
Temporal Difference Learning

1



Reading

• Sutton, Richard S., and Barto, Andrew G. Reinforcement 
learning: An introduction. MIT press, 2018.

– http://www.incompleteideas.net/book/the-book-2nd.html

– Chapters 6.1-6.4, 7

• David Silver lecture on Dynamic Programming

– https://www.youtube.com/watch?v=PnHCvfgC_ZA&t=585s

– Second part of the lecture (on TD learning)
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Overview

• Dynamic programming (DP) requires full knowledge of the 
underlying MDP

–Only possible for simple systems

• Monte Carlo methods require a lot of data to estimate state 
values

–Also, not really online since need to wait for each episode to 
finish (and get the final reward)
• Some tasks are continuous, others have very long episodes

– Re-estimating state values for adapting policies requires yet 
more data

• Temporal Difference (TD) learning is the best of both worlds

– Essentially a hybrid approach between the two

–Main idea behind Q-learning also 3



Online State Value Estimation

• Suppose we have a fixed policy 𝜋 and would like to estimate 
state values 𝑣𝜋(𝑠)

• Suppose we start with some estimates 𝑉(𝑠) and would like to 
update them online

• With Monte Carlo methods, we need to wait until the end of 
each episode

–Already saw the incremental (off-policy) implementation:

𝑉𝑘(𝑠) = 𝑉𝑘−1 𝑠 +
𝜌𝑡:𝑇,𝑘

σ𝑗=1
𝑘 𝜌𝑡:𝑇,𝑗

𝐺𝑡,𝑘 − 𝑉𝑘−1 𝑠

• Can replace the 𝜌 term with a “learning rate” 𝛼

𝑉𝑘(𝑠) = 𝑉𝑘−1 𝑠 + 𝛼 𝐺𝑡,𝑘 − 𝑉𝑘−1 𝑠

–where 𝛼 is now a hyperparameter
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Online State Value Estimation

• Suppose we don’t want to wait until the end of the episode

– i.e., instead of using 𝐺𝑡, we’d like to use each 𝑅𝑡

– Can update policy after every step (much more efficient)

• In Monte Carlo learning, the value estimate is updated based 
on the difference between new return and current estimate

𝛼 𝐺𝑡,𝑘 − 𝑉𝑘−1 𝑠

• How do we adapt this idea to the case of a one-step reward?

–What property does 𝑣𝜋 have?

– Bellman equation: 𝑣𝜋 𝑠 = 𝔼𝜋 𝑅𝑡+1 + 𝛾𝑣𝜋 𝑆𝑡+1 𝑆𝑡 = 𝑠

– Can replace the return with a bootstrapped estimate:
𝑅𝑡+1 + 𝛾𝑉𝑘−1 𝑆𝑡+1
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TD State Value Estimation

• Update 𝑉(𝑆𝑡) after each step in an episode
𝑉′ 𝑆𝑡 = 𝑉 𝑆𝑡 + 𝛼 𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉 𝑆𝑡

• Called a bootstrapping method because it is based in part on 
our existing estimates
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TD as a hybrid method

• Similar to MC, TD updates estimates based on the difference 
between new and predicted data

–A standard approach in general estimation theory

– In some sense, this is a Bayesian method
• Our bootstrapped estimate of 𝑉(𝑆𝑡) is the prior

• TD is also similar to DP, since it uses the Bellman equation

–Makes use of the Markov property and the MDP structure

– Implicitly estimating the MDP structure

• We’ll see that TD has hyper-parameters that can shift it along 
the “line” between DP and MC
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Example: Driving Home

• Suppose you leave your office at 6 on Friday

– You have an ETA from previous trips

–However, unforeseen events delay you

• You have pre-existing predicted time-to-go’s for each situation 
(state)
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Example: Driving Home

• TD allows you to update your estimates after each event

– E.g., you reach the car, and it is raining
• You update your ETA based on the new information

• MC may introduce very large changes since it doesn’t factor in 
intermediate states

–Value updates may have great variance
• An outlier data point, e.g., a slow truck, may cause a big change in 

the MC estimates
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Advantages of TD Prediction

• No need to know the MDP, unlike DP

• Can be performed online, unlike Monte Carlo methods

• Usually more data-efficient than Monte Carlo methods since 
current estimate 𝑉(𝑆𝑡) can act as a prior

• Can update the state values after every step

–May bring significant benefits if we also adapt the policy

–A better policy may lead to seeing better rewards and faster 
learning overall

• MC minimizes the square error on the training set

– TD converges to the maximum-likelihood estimate

• Both MC and TD converge to the true values given enough data

– Proof is a bit technical, relies on stochastic processes 10



Advantages of TD Prediction, Example

• Consider the following Markov Reward Process

– There’s a 0.5 chance of taking each transition

– Reward of 1 only when we reach the right square

• What are the values of the various states?

