
Optimization

1

Reading

• Deep Learning: chapters 4.3, 6.5, 8

– https://www.deeplearningbook.org/contents/optimization.
html

• Optimization overview, with a deep learning bias

2

https://www.deeplearningbook.org/contents/optimization.html
https://www.deeplearningbook.org/contents/optimization.html
https://www.deeplearningbook.org/contents/optimization.html

Optimization Overview

• Optimization is a very large research field (typically
taught/studied in engineering departments)

• Many tasks can be formulated as an optimization problem

–Allocating different people to different jobs to maximize
productivity

– Choosing the best control action for your autonomous car

– Finding the best parameters for your neural network

• Standard form
minimize

𝒙
 𝑓(𝒙)

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔 𝒙 ≤ 𝐶

• Optimization is either minimization or maximization

3

Optimization in ML

• The optimization problem in ML is indirect

–Want to perform well according to metric 𝑃 (e.g.,
classification accuracy) but optimize some loss 𝐿 (e.g., least
squares)

–Want to maximize performance on true data distribution
but can only maximize performance on sampled data

4

Empirical Risk Minimization

• Expected value of loss function is called risk in ML
𝐽 𝜽 = 𝔼 𝑿,𝑌 ~ℙ𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝐿(𝑓 𝑿; 𝜽 , 𝑌)

• Empirical risk is the average of the loss function over dataset

𝔼 𝑿,𝑌 ~ℙ𝑑𝑎𝑡𝑎
𝐿 𝑓 𝑿; 𝜽 , 𝑌 =

1

𝑁
෍

𝑖=1

𝑁

𝐿 𝑓 𝒙𝑖; 𝜽 , 𝑦𝑖

• ML is all about empirical risk minimization

• 2 challenges

– Formulating the right minimization problem
• Pick the architecture, loss, regularization, etc.

– Solving the minimization problem
• Find global optimum, scale well with more data, complex models

5

Setup

• A 3-input, 2-output network

– The inputs are 𝒙 = 𝑥1 𝑥2 𝑥3

– The parameters are
𝜽 = [𝑤111, 𝑤112, 𝑤113, 𝑤121, 𝑤122, 𝑤123, 𝑤211, 𝑤212, 𝑤221, 𝑤222]

–No offsets in this example

6

𝑥1

𝑥2

𝑥3

𝐹1(𝒙)

𝐹2(𝒙)

𝑤211
𝑤112

𝑤113

𝑤111

𝑤212

𝑛1

𝑛2

Some losses are better than others

• In classification, one is tempted to choose weights that
minimize a 0-1 loss (1 for incorrect classification, 0 for correct)

–However, picking the weights that minimize 0-1 loss is a
hard computational task

• Other losses often more efficient

– E.g., NLL is a smooth function of the data, which makes it
easier to minimize

• Cannot compute solution in closed form for any loss, e.g.,

𝑚𝑖𝑛𝜽

1

𝑁
෍

𝑖=1

𝑁

𝑦𝑖 − 𝑓(𝒙𝑖; 𝜽) 2

–Also, NN makes the loss functions non-convex

–Why would convexity be a nice property?
7

Gradient Descent Idea

• Section 4.3 in the book

–Gradient is the word for derivate in higher dimensions

• Some functions are easier to minimize than others

– E.g., convex functions are minimized when derivative is 0

• Hard to find root of derivative in most cases

• Also, most functions are not convex (including neural nets)

8

Gradient Descent, cont’d

• If you can’t find the root of the derivative, you can try to
iteratively minimize the function

– Start from some 𝑥, compute 𝑓′(𝑥) and make a step in the
opposite direction

–We know that 𝑓 𝑥 − 𝜖𝑓′ 𝑥 < 𝑓(𝑥) for small 𝜖

• 𝜖 is learning rate

9𝑥

𝑓′(𝑥)

Gradient Descent, cont’d

• If you can’t find the root of the derivative, you can try to
iteratively minimize the function

– Start from some 𝑥, compute 𝑓′(𝑥) and make a step in the
opposite direction

–We know that 𝑓 𝑥 − 𝜖𝑓′ 𝑥 < 𝑓(𝑥) for small 𝜖

• 𝜖 is learning rate

10𝑥

𝑥 − 𝜖𝑓′(𝑥)

𝑓′(𝑥)

