-existing predicted time-to-go’s for each situation
(state)

FElapsed Time Predicted Predicted

State (minutes) Time to Go Total Time
leaving office, friday at 6 0 30 30
reach car, raining D 35 40
exiting highway 20 15 35
2ndary road, behind truck 30 10 40
entering home street 40 3 43

arrive home 43 0 43

Example: Driving Home

* TD allows you to update your estimates after each event

—E.g., you reach the car, and it is raining
* You update your ETA based on the new information

 MC may introduce very large changes since it doesn’t factor in
intermediate states

— Value updates may have great variance

* An outlier data point, e.g., a slow truck, may cause a big change in
the MC estimates

45
actual outcome

L

actual
outcome

) 40
Predicted
total
travel
time

35

T T T T T T T T T T T T
leaving reach exiting 2ndary home arrive leaving reach exiting 2ndary home arrive
office car highway road street home office car highway road street home

Situation Situation

Advantages of TD Prediction

* No need to know the MDP, unlike DP

Can be performed online, unlike Monte Carlo methods

* Usually more data-efficient than Monte Carlo methods since
current estimate V' (S;) can act as a prior

Can update the state values after every step
—May bring significant benefits if we also adapt the policy
— A better policy may lead to seeing better rewards and faster
learning overall
* MC minimizes the square error on the training set
—TD converges to the maximum-likelihood estimate

Both MC and TD converge to the true values given enough data
— Proof is a bit technical, relies on stochastic processes

Advantages of TD Prediction, Example

* Consider the following Markov Reward Process
—There’s a 0.5 chance of taking each transition
— Reward of 1 only when we reach the right square

0 N 0 TN 0
I-[k 9/}-- | |\£}j|-|

start

N 1
-—'._KEJ.—-D

B——()="~(e)~
 What are the values of the various states?
—Clearly, v(C) = 0.5 (equal chance of reaching each side)
— Use matrix form of Bellman equation: v(s) = R + Pv(s)

1 0 0 0 0 0 07 [0]
05 0 05 O 0 0 0 0
0O 05 0 05 0 0 0 0
— WhereP=| 0 0O 05 0 05 O 0O LR=|0
0 0 0O 05 0 05 0O 0
0 0 0 0O 05 0 05 0.5
L 0 0 0 0 0 0 1 0

Advantages of TD Prediction, Example

* Consider the following Markov Reward Process
—There’s a 0.5 chance of taking each transition
— Reward of 1 only when we reach the right square
DL:&:‘- 0 F—{B:jﬂ 0 I-[f é::l-- 0 l-li]i}jl-- 0 l-'rfg‘l—lln-D
start
* Need to use iterative policy evaluation method
—Why?
— Matrix I — P is not invertible
* Has an eigenvalue of O

* Without discounting, state values are:

vTL'(C) = 0.5, vn:(A) = %, vn(B) = %,Un(D) = %'vn(E) :E

Advantages of TD Prediction, Example

* Consider the following Markov Chain (with 0.5 chance of taking
each transition)

o ~~ 0 _ »~—~ 0 »~—~ 0 _ ,»—~ 0 /™ 1
I:'-dﬁ\\fv;d -.-KBJ"- "'KE/""' l-IkDJI-- - E S

— Without discounting, state values are:

52(C) = 0.5, 15 (A) = =, 1, (B) = =, v(D) = =, vy (E) =

0.8 Estimated e Empirical RMS error,
value averaged over states
06- 10 o
TD converges — Mc
02 S
~ 0.4 - | Yoo S c::l' |
after 100 _ True 014\ N ._ R SV Jf‘ iy ~
episodes . values PN DN BT
A 005 a " \\._. b e - .
TD ! =
0 T T T T] 0 T T T 1
A B C D E 0 25 50 75 100
State Walks / Episodes

13

TD Convergence Properties

 How does the learning rate a affect convergence?
—Smaller &« means slower convergence
—Larger @ means faster convergence but algorithm converges
with bigger estimation error
* In order to truly converge to the optimal values, one needs to
decrease a progressively
— Will discuss in more detail when we get to Q learning