– Clearly, 𝑣 𝐶 = 0.5 (equal chance of reaching each side)

–Use matrix form of Bellman equation: 𝑣 𝒔 = 𝑹 + 𝑷𝑣(𝒔)

– Where 𝑷 =

1 0 0 0 0 0 0
0.5 0 0.5 0 0 0 0
0 0.5 0 0.5 0 0 0
0 0 0.5 0 0.5 0 0
0 0 0 0.5 0 0.5 0
0 0 0 0 0.5 0 0.5
0 0 0 0 0 0 1

, 𝑹 =

0
0
0
0
0

0.5
0 11



Advantages of TD Prediction, Example

• Consider the following Markov Reward Process

– There’s a 0.5 chance of taking each transition

– Reward of 1 only when we reach the right square

• Need to use iterative policy evaluation method

–Why?

–Matrix 𝑰 − 𝑷 is not invertible
• Has an eigenvalue of 0

• Without discounting, state values are: 

𝑣𝜋 𝐶 = 0.5, 𝑣𝜋 𝐴 =
1

6
, 𝑣𝜋 𝐵 =

2

6
, 𝑣𝜋 𝐷 =

4

6
, 𝑣𝜋 𝐸 =

5

6
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Advantages of TD Prediction, Example

• Consider the following Markov Chain (with 0.5 chance of taking 
each transition)

–Without discounting, state values are:

𝑣𝜋 𝐶 = 0.5, 𝑣𝜋 𝐴 =
1

6
, 𝑣𝜋 𝐵 =

2

6
, 𝑣𝜋 𝐷 =

4

6
, 𝑣𝜋 𝐸 =

5

6
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episodes



TD Convergence Properties

• How does the learning rate 𝛼 affect convergence?

– Smaller 𝛼 means slower convergence

– Larger 𝛼 means faster convergence but algorithm converges 
with bigger estimation error

• In order to truly converge to the optimal values, one needs to 
decrease 𝛼 progressively

–Will discuss in more detail when we get to Q learning
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TD Batch Estimation

• Suppose we have fixed data from 𝑁 episodes

– Each episode is the usual 𝑆1, 𝐴1, 𝑅2, …

• Can apply TD estimation in batch fashion

– Iterate through the episodes until convergence

– TD guaranteed to converge

–Guaranteed to converge to the true values as 𝑁 → ∞
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Example: Difference between MC and TD

• Suppose we have an unknown MDP and observe the following 
8 episodes with rewards

• 𝐴, 0, 𝐵, 0    𝐵, 1

• 𝐵, 1     𝐵, 1

• 𝐵, 1     𝐵, 1

• 𝐵, 1     𝐵, 0

• What is your guess for the value at 𝐵? 

–A guess of 6/8 seems reasonable

• What is your guess for the value at 𝐴?

– Both 6/8 and 0 seem reasonable
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Example: Difference between MC and TD

• Suppose we have an unknown MDP and observe the following 
8 episodes with rewards

• 𝐴, 0, 𝐵, 0    𝐵, 1

• 𝐵, 1     𝐵, 1

• 𝐵, 1     𝐵, 1

• 𝐵, 1     𝐵, 0

• Both MC and TD output 6/8 for 𝑣(𝐵)

–Why?

–When we have a terminal state, TD is essentially MC

• If you use a constant 𝛼, you won’t actually converge

–Will bounce around 6/8

– In true MC, 𝛼 = 1/(1 + 𝑘)
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Example: Difference between MC and TD, cont’d

• Suppose we have an unknown MDP and observe the following 
8 episodes with rewards

• 𝐴, 0, 𝐵, 0    𝐵, 1

• 𝐵, 1     𝐵, 1

• 𝐵, 1     𝐵, 1

• 𝐵, 1     𝐵, 0

• MC will output 0 for 𝑣(𝐴)

–Why?

