
Fully-Connected Neural Networks
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Reading

• Deep Learning: chapters 6.1-6.4

– https://www.deeplearningbook.org/contents/mlp.html

• An overview of feedforward neural networks

–Many, many other types nowadays…
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Overview

• Neural networks have been around for a while

– Initially developed in the 1940s

– Earlier attempts suffered from insufficient computational 
power (for training purposes) and insufficient data 
(overfitting)

• Neural networks became popular (again) in the early 2010s

• In the early 2010s, Krizhevsky et al. noticed that one could use 
GPUs to train very large neural networks on large datasets

– That sparked a decade of frantic improvements
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Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional 

neural networks." Advances in neural information processing systems 25 (2012).



Feedforward Neural Networks

• Also known as multi-layer perceptrons

–Old name, at least from the 1960’s

• The term “deep neural networks” is essentially rebranding

–Modern networks are deeper than ever, however

– Term “neural” is (very) loosely inspired by neuroscience

• The term “feedforward” means that computation happens 
from left to right in network, without any feedback
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NN terminology

Inputs OutputsHidden Layers

𝑥1

𝑥2

𝑥3
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𝑦2



NNs as functions

• Standard ML model
𝑦 = 𝑓 𝒙; 𝜽

–where 𝒙 are the inputs (e.g., pixels), 𝑦 are the outputs (e.g., 
labels), 𝜽  are the parameters to be optimized

• Can be written as a composition of its 𝐿 hidden layers
𝑓 𝒙; 𝜽 = 𝑓𝐿 ∘ 𝑓𝐿−1 ∘ ⋯ ∘ 𝑓1(𝒙)
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Make each layer linear?
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Make each layer linear?
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What’s wrong with this?



Limitations of linear models

• Learning XOR function with a linear classifier

–Data is 0,0 , 0 , 0,1 , 1 , 1, 0 , 1 , 1, 1 , 0

• Learn 𝑦 = 𝒘𝑇𝒙, using least squares

• Recall that

𝒘∗ = 𝑿𝑇𝑿
−1

𝑿𝑇𝒚 

=
0 0 1 1
0 1 0 1

0 0
0 1
1 0
1 1

−1

1
1
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Limitations of linear models, cont’d

• Learning XOR function with a linear classifier

–Data is 0,0 , 0 , 0,1 , 1 , 1, 0 , 1 , 1, 1 , 0

• Learn 𝑦 = 𝒘𝑇𝒙, using least squares

• Recall that

𝒘∗ = 𝑿𝑇𝑿
−1

𝑿𝑇𝒚 
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Output set is {0, 1/3, 1/3, 2/3}



Limitations of linear models, cont’d

• Learning XOR function with a linear classifier

–Data is 0,0 , 0 , 0,1 , 1 , 1, 0 , 1 , 1, 1 , 0

• Learn 𝑦 = 𝒘𝑇𝒙, using least squares

• Recall that

𝒘∗ = 𝑿𝑇𝑿
−1
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For any threshold, at least one mistake

0 1

11

Threshold at 1/4

1

Could output {0,1} by thresholding

Output set is {0, 1/3, 1/3, 2/3}



Add small non-linearity

Inputs OutputsHidden Layers

𝑥1

𝑥2

𝑥3

𝑦1

𝑦2

𝑤1

𝑤2

𝑤3

𝑛

𝑛 =  𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3𝑎( )

Common activations include:
• Relu: 𝑎 𝑥 = max 0, 𝑥

• sigmoid: 𝑎 𝑥 =
1

1+𝑒−𝑥
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NNs for XOR

• Consider the NN

𝑓 𝒙 = 1 −2 ∗ 𝑅𝑒𝐿𝑈
1 1
1 1

𝒙 +
0

−1
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1

With a threshold of 0.5

No linear model can learn this decision space



Why neural networks?

• Universal function approximators1

–Given enough neurons (even with a single layer), a NN can 
approximate any continuous function

–Many function classes have this property, however

• Quick training

– Computing derivates is very efficient on GPUs (more later)

• They work well in practice

–Often, no setup is necessary (no need to design special 
features, losses)
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Neural Network Design: Architecture Choice

• “Architecture” refers to the overall number of layers, neurons, 
connections and activation functions

• So far, we’ve only seen fully-connected NNs

–We’ll also discuss convolutional NNs (CNNs)

–Many, many other classes of NNs

• Most NN architectures are universal approximators

– So why choose one over others?

