
Fully-Connected Neural Networks

1

Reading

• Deep Learning: chapters 6.1-6.4

– https://www.deeplearningbook.org/contents/mlp.html

• An overview of feedforward neural networks

–Many, many other types nowadays…

2

https://www.deeplearningbook.org/contents/mlp.html
https://www.deeplearningbook.org/contents/mlp.html

Overview

• Neural networks have been around for a while

– Initially developed in the 1940s

– Earlier attempts suffered from insufficient computational
power (for training purposes) and insufficient data
(overfitting)

• Neural networks became popular (again) in the early 2010s

• In the early 2010s, Krizhevsky et al. noticed that one could use
GPUs to train very large neural networks on large datasets

– That sparked a decade of frantic improvements

3

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional

neural networks." Advances in neural information processing systems 25 (2012).

Feedforward Neural Networks

• Also known as multi-layer perceptrons

–Old name, at least from the 1960’s

• The term “deep neural networks” is essentially rebranding

–Modern networks are deeper than ever, however

– Term “neural” is (very) loosely inspired by neuroscience

• The term “feedforward” means that computation happens
from left to right in network, without any feedback

4

NN terminology

Inputs OutputsHidden Layers

𝑥1

𝑥2

𝑥3

5

Neuron

First Layer

𝑦1

𝑦2

NNs as functions

• Standard ML model
𝑦 = 𝑓 𝒙; 𝜽

–where 𝒙 are the inputs (e.g., pixels), 𝑦 are the outputs (e.g.,
labels), 𝜽 are the parameters to be optimized

• Can be written as a composition of its 𝐿 hidden layers
𝑓 𝒙; 𝜽 = 𝑓𝐿 ∘ 𝑓𝐿−1 ∘ ⋯ ∘ 𝑓1(𝒙)

6

Make each layer linear?

𝑥1

𝑥2

𝑥3

𝑦1

𝑦2

7

Make each layer linear?

𝑥1

𝑥2

𝑥3

𝑦1

𝑦2

𝑤1

𝑤2

𝑤3

𝑛

8

What’s wrong with this?

Limitations of linear models

• Learning XOR function with a linear classifier

–Data is 0,0 , 0 , 0,1 , 1 , 1, 0 , 1 , 1, 1 , 0

• Learn 𝑦 = 𝒘𝑇𝒙, using least squares

• Recall that

𝒘∗ = 𝑿𝑇𝑿
−1

𝑿𝑇𝒚

=
0 0 1 1
0 1 0 1

0 0
0 1
1 0
1 1

−1

1
1

9

Limitations of linear models, cont’d

• Learning XOR function with a linear classifier

–Data is 0,0 , 0 , 0,1 , 1 , 1, 0 , 1 , 1, 1 , 0

• Learn 𝑦 = 𝒘𝑇𝒙, using least squares

• Recall that

𝒘∗ = 𝑿𝑇𝑿
−1

𝑿𝑇𝒚

=
2 1
1 2

−1
1
1

 =

2

3
−

1

3

−
1

3

2

3

1
1

=
1/3
1/3

10

Output set is {0, 1/3, 1/3, 2/3}

Limitations of linear models, cont’d

• Learning XOR function with a linear classifier

–Data is 0,0 , 0 , 0,1 , 1 , 1, 0 , 1 , 1, 1 , 0

• Learn 𝑦 = 𝒘𝑇𝒙, using least squares

• Recall that

𝒘∗ = 𝑿𝑇𝑿
−1

𝑿𝑇𝒚

=
2 1
1 2

−1
1
1

 =

2

3
−

1

3

−
1

3

2

3

1
1

=
1/3
1/3

11

For any threshold, at least one mistake

0 1

11

Threshold at 1/4

1

Could output {0,1} by thresholding

Output set is {0, 1/3, 1/3, 2/3}

Add small non-linearity

Inputs OutputsHidden Layers

𝑥1

𝑥2

𝑥3

𝑦1

𝑦2

𝑤1

𝑤2

𝑤3

𝑛

𝑛 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3𝑎()

Common activations include:
• Relu: 𝑎 𝑥 = max 0, 𝑥

• sigmoid: 𝑎 𝑥 =
1

1+𝑒−𝑥

12

NNs for XOR

• Consider the NN

𝑓 𝒙 = 1 −2 ∗ 𝑅𝑒𝐿𝑈
1 1
1 1

𝒙 +
0

−1

13

1

With a threshold of 0.5

No linear model can learn this decision space

Why neural networks?

• Universal function approximators1

–Given enough neurons (even with a single layer), a NN can
approximate any continuous function

–Many function classes have this property, however

• Quick training

– Computing derivates is very efficient on GPUs (more later)

• They work well in practice

–Often, no setup is necessary (no need to design special
features, losses)

14

1Hornik, Kurt; Tinchcombe, Maxwell; White, Halbert (1989). Multilayer Feedforward Networks are Universal

Approximators (PDF). Neural Networks. 2. Pergamon Press. pp. 359–366.