TD Batch Estimation

e Suppose we have fixed data from N episodes
— Each episode is the usual S1, A4, R, ...

e Can apply TD estimation in batch fashion
— |terate through the episodes until convergence
—TD guaranteed to converge
— Guaranteed to converge to the true valuesas N — oo

Example: Difference between MC and TD

e Suppose we have an unknown MDP and observe the following
8 episodes with rewards

« A4,0,B,0 B,1
* B,1 B,1
* B,1 B,1
* B,1 B,0

* What is your guess for the value at B?
— A guess of 6/8 seems reasonable

* What is your guess for the value at A?
—Both 6/8 and 0 seem reasonable

Example: Difference between MC and TD

e Suppose we have an unknown MDP and observe the following
8 episodes with rewards

« A4,0,B,0 B,1
* B1 B,1
* B1 B,1
* B1 B,0
* Both MC and TD output 6/8 for v(B)
—Why?

—When we have a terminal state, TD is essentially MC

* |f you use a constant «, you won’t actually converge
— Will bounce around 6/8
—IntrueMC,a =1/(1+ k)

Example: Difference between MC and TD, cont’d

e Suppose we have an unknown MDP and observe the following
8 episodes with rewards

« A4,0,B,0 B,1
* B1 B,1
* B1 B,1
* B1 B,0
* MC will output O for v(A4)
—Why?

— Only run that visited A had a return of O

Example: Difference between MC and TD, cont’d

e Suppose we have an unknown MDP and observe the following
8 episodes with rewards

« A4,0,B,0 B,1
* B1 B,1
* B1 B,1
* B1 B,0
* TD will output 6/8 for v(A)
— Why?

— Eventually, V(B) will converge to 6/8

—When we process episode 1 after that (with @ = 0.1):
e (Assuming currently V(4) = 0 for simplicity)

V'(A) =V(A) +a(0+V(B) —V(4)) = 3/40
— Keep iterating and V(A) will bounce around VV'(B)

SARSA: On-policy TD Control

* On-policy control idea is the same as before
— Estimate the state/action values
— For each state, choose the action with the highest value

e Action value recursion is the same as the state one:
Q'(St,Ar) = Q(St, Ap) + alReyq1 + ¥Q(St+1,Art1) — Q(Se, Ap)]
—Requires also knowing the next action A4

* This makes it on-policy

— Uses every quintuplet S¢, A¢, Ry 1, St4+1, A¢ 41

* Hence the name

* To ensure exploration, still need e-greedy policies

SARSA: On-policy TD Control, cont’d

* After every step, alternate between policy evaluation and
policy iteration

e Guaranteed to converge
— (will see a sketch of the proof for Q-learning)

Sarsa (on-policy TD control) for estimating Q =~ g.

Algorithm parameters: step size a € (0, 1], small £ > 0
Initialize Q(s, a), for all s € 8T, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
Q(5.4) « Q(S, A) + a[R +1Q(S', A') — Q(S, A)]
S« S A« A
until S is terminal

21

n-step bootstrapping

 MC methods wait for the return at the end of the episode
* TD updates its estimates and policies after every step

* TD learning may be noisy as it updates estimate too frequently
—Smoothing over multiple steps would bring better results

* Can we have something in between?
—Something that updates estimates/policies after n steps?
—Yes, n-step bootstrapping!
—Same idea as TD learning but applied over n steps

n-step return

e The MC return is
G = Rey1 +YRepp + -+ ¥y IR,

* The TD return is just R4

 What is the n-step TD return?
Grt4n = Rey1 + VRep2 + -+ V" Reyq

* The MC evaluation recursion is
V'(Se) =V(Se) + a(Gt — V(St))
* The TD recursion is
V'(S:) = V(Se) + “(Rt+1 + YV (Se41) — V(St))

 What is the n-step recursion?
V'(Sy) =V (S) + a(Gt:t+n + Y™V (Stin) — V(St))

n-step TD Prediction

 What is the n-step recursion?
V'(S:) = V(Se) + a(Gt:t+n + Y™V (St4n) — V(St))
* Note that we need to wait for n steps to receive G¢.¢4p
—Asn — oo, n-step TD converges to MC

