Fully-Connected Neural Networks

Reading

* Deep Learning: chapters 6.1-6.4
— https://www.deeplearningbook.org/contents/mlp.html

 An overview of feedforward neural networks
— Many, many other types nowadays...

https://www.deeplearningbook.org/contents/mlp.html
https://www.deeplearningbook.org/contents/mlp.html

Overview

 Neural networks have been around for a while
— Initially developed in the 1940s

— Earlier attempts suffered from insufficient computational
power (for training purposes) and insufficient data
(overfitting)

* Neural networks became popular (again) in the early 2010s

* In the early 2010s, Krizhevsky et al. noticed that one could use
GPUs to train very large neural networks on large datasets

—That sparked a decade of frantic improvements

Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional
neural networks." Advances in neural information processing systems 25 (2012).

Feedforward Neural Networks

* Also known as multi-layer perceptrons
— Old name, at least from the 1960’s

O =SSR\
A’i*.,‘\,:y (X
OGN D

(3 S V7AN"Z
e "ol
* The term “deep neural networks” is essentially rebranding
— Modern networks are deeper than ever, however

—Term “neural” is (very) loosely inspired by neuroscience

* The term “feedforward” means that computation happens
from left to right in network, without any feedback

NN terminology

Y= ()
% 7
RGP

7

NNs as functions

e Standard ML model
y=f(x0)

—where x are the inputs (e.g., pixels), y are the outputs (e.g.,
labels), @ are the parameters to be optimized

* Can be written as a composition of its L hidden layers

fx;0) =fpofi_100fi(x)

Make each layer linear?

Make each layer linear?

What’s wrong with this?

Limitations of linear models

* Learning XOR function with a linear classifier

—Datais {((0,0),0),((0,1),1),((1,0),1),((1, 1) 0)}

e Learn y = w'x, using least squares

e Recall that
w' = (XTX)"
0
_ O 0 1 1}]10
O 1 0 111
1

IHOF—\OI

1 |

Il

1

— -

Limitations of linear models, cont’d

* Learning XOR function with a linear classifier

—Datais {((0,0),0),((0,1),1),((1,0),1),((1, 1) 0)}

* Learn y = w'x, using least squares I . |
* Recall that
w* = (X7X) " X"y
=(2 1)‘1[1] =
1 2 1 0 !
2
|3 73 []: [1/3]
1 2 1)1/3] outputsetis (0,1/3,1/3,2/3)
3 3.4

10

Limitations of linear models, cont’d

* Learning XOR function with a linear classifier

—Datais {((0,0),0),((0,1),1),((1,0),1),((1,1),0)}

* Learny = w! x, using least squares
e Recall that
~1
w* = (XTX) XTy

=(3 2 L

Threshold at 1/4

I

I 11 1 0
1

0 o 0 1

1
0

el
|

Il

1 1 1/3 Output set is {0,1/3,1/3,2/3)

Could output {0,1} by thresholding

For any threshold, at least one mistake
11

Add small non-linearity

1
Inputs Hidden Layers

n = a(Wlxl + szz + W3x3)
Common activations include:
e Relu: a(x) = max(0, x)

* sigmoid: a(x) = 1+2_x

Outputs

NNs for XOR

* Consider the NN
f(x) =[1 =2]*ReLU (H 1 X+ [_01])

i

With a threshold of 0.5

No linear model can learn this decision space

13

Why neural networks?

* Universal function approximators'

— Given enough neurons (even with a single layer), a NN can
approximate any continuous function

— Many function classes have this property, however
* Quick training
— Computing derivates is very efficient on GPUs (more later)

* They work well in practice

— Often, no setup is necessary (no need to design special
features, losses)

"Hornik, Kurt; Tinchcombe, Maxwell; White, Halbert (1989). Multilayer Feedforward Networks are Universal
Approximators (PDF). Neural Networks. 2. Pergamon Press. pp. 359-366.

Neural Network Design: Architecture Choice

* “Architecture” refers to the overall number of layers, neurons,
connections and activation functions
* So far, we’ve only seen fully-connected NNs
— We’ll also discuss convolutional NNs (CNNs)
—Many, many other classes of NNs

* Most NN architectures are universal approximators
—So why choose one over others?

* Some architectures more efficient for certain tasks
— Convolution is good for detecting edges/obstacles in images
— Recurrent architectures have state (e.g., good for language)

Fully-Connected Architecture Choice

* Even if using a fully-connected NN, there’s still a lot of choice
—How many neurons? How many layers? How to distribute
neurons across layers?

* If you're having trouble training the network, the issue is rarely
the architecture

—Maybe the features aren’t sufficiently descriptive
—Maybe the features need to be normalized

— Maybe you need more data

— Always start with small and simple architectures!

e 2 layers of 100 neurons each will get you far in life

* Once you understand the problem, you can make the architecture
more complex

* Don’t expect gains from bigger architectures simply due to size

NN Design: Activation Function

* No general consensus on choice of activation function since all
are universal approximators

* RelLUs are most widely used due to their simplicity and
efficient training

* Sigmoids are the original activation function

—tanh is closely related

X X

et —e

eX +e X

tanh(x) =

More Activation Functions

* leaky RelLU
* ELU x

ale® —1)
» Softplus

J)=ay

x>0
r <0

/ fQ) = In(1 +)

104

18

Choosing the right activation function

e RelUs are usually the default choice since computing gradients
is very efficient

— However, more prone to vanishing gradients sometimes

* Leaky RelLUs, ELUs and others try to solve ReLU’s vanishing
gradient problem, but are not as widely used

 Sigmoid/tanh have gone slightly out of fashion for very deep
neural networks

— Mostly due to slow training, but also slightly worse
performance

NN Design: Output layer

* Output layer depends on the learning task and loss

If task is regression, a linear last layer may be OK
— Last layer similar to linear regression

— Hidden layers transform features into linearly separable
features

If task is classification, typically one has as many output
neurons as there are classes

—How do we use such an output layer for classification?
— Pick the neuron with highest value

* Given an input x, let F(x) € R be the output layer

—The NN’s output is then
f(x) = argmax; F(x)

Softmax output layer

* Often, we not only want to predict a label but we also want to
predict the probabilities of each class, given an input x

* With a pure linear layer, it is hard to enforce this property

e How can one do it in the case of 2 labels?