Neural Network Design: Architecture Choice

• “Architecture” refers to the overall number of layers, neurons,
connections and activation functions

• So far, we’ve only seen fully-connected NNs

–We’ll also discuss convolutional NNs (CNNs)

–Many, many other classes of NNs

• Most NN architectures are universal approximators

– So why choose one over others?

• Some architectures more efficient for certain tasks

– Convolution is good for detecting edges/obstacles in images

– Recurrent architectures have state (e.g., good for language)

15

Fully-Connected Architecture Choice

• Even if using a fully-connected NN, there’s still a lot of choice

–How many neurons? How many layers? How to distribute
neurons across layers?

• If you’re having trouble training the network, the issue is rarely
the architecture

–Maybe the features aren’t sufficiently descriptive

–Maybe the features need to be normalized

–Maybe you need more data

–Always start with small and simple architectures!
• 2 layers of 100 neurons each will get you far in life

• Once you understand the problem, you can make the architecture
more complex

• Don’t expect gains from bigger architectures simply due to size
16

NN Design: Activation Function

• No general consensus on choice of activation function since all
are universal approximators

• ReLUs are most widely used due to their simplicity and
efficient training

• Sigmoids are the original activation function

– tanh is closely related

tanh 𝑥 =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

17

More Activation Functions

• leaky ReLU

• ELU

• Softplus

18

Choosing the right activation function

• ReLUs are usually the default choice since computing gradients
is very efficient

–However, more prone to vanishing gradients sometimes

• Leaky ReLUs, ELUs and others try to solve ReLU’s vanishing
gradient problem, but are not as widely used

• Sigmoid/tanh have gone slightly out of fashion for very deep
neural networks

–Mostly due to slow training, but also slightly worse
performance

19

NN Design: Output layer

• Output layer depends on the learning task and loss

• If task is regression, a linear last layer may be OK

– Last layer similar to linear regression

–Hidden layers transform features into linearly separable
features

• If task is classification, typically one has as many output
neurons as there are classes

–How do we use such an output layer for classification?

– Pick the neuron with highest value

• Given an input 𝒙, let 𝐹 𝒙 ∈ ℝ𝐿 be the output layer

– The NN’s output is then
𝑓 𝒙 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 𝐹(𝒙)

20

Softmax output layer

• Often, we not only want to predict a label but we also want to
predict the probabilities of each class, given an input 𝒙

• With a pure linear layer, it is hard to enforce this property

• How can one do it in the case of 2 labels?

– Logistic regression, i.e., one output neuron with a sigmoid
activation

• How about multiple labels?

• Softmax!

–Generalization of sigmoid to multi-label classification

• For an input 𝒙, let 𝑧𝑖 = 𝐹𝑖(𝒙) be the 𝑖𝑡ℎ output neuron. Then

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑧𝑖 =
exp(𝑧𝑖)

σ𝑗 exp(𝑧𝑗)
21

Softmax output layer, cont’d

• Softmax normalizes last layer such that

– all values are between 0 and 1

– all values sum up to 1

– essentially outputs are probabilities for each label
• Though probabilities are often miscalibrated

• Softmax also makes training easier since it’s a smooth function

• Will talk more about training later

22

Training NNs: the Loss Function

• For any classifier type, we want to find the specific function
that best fits the training data

• The loss function formalizes this goal during training

• There are a few popular loss functions

– Least squares (more common for regression tasks)

min
𝜽

෍

𝑖=1

𝑁

𝑦𝑖 − 𝑓(𝒙𝑖; 𝜽) 2

–Negative log likelihood (NLL):

min
𝜽

− ෍

𝑖=1

𝑁

log ℙ𝑚𝑜𝑑𝑒𝑙 𝑦𝑖 𝒙𝑖 ; 𝜽

23

Maximizing data likelihood

• Suppose we want the NN to learn the true ℙ 𝑌 = 𝑦 𝑿 = 𝒙

– i.e., 𝐹𝑦 𝒙 ≈ ℙ 𝑌 = 𝑦 𝑿 = 𝒙

–where 𝐹𝑦 is the 𝑦𝑡ℎ output (softmax) neuron

• Given a dataset, the true conditional likelihood decomposes as

ℙ 𝑦1, … , 𝑦𝑁|𝒙1, … , 𝒙𝑁 = ෑ

𝑖=1

𝑁

ℙ 𝑦𝑖|𝒙𝑖

–Data is IID

• Pick the NN that maximizes the conditional likelihood of the
data (predicted by the model):

𝑎𝑟𝑔𝑚𝑎𝑥𝜽 ෑ

𝑖=1

𝑁

ℙ𝑚𝑜𝑑𝑒𝑙 𝑦𝑖|𝒙𝑖; 𝜽

24

Maximizing log likelihood

• Instead of maximizing the likelihood, we are actually going to
maximize the logarithm of likelihood

𝐿𝐿 = log ෑ

𝑖=1

𝑁

ℙ𝑚𝑜𝑑𝑒𝑙 𝑦𝑖|𝒙𝑖; 𝜽

• Claim: the 𝜽 that maximizes the likelihood also maximizes the
log-likelihood

–Why?