• Some architectures more efficient for certain tasks

– Convolution is good for detecting edges/obstacles in images

– Recurrent architectures have state (e.g., good for language)
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Fully-Connected Architecture Choice

• Even if using a fully-connected NN, there’s still a lot of choice

–How many neurons? How many layers? How to distribute 
neurons across layers?

• If you’re having trouble training the network, the issue is rarely 
the architecture

–Maybe the features aren’t sufficiently descriptive

–Maybe the features need to be normalized

–Maybe you need more data

–Always start with small and simple architectures!
• 2 layers of 100 neurons each will get you far in life

• Once you understand the problem, you can make the architecture 
more complex 

• Don’t expect gains from bigger architectures simply due to size
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NN Design: Activation Function

• No general consensus on choice of activation function since all 
are universal approximators

• ReLUs are most widely used due to their simplicity and 
efficient training

• Sigmoids are the original activation function

– tanh is closely related

tanh 𝑥 =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
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More Activation Functions

• leaky ReLU

• ELU

• Softplus
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Choosing the right activation function

• ReLUs are usually the default choice since computing gradients 
is very efficient

–However, more prone to vanishing gradients sometimes

• Leaky ReLUs, ELUs and others try to solve ReLU’s vanishing 
gradient problem, but are not as widely used

• Sigmoid/tanh have gone slightly out of fashion for very deep 
neural networks

–Mostly due to slow training, but also slightly worse 
performance
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NN Design: Output layer

• Output layer depends on the learning task and loss

• If task is regression, a linear last layer may be OK

– Last layer similar to linear regression

–Hidden layers transform features into linearly separable 
features

• If task is classification, typically one has as many output 
neurons as there are classes

–How do we use such an output layer for classification?

– Pick the neuron with highest value

• Given an input 𝒙, let 𝐹 𝒙 ∈ ℝ𝐿 be the output layer

– The NN’s output is then
𝑓 𝒙 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖  𝐹(𝒙)
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Softmax output layer

• Often, we not only want to predict a label but we also want to 
predict the probabilities of each class, given an input 𝒙

• With a pure linear layer, it is hard to enforce this property

• How can one do it in the case of 2 labels?

– Logistic regression, i.e., one output neuron with a sigmoid 
activation

• How about multiple labels?

• Softmax!

–Generalization of sigmoid to multi-label classification

• For an input 𝒙, let 𝑧𝑖 = 𝐹𝑖(𝒙) be the 𝑖𝑡ℎ output neuron. Then

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑧𝑖 =
exp(𝑧𝑖)

σ𝑗 exp(𝑧𝑗)
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Softmax output layer, cont’d

• Softmax normalizes last layer such that

– all values are between 0 and 1

– all values sum up to 1

– essentially outputs are probabilities for each label
• Though probabilities are often miscalibrated

• Softmax also makes training easier since it’s a smooth function

• Will talk more about training later
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Training NNs: the Loss Function

• For any classifier type, we want to find the specific function 
that best fits the training data

• The loss function formalizes this goal during training

• There are a few popular loss functions

– Least squares (more common for regression tasks)

min
𝜽

෍

𝑖=1

𝑁

𝑦𝑖 − 𝑓(𝒙𝑖; 𝜽) 2

–Negative log likelihood (NLL):

min
𝜽

− ෍

𝑖=1

𝑁

log ℙ𝑚𝑜𝑑𝑒𝑙 𝑦𝑖 𝒙𝑖 ; 𝜽
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Maximizing data likelihood

• Suppose we want the NN to learn the true ℙ 𝑌 = 𝑦 𝑿 = 𝒙

– i.e., 𝐹𝑦 𝒙 ≈ ℙ 𝑌 = 𝑦 𝑿 = 𝒙

–where 𝐹𝑦 is the 𝑦𝑡ℎ output (softmax) neuron

• Given a dataset, the true conditional likelihood decomposes as

ℙ 𝑦1, … , 𝑦𝑁|𝒙1, … , 𝒙𝑁 = ෑ

𝑖=1

𝑁

ℙ 𝑦𝑖|𝒙𝑖

–Data is IID

• Pick the NN that maximizes the conditional likelihood of the 
data (predicted by the model):

𝑎𝑟𝑔𝑚𝑎𝑥𝜽 ෑ

𝑖=1

𝑁

ℙ𝑚𝑜𝑑𝑒𝑙 𝑦𝑖|𝒙𝑖; 𝜽
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Maximizing log likelihood

• Instead of maximizing the likelihood, we are actually going to 
maximize the logarithm of likelihood

𝐿𝐿 = log ෑ

𝑖=1

𝑁

ℙ𝑚𝑜𝑑𝑒𝑙 𝑦𝑖|𝒙𝑖; 𝜽

• Claim: the 𝜽 that maximizes the likelihood also maximizes the 
log-likelihood

–Why?