Aside: Vector Calculus

• Suppose we are given a function 𝑓: ℝ𝑛 → ℝ

• Suppose we want to know the derivative of 𝑓

• When 𝑛 = 1, it is just the partial derivative 𝑓′ =
𝜕𝑓

𝜕𝑥

• When 𝑛 > 1, the derivative is a vector of all partial derivatives:

∇𝒙𝑓 =

𝜕𝑓

𝜕𝑥1…
𝜕𝑓

𝜕𝑥𝑛

– This is called the “gradient” of 𝑓

– The gradient is the multi-dimensional extension of the
derivative

11

Gradient Descent, cont’d

• What about non-convex functions?

– Can easily get stuck in a local min

• What about saddle points?

–Derivative can be very small

–Major concern in high-dimensional spaces

• Despite all these limitations, neural network training usually
finds a good local minimum

– Beware: larger networks can easily minimize the loss and
overfit (more on this next)

12

Source: wikipedia

Back Propagation

• An algorithm for computing gradients quickly

– This is what makes deep learning so efficient

–No need to worry about it too much – implemented in deep
learning libraries

– But good to understand it when choosing an
architecture/loss combination

• Computing NN derivatives involves multiple repeated
expressions

– Backprop is an efficient way of reusing previously computed
values

13

Computing NN derivatives is a massive chain

rule

• Most derivates have interesting properties

• 𝜎′ 𝑥 = 𝜎 𝑥 1 − 𝜎 𝑥

• tanh′ 𝑥 = 1 − tanh2 𝑥

• 𝑅𝑒𝐿𝑈′(𝑥) = 𝑆𝑡𝑒𝑝 𝑥 ≔ ቊ
0 𝑖𝑓 𝑥 ≤ 0
1 𝑖𝑓 𝑥 > 0

• Most derivatives can be expressed in terms of the original
function

–Also appear multiple times

14

Example

• Suppose we have a two-neuron neural network with 3 inputs
and 2 outputs

– ReLU activation in hidden layer and linear last layer

• Suppose loss is least squares (assume 𝑦𝑖 ∈ 0,1)

1

𝑁
෍

𝑖=1

𝑁

𝑦𝑖 − 𝐹1(𝒙𝑖) 2 + 1 − 𝑦𝑖 − 𝐹2(𝒙𝑖)
2

15

𝑥1

𝑥2

𝑥3

𝐹1(𝒙)

𝐹2(𝒙)

𝑤211
𝑤112

𝑤113

𝑤111

𝑤212

𝑛1

𝑛2

Example, cont’d

• To compute the gradient, need to compute partial derivative
w.r.t. each weight

• Start with 𝑤111

• The partial derivative of the first term in the sum is
𝜕 𝑦𝑖 − 𝐹1(𝒙𝑖) 2

𝜕𝑤111
= −2 𝑦𝑖 − 𝐹1 𝒙𝑖

𝜕𝐹1 𝒙𝑖

𝜕𝑤111

𝜕𝐹1(𝒙𝑖)

𝜕𝑤111
=

𝜕(𝑤211𝑛1(𝒙𝑖) + 𝑤212𝑛2(𝒙𝑖))

𝜕𝑤111
= 𝑤211

𝜕𝑛1(𝒙𝑖)

𝜕𝑤111
𝜕𝑛1(𝒙𝑖)

𝜕𝑤111
=

𝜕𝑅𝑒𝐿𝑈(𝑤111𝑥𝑖1 + 𝑤112𝑥𝑖2 + 𝑤113𝑥𝑖3)

𝜕𝑤111

 = 𝑥𝑖1𝑆𝑡𝑒𝑝(𝑤111𝑥𝑖1 + 𝑤112𝑥𝑖2 + 𝑤113𝑥𝑖3)

16

Example, cont’d

• Thus, the partial derivative of the 1st term w.r.t. 𝑤111 is
−2 𝑦𝑖 − 𝐹1(𝒙𝑖) 𝑤211𝑥𝑖1𝑆𝑡𝑒𝑝(𝑤111𝑥𝑖1 + 𝑤112𝑥𝑖2 + 𝑤113𝑥𝑖3)