* Larger n allow us to get a better estimate of v,;(s)

— Adding stability at the expense of slower convergence

n-step TD for estimating V = v,

Input: a policy 7

Algorithm parameters: step size a € (0, 1], a positive integer n

Initialize V(s) arbitrarily, for all s € 8

All store and access operations (for Sy and R;) can take their index mod n + 1

Loop for each episode:
Initialize and store S # terminal
T + o0
Loopfort=10,1,2,...:
| Ift<T, then:
| Take an action according to w(-|S;)
| Observe and store the next reward as R;y1 and the next state as 5,4
| If S;4; is terminal, then T' <t + 1
| 7+ t—n+1 (7 is the time whose state’s estimate is being updated)
| Ifr>0:
| G T i,
| Hr+n<T, then: G+ G+~4"V(S5-4a) (Grirtn)
| V(5:) + V(S:) +a[G— V(S]]
Untilt=T -1

24

Example: Random Walk

e Recall random walk example

|--%EJ :E,.:"-- 0 F{B_j-l 0 ll-[f @I* 0 --Ifﬁ:l-l 0 -_-,::EH'—FI
start
—Suppose we have 19 states instead of 5, i.e., 9 on each side
— And suppose reward is -1 on the left

055

e Lowest error forn = 4
— Best trade-off in this

05

Average oasf |
case RBRMS error
over 19 states 04f
. and first 10
e MC (n =) is pretty episodes 03

much the worst o3}

0254
L

25

n-step SARSA: On-policy Control

« Same idea as before
— Estimate the state/action values

— For each state, choose the action with the highest value

e Action value recursion is the same as the state one:
Q,(St'At) — Q(StJAt) + a[Gt:t+n + ynQ(St+n'At+n) _ Q(St'At)]

n-step Sarsa for estimating @ = q. or g,

Initialize Q(s,a) arbitrarily, for all s € §,a € A
Initialize 7 to be s-greedy with respect to @, or to a fixed given policy

Loop for each episode:
Initialize and store Sy # terminal
Select and store an action Ag ~ m(+|Sp)
T+ o0
Loop for t =0,1,2,..:
| Ift<T, then:
| Take action 4;

\
| If S;41 1s terminal, then:

| T+—t+1

| else:

| Select and store an action A;.q ~ 7(-|S;41)

| 7+ t—n+1 (7 is the time whose estimate is being updated)

| Ifr>0:

| Ge BT R

| Ifr+n<T,then G+ G+~4"Q(Sr4n, Arin)

‘ QS A7) + Q(5-,47) +a [G_Q(Sr--‘?rj]

| If 7 is being learned, then ensure that 7(-|S.) is s-greedy wrt Q

Untilm =T -1

Algorithm parameters: step size « € (0, 1], small £ > 0, a positive integer n
All store and access operations (for Si, A;, and R;) can take their index mod n + 1

Observe and store the next reward as Ry, and the next state as S,

(Gr r+u)

26

	Slide 1: Temporal Difference Learning
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: Online State Value Estimation
	Slide 5: Online State Value Estimation
	Slide 6: TD State Value Estimation
	Slide 7: TD as a hybrid method
	Slide 8: Example: Driving Home
	Slide 9: Example: Driving Home
	Slide 10: Advantages of TD Prediction
	Slide 11: Advantages of TD Prediction, Example
	Slide 12: Advantages of TD Prediction, Example
	Slide 13: Advantages of TD Prediction, Example
	Slide 14: TD Convergence Properties
	Slide 15: TD Batch Estimation
	Slide 16: Example: Difference between MC and TD
	Slide 17: Example: Difference between MC and TD
	Slide 18: Example: Difference between MC and TD, cont’d
	Slide 19: Example: Difference between MC and TD, cont’d
	Slide 20: SARSA: On-policy TD Control
	Slide 21: SARSA: On-policy TD Control, cont’d
	Slide 22: bold italic n-step bootstrapping
	Slide 23: bold italic n-step return
	Slide 24: bold italic n-step TD Prediction
	Slide 25: Example: Random Walk
	Slide 26: bold italic n-step SARSA: On-policy Control