— Logistic regression, i.e., one output neuron with a sigmoid
activation

How about multiple labels?

Softmax!
— Generalization of sigmoid to multi-label classification

* For an input x, let z; = F;(x) be the it"* output neuron. Then
exp(z;)
Zj exp(z;)

softmax(z;) =

Softmax output layer, cont’d

* Softmax normalizes last layer such that
—all values are between O and 1
—all values sumupto 1
— essentially outputs are probabilities for each label

* Though probabilities are often miscalibrated

* Softmax also makes training easier since it’s a smooth function

* Will talk more about training later

Training NNs: the Loss Function

* For any classifier type, we want to find the specific function
that best fits the training data

* The loss function formalizes this goal during training

* There are a few popular loss functions
— Least squares (more common for regression tasks)

N
min » (i = f (x; 6))’
i=1
— Negative log likelihood (NLL):

N
min— " 10g(Pyoqelyili]; 0)

=1

Maximizing data likelihood

* Suppose we want the NN to learn the true P[Y = y|X = x]
—i.e., F,(x) = P|Y = y|X = x]

—where E, is the yt" output (softmax) neuron

* Given a dataset, the true conditional likelihood decomposes as
N

P[yll"'rlexl""rxN] — lp[yllxl]
=1

—Data is IID

e Pick the NN that maximizes the conditional likelihood of the
data (predicted by the model):

N
argmaxg 1_[ProgellVilxi; 0]

=1

Maximizing log likelihood

* Instead of maximizing the likelihood, we are actually going to
maximize the logarithm of likelihood

N
LL = log 1_[Proderyilxi; 6]

=1
* Claim: the 8 that maximizes the likelihood also maximizes the
log-likelihood
—Why?
— Logarithm is monotonic

— So maximizing the log-likelihood is the same as maximizing
the likelihood

Minimizing the negative log-likelihood

N N
LL =log 1_[Progerlyilxi; 0] | = Z log(Pmoger [yilxi; 0])
J =1

1=1

* Finally, ML people like to minimize stuff, so we negate the LL

N
NLL = =) 10g(Pmagerlyilx;]
=1

N
_ _z log(F,, (x;); 0)
i=1

* This is the negative log-likelihood loss

Other Loss Functions: Cross-entropy

* Cross-entropy between “training data” distribution and
predicted NN distribution

* The “training data” distribution is just a uniform distribution
over the training data, i.e.,

1.
Pdata[(X =x;,Y = yi)] = N,Vl

 Similarly, the conditional “data” distribution is
PaatalY = yil X =x;] =1
—And P, qlY = jlIX =x;] =0forj # y;
* The predicted NN (conditional) distribution is the output
(softmax) layer

PmogertlY = yilX = x;] = Fyi(xi)

Cross entropy, cont’d

* The cross-entropy loss is defined as

H(Pdata» IP)‘model) - = Z IPdata [Yilxi] log[[P)model[yilxi]]
(x3,Y:)
e Correspondingly, the minimization problem is

min— > Paaalyilxi]log[F (x;: 0)]
(x3,50)
* Note that this is the same as NLL
— First note that P;,:4(v;|x;) = 1 by definition
e Since Py qlY #yi|X=x;1=0
—Thus the loss becomes

= > 1og|B, @0 ==) ogProgalyilxil; 0)

(x3,y1) (x3,¥i)

Putting it all together

* |n a supervised classification task, you are given a labelled
dataset {(xli)’1); ey (xNi YN)}

* To train a NN classifier, perform the following tasks:
1. Pick a NN architecture

2. Pick a training loss

3. Pick a training algorithm (more on this next)

4. lterate on the above depending on where improvements are
necessary

* Most of these details are handled by the deep learning
libraries, but it’s important to understand what happens under
the hood

	Slide 1: Fully-Connected Neural Networks
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: Feedforward Neural Networks
	Slide 5: NN terminology
	Slide 6: NNs as functions
	Slide 7: Make each layer linear?
	Slide 8: Make each layer linear?
	Slide 9: Limitations of linear models
	Slide 10: Limitations of linear models, cont’d
	Slide 11: Limitations of linear models, cont’d
	Slide 12: Add small non-linearity
	Slide 13: NNs for XOR
	Slide 14: Why neural networks?
	Slide 15: Neural Network Design: Architecture Choice
	Slide 16: Fully-Connected Architecture Choice
	Slide 17: NN Design: Activation Function
	Slide 18: More Activation Functions
	Slide 19: Choosing the right activation function
	Slide 20: NN Design: Output layer
	Slide 21: Softmax output layer
	Slide 22: Softmax output layer, cont’d
	Slide 23: Training NNs: the Loss Function
	Slide 24: Maximizing data likelihood
	Slide 25: Maximizing log likelihood
	Slide 26: Minimizing the negative log-likelihood
	Slide 27: Other Loss Functions: Cross-entropy
	Slide 28: Cross entropy, cont’d
	Slide 29: Putting it all together