• The partial derivative of the 1st term w.r.t. 𝑤112 is
−2 𝑦𝑖 − 𝐹1(𝒙𝑖) 𝑤211𝑥𝑖2𝑆𝑡𝑒𝑝(𝑤111𝑥𝑖1 + 𝑤112𝑥𝑖2 + 𝑤113𝑥𝑖3)

• …

• Thus, the partial derivative of the 2nd term w.r.t. 𝑤111 is
−2 (1 − 𝑦𝑖) − 𝐹2(𝒙𝑖) 𝑤221𝑥𝑖1𝑆𝑡𝑒𝑝(𝑤111𝑥𝑖1 + 𝑤112𝑥𝑖2 + 𝑤113𝑥𝑖3)

• …

• Need to do this for all weights and for all datapoints

–Many repeated terms, especially for big NNs

17

General setup: one-hot encoding

• To make writing losses easier, the training labels are often
stored as one-hot encodings

• Suppose we have a label 𝑦𝑖

– The one-hot encoding is 𝒚𝑖 = [0 0 … 1 0 … 0]

–With a 1 in position 𝑦𝑖

• Thus, 𝒚𝑖 has the same dimension as the NN output layer

• Can now write least squares as:

෍

𝑖=1

𝑁

𝑭 𝑥𝑖 − 𝒚𝑖 2

2
= ෍

𝑖=1

𝑁

𝑭 𝑥𝑖 − 𝒚𝑖
𝑇(𝑭 𝑥𝑖 − 𝒚𝑖)

• Other losses can be written similarly

18

Computational Graphs

• Store all operations in a graph to be reused later

–Nodes represent intermediate variables

– Edges represent operations on variables

• Most derivatives appear multiple times

–Graph representation can save a lot of time

– Same idea as dynamic programming

• Gradient computation really involves two computations

– Forward propagation: compute the actual value of the loss

– Backward propagation: compute the gradient using the
chain rule

19

Example, forward propagation

20

𝑥1

𝑥2

𝑥3

𝑤111

𝑤112

𝑤113

𝑛1
𝐿

𝑛2
𝐿

…

𝑛1

𝑛2

𝑤211

𝑤212

𝐹1

… 𝐹2

𝑦

1 − 𝑦

𝐿1 𝐿1
2

𝐿2 𝐿2
2dot product

𝑅𝑒𝐿𝑈

𝑅𝑒𝐿𝑈

difference

dot product

difference

square

square

… …

Example, backward propagation (start)

21

𝑥1

𝑥2

𝑥3

𝑤111

𝑤112

𝑤113

𝑛1
𝐿

𝑛2
𝐿

…

𝑛1

𝑛2

𝑤211

𝑤212

𝐹1

… 𝐹2

𝐿1 𝐿1
2

𝐿2 𝐿2
2

𝑅𝑒𝐿𝑈

𝑅𝑒𝐿𝑈

square

square

𝑛1
𝐿𝑅

𝑅𝑒𝐿𝑈′

𝑦

1 − 𝑦
−2 𝑦𝑖 − 𝐹1(𝒙𝑖) 𝑤211𝑥𝑖1𝑆𝑡𝑒𝑝(𝑤111𝑥𝑖1 + 𝑤112𝑥𝑖2 + 𝑤113𝑥𝑖3)

dot product

difference

dot product

difference

Implementation

• Many optimizations to make gradient computation fast

– Linear operations performed on GPUs (gamers know why)

–Variables stored as tensors (high-dimensional matrices)

• Several popular deep learning libraries

–Mostly in python

– Tensorflow – a bit clunky, but fairly flexible

– Pytorch – a bit less flexible, but very easy to use

• You don’t need to worry about most of the low-level details in
this lecture when implementing NNs

–However, you need to have a good working knowledge of
the low-levels if you want your code to work

22

Minibatch Algorithms

• A major reason for the success of deep learning

• Computing the gradient over all examples each time is too
expensive

• What if use just a few examples per gradient computation?

• Randomly sample a few examples each time

– Sample called a minibatch

– Compute gradient on minibatch

–Algorithm called stochastic gradient descent (SGD)

23

SGD Properties

• Standard error of the gradient is
𝜎

𝑛

• 𝜎 is the true standard deviation for one example

• 𝑛 is the number of examples in the minibatch

– Standard error decreases slowly: 𝑂 1/ 𝑛

• Larger minibatches don’t bring significant benefits

• Using minibatches also useful when data has low natural
variance (why?)