– Logarithm is monotonic

– So maximizing the log-likelihood is the same as maximizing
the likelihood

25

Minimizing the negative log-likelihood

𝐿𝐿 = log ෑ

𝑖=1

𝑁

ℙ𝑚𝑜𝑑𝑒𝑙 𝑦𝑖|𝒙𝑖; 𝜽 = ෍

𝑖=1

𝑁

log ℙ𝑚𝑜𝑑𝑒𝑙 𝑦𝑖|𝒙𝑖; 𝜽

• Finally, ML people like to minimize stuff, so we negate the LL

𝑁𝐿𝐿 = − ෍

𝑖=1

𝑁

log ℙ𝑚𝑜𝑑𝑒𝑙 𝑦𝑖|𝒙𝑖; 𝜽

= − ෍

𝑖=1

𝑁

log 𝐹𝑦𝑖
𝒙𝑖 ; 𝜽

• This is the negative log-likelihood loss

26

Other Loss Functions: Cross-entropy

• Cross-entropy between “training data” distribution and
predicted NN distribution

• The “training data” distribution is just a uniform distribution
over the training data, i.e.,

ℙ𝑑𝑎𝑡𝑎 𝑿 = 𝒙𝑖 , 𝑌 = 𝑦𝑖 =
1

𝑁
, ∀𝑖

• Similarly, the conditional “data” distribution is
ℙ𝑑𝑎𝑡𝑎 𝑌 = 𝑦𝑖 𝑿 = 𝒙𝑖 = 1

–And ℙ𝑑𝑎𝑡𝑎 𝑌 = 𝑗 𝑿 = 𝒙𝑖 = 0 for 𝑗 ≠ 𝑦𝑖

• The predicted NN (conditional) distribution is the output
(softmax) layer

ℙ𝑚𝑜𝑑𝑒𝑙 𝑌 = 𝑦𝑖 𝑿 = 𝒙𝑖 = 𝐹𝑦𝑖
(𝒙𝑖)

27

Cross entropy, cont’d

• The cross-entropy loss is defined as

𝐻 ℙ𝑑𝑎𝑡𝑎 , ℙ𝑚𝑜𝑑𝑒𝑙 = − ෍

(𝒙𝑖,𝑦𝑖)

ℙ𝑑𝑎𝑡𝑎 𝑦𝑖 𝒙𝑖 log ℙ𝑚𝑜𝑑𝑒𝑙 𝑦𝑖 𝒙𝑖

• Correspondingly, the minimization problem is

min
𝜽

− ෍

(𝒙𝑖,𝑦𝑖)

ℙ𝑑𝑎𝑡𝑎 𝑦𝑖 𝒙𝑖 log 𝐹𝑦𝑖
𝒙𝑖; 𝜽

• Note that this is the same as NLL

– First note that ℙ𝑑𝑎𝑡𝑎 𝑦𝑖|𝒙𝑖 = 1 by definition
• Since ℙ𝑑𝑎𝑡𝑎 𝑌 ≠ 𝑦𝑖 𝑿 = 𝒙𝑖 = 0

– Thus the loss becomes

− ෍

𝒙𝑖,𝑦𝑖

log 𝐹𝑦𝑖
𝒙𝑖; 𝜽 = − ෍

𝒙𝑖,𝑦𝑖

log ℙ𝑚𝑜𝑑𝑒𝑙 𝑦𝑖 𝒙𝑖 ; 𝜽

28

Putting it all together

• In a supervised classification task, you are given a labelled
dataset 𝒙1, 𝑦1 , … , 𝒙𝑁, 𝑦𝑁

• To train a NN classifier, perform the following tasks:

1. Pick a NN architecture

2. Pick a training loss

3. Pick a training algorithm (more on this next)

4. Iterate on the above depending on where improvements are
necessary

• Most of these details are handled by the deep learning
libraries, but it’s important to understand what happens under
the hood

29

	Slide 1: Fully-Connected Neural Networks
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: Feedforward Neural Networks
	Slide 5: NN terminology
	Slide 6: NNs as functions
	Slide 7: Make each layer linear?
	Slide 8: Make each layer linear?
	Slide 9: Limitations of linear models
	Slide 10: Limitations of linear models, cont’d
	Slide 11: Limitations of linear models, cont’d
	Slide 12: Add small non-linearity
	Slide 13: NNs for XOR
	Slide 14: Why neural networks?
	Slide 15: Neural Network Design: Architecture Choice
	Slide 16: Fully-Connected Architecture Choice
	Slide 17: NN Design: Activation Function
	Slide 18: More Activation Functions
	Slide 19: Choosing the right activation function
	Slide 20: NN Design: Output layer
	Slide 21: Softmax output layer
	Slide 22: Softmax output layer, cont’d
	Slide 23: Training NNs: the Loss Function
	Slide 24: Maximizing data likelihood
	Slide 25: Maximizing log likelihood
	Slide 26: Minimizing the negative log-likelihood
	Slide 27: Other Loss Functions: Cross-entropy
	Slide 28: Cross entropy, cont’d
	Slide 29: Putting it all together