–Only run that visited 𝐴 had a return of 0
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Example: Difference between MC and TD, cont’d

• Suppose we have an unknown MDP and observe the following 
8 episodes with rewards

• 𝐴, 0, 𝐵, 0    𝐵, 1

• 𝐵, 1     𝐵, 1

• 𝐵, 1     𝐵, 1

• 𝐵, 1     𝐵, 0

• TD will output 6/8 for 𝑣(𝐴)

– Why?

– Eventually, 𝑉(𝐵) will converge to 6/8

–When we process episode 1 after that (with 𝛼 = 0.1):
• (Assuming currently 𝑉 𝐴 = 0 for simplicity)

𝑉′ 𝐴 = 𝑉 𝐴 + 𝛼 0 + 𝑉 𝐵 − 𝑉 𝐴 = 3/40

– Keep iterating and 𝑉(𝐴) will bounce around 𝑉(𝐵)
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SARSA: On-policy TD Control

• On-policy control idea is the same as before

– Estimate the state/action values

– For each state, choose the action with the highest value

• Action value recursion is the same as the state one:
𝑄′ 𝑆𝑡 , 𝐴𝑡 = 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼 𝑅𝑡+1 + 𝛾𝑄(𝑆𝑡+1, 𝐴𝑡+1) − 𝑄 𝑆𝑡 , 𝐴𝑡

– Requires also knowing the next action 𝐴𝑡+1

• This makes it on-policy

–Uses every quintuplet 𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡+1, 𝑆𝑡+1, 𝐴𝑡+1

• Hence the name

• To ensure exploration, still need 𝜖-greedy policies
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SARSA: On-policy TD Control, cont’d

• After every step, alternate between policy evaluation and 
policy iteration

• Guaranteed to converge

– (will see a sketch of the proof for Q-learning)
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𝒏-step bootstrapping

• MC methods wait for the return at the end of the episode

• TD updates its estimates and policies after every step

• TD learning may be noisy as it updates estimate too frequently

– Smoothing over multiple steps would bring better results

• Can we have something in between?

– Something that updates estimates/policies after 𝑛 steps?

– Yes, 𝑛-step bootstrapping!

– Same idea as TD learning but applied over 𝑛 steps
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𝒏-step return

• The MC return is
𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + ⋯ + 𝛾𝑇−𝑡−1𝑅𝑇

• The TD return is just 𝑅𝑡+1

• What is the 𝑛-step TD return?
𝐺𝑡:𝑡+𝑛 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + ⋯ + 𝛾𝑛−1𝑅𝑡+𝑛

• The MC evaluation recursion is

𝑉′ 𝑆𝑡 = 𝑉 𝑆𝑡 + 𝛼 𝐺𝑡 − 𝑉 𝑆𝑡

• The TD recursion is

𝑉′ 𝑆𝑡 = 𝑉 𝑆𝑡 + 𝛼 𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 − 𝑉 𝑆𝑡  

• What is the 𝑛-step recursion?

𝑉′ 𝑆𝑡 = 𝑉 𝑆𝑡 + 𝛼 𝐺𝑡:𝑡+𝑛 + 𝛾𝑛𝑉 𝑆𝑡+𝑛 − 𝑉 𝑆𝑡  
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𝒏-step TD Prediction

• What is the 𝑛-step recursion?

𝑉′ 𝑆𝑡 = 𝑉 𝑆𝑡 + 𝛼 𝐺𝑡:𝑡+𝑛 + 𝛾𝑛𝑉 𝑆𝑡+𝑛 − 𝑉 𝑆𝑡  

• Note that we need to wait for 𝑛 steps to receive 𝐺𝑡:𝑡+𝑛

–As 𝑛 → ∞, 𝑛-step TD converges to MC

• Larger 𝑛 allow us to get a better estimate of 𝑣𝜋(𝑠)

–Adding stability at the expense of slower convergence
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Example: Random Walk

• Recall random walk example

– Suppose we have 19 states instead of 5, i.e., 9 on each side

–And suppose reward is -1 on the left

• Lowest error for 𝑛 = 4

– Best trade-off in this
case

• MC (𝑛 = ∞) is pretty
much the worst
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𝒏-step SARSA: On-policy Control

• Same idea as before

– Estimate the state/action values

– For each state, choose the action with the highest value

• Action value recursion is the same as the state one:
𝑄′ 𝑆𝑡 , 𝐴𝑡 = 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼 𝐺𝑡:𝑡+𝑛 + 𝛾𝑛𝑄(𝑆𝑡+𝑛, 𝐴𝑡+𝑛) − 𝑄 𝑆𝑡 , 𝐴𝑡
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