– Logarithm is monotonic

– So maximizing the log-likelihood is the same as maximizing 
the likelihood
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Minimizing the negative log-likelihood

𝐿𝐿 = log ෑ

𝑖=1

𝑁

ℙ𝑚𝑜𝑑𝑒𝑙 𝑦𝑖|𝒙𝑖; 𝜽 = ෍

𝑖=1

𝑁

log ℙ𝑚𝑜𝑑𝑒𝑙 𝑦𝑖|𝒙𝑖; 𝜽

• Finally, ML people like to minimize stuff, so we negate the LL

𝑁𝐿𝐿 = − ෍

𝑖=1

𝑁

log ℙ𝑚𝑜𝑑𝑒𝑙 𝑦𝑖|𝒙𝑖; 𝜽

= − ෍

𝑖=1

𝑁

log 𝐹𝑦𝑖
𝒙𝑖 ; 𝜽  

• This is the negative log-likelihood loss
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Other Loss Functions: Cross-entropy

• Cross-entropy between “training data” distribution and 
predicted NN distribution

• The “training data” distribution is just a uniform distribution 
over the training data, i.e.,

ℙ𝑑𝑎𝑡𝑎 𝑿 = 𝒙𝑖 , 𝑌 = 𝑦𝑖 =
1

𝑁
, ∀𝑖

• Similarly, the conditional “data” distribution is
ℙ𝑑𝑎𝑡𝑎 𝑌 = 𝑦𝑖 𝑿 = 𝒙𝑖 = 1

–And ℙ𝑑𝑎𝑡𝑎 𝑌 = 𝑗 𝑿 = 𝒙𝑖 = 0 for 𝑗 ≠ 𝑦𝑖

• The predicted NN (conditional) distribution is the output 
(softmax) layer

ℙ𝑚𝑜𝑑𝑒𝑙 𝑌 = 𝑦𝑖 𝑿 = 𝒙𝑖 = 𝐹𝑦𝑖
(𝒙𝑖)
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Cross entropy, cont’d

• The cross-entropy loss is defined as

𝐻 ℙ𝑑𝑎𝑡𝑎 , ℙ𝑚𝑜𝑑𝑒𝑙 = − ෍

(𝒙𝑖,𝑦𝑖)

ℙ𝑑𝑎𝑡𝑎 𝑦𝑖 𝒙𝑖 log ℙ𝑚𝑜𝑑𝑒𝑙 𝑦𝑖 𝒙𝑖

• Correspondingly, the minimization problem is

min
𝜽

− ෍

(𝒙𝑖,𝑦𝑖)

ℙ𝑑𝑎𝑡𝑎 𝑦𝑖 𝒙𝑖 log 𝐹𝑦𝑖
𝒙𝑖; 𝜽

• Note that this is the same as NLL

– First note that ℙ𝑑𝑎𝑡𝑎 𝑦𝑖|𝒙𝑖 = 1 by definition
• Since ℙ𝑑𝑎𝑡𝑎 𝑌 ≠ 𝑦𝑖 𝑿 = 𝒙𝑖 = 0

– Thus the loss becomes

− ෍

𝒙𝑖,𝑦𝑖

log 𝐹𝑦𝑖
𝒙𝑖; 𝜽 = − ෍

𝒙𝑖,𝑦𝑖

log ℙ𝑚𝑜𝑑𝑒𝑙 𝑦𝑖 𝒙𝑖 ; 𝜽
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Putting it all together

• In a supervised classification task, you are given a labelled 
dataset 𝒙1, 𝑦1 , … , 𝒙𝑁, 𝑦𝑁

• To train a NN classifier, perform the following tasks:

1. Pick a NN architecture

2. Pick a training loss

3. Pick a training algorithm (more on this next)

4. Iterate on the above depending on where improvements are 
necessary

• Most of these details are handled by the deep learning 
libraries, but it’s important to understand what happens under 
the hood
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