–Not usually true, but many examples may be similar

• Entire minibatch can be processed in parallel on GPU

– The bottleneck is fitting all data in memory

• Overall, computation speedup offsets noise due to using a
minibatch

24

Epochs

• Ideally, each minibatch is selected randomly every time

–Nearby examples may often be correlated

– Impractical for big datasets

• Instead, we shuffle the dataset before training and then
process minibatches in order

– Each pass of the full dataset is called an epoch

–Other hyper-parameters may also change in between
epochs
• E.g., learning rate, regularization, etc.

25

Optimization Challenges

• Local Minima

• Gradient is ~0, so no progress can be made

• Local minima are very common

–One of the most impressive achievements of NNs is that
they are able to generalize well despite using suboptimal
weights

–A possible explanation for this phenomenon is that all local
minima have similar values

–A lot of research in this area

26

Optimization Challenges, cont’d

• Plateaus, saddles

• More problematic than local minima

–Gradient is also ~0, but loss is not low

–Very common in high-dimensional spaces and in NN
optimization

–However, gradient descent is usually able to escape

27

Optimization Challenges, cont’d

• Exploding gradients

• Gradients can get very large when
reaching a cliff in loss function

– Can destabilize training (parameters jumping around)

– Can also cause numerical issues

• Disaster can be avoided by using gradient clipping

– If gradient norm above some threshold, reduce learning rate

28

SGD Summary

• Learning rate is usually gradually decreased to some final value

– Linear, exponential rates of decay both work

– Typically, you can keep it constant for small enough tasks

–What are the trade-offs between small/large learning rate?

29

Momentum

• Descent direction is smoothed out
over time in order to filter out noise
due to minibatch variance

– Essentially a low-pass filter
(in signal processing terms)

–Allows you to increase the
learning rate somewhat

30

Parameter Initialization

• Parameter initialization may have a serious impact on training

• Unlikely to be a major issue but it could slow down training

– If you try hard, you could also find unstable initializations

• Initialization strategies are heuristics

–Not fully clear why they work and when

–Make sure to avoid the same weights across units (why?)
• Gradients will be the same; weights will always remain the same

• Standard choices are initial uniform distributions

𝑈 −
1

𝑚
,

1

𝑚
, 𝑈 −

6

𝑛 + 𝑚
,

6

𝑛 + 𝑚

– here, 𝑛 is number of neurons in layer, 𝑚 is number of inputs

– biases are initialized similarly
31

Batch Normalization

• Another important factor for the success of deep learning

• It is common practice to normalize all training data to be 0-
mean and bounded between [-0.5, 0.5]

𝑿 − 𝝁

𝝈
– Can do the same for inputs to all hidden layers also

• Gradient descent can be brittle for deep networks

–Updates all layers simultaneously, using a local linear
approximation

–However, the output of the NN is a non-linear (composite)
function of the weights

– Complex non-linear relationships may make it hard to
choose the right learning rate

32

Batch Norm, cont’d

• For a given minibatch, let 𝑯𝑙 be the output of layer 𝑙

• We can normalize it as follows

𝑯′𝑙 =
𝑯𝑙 − 𝝁

𝝈
–where 𝝁 and 𝝈 are the (element-wise) mean and variance of

𝑯𝑙 over the minibatch

• Crucially, we backpropagate through this operation in order to
stabilize the gradients across layers

• At test time, we can use a running average of 𝝁 and 𝝈
accumulated during training

33

Batch Norm Summary

• In practice, we introduce learned parameters 𝜸 and 𝜷 such
that the output of the batch norm layer is

𝜸𝑯′ + 𝜷

• Seems a bit counter-intuitive since we are adding back a mean
and a variance

– The hope is that gradient descent finds suitable parameters
that make training more stable

• Batch normalization most useful for deep convolutional NNs

34

	Slide 1: Optimization
	Slide 2: Reading
	Slide 3: Optimization Overview
	Slide 4: Optimization in ML
	Slide 5: Empirical Risk Minimization
	Slide 6: Setup
	Slide 7: Some losses are better than others
	Slide 8: Gradient Descent Idea
	Slide 9: Gradient Descent, cont’d
	Slide 10: Gradient Descent, cont’d
	Slide 11: Aside: Vector Calculus
	Slide 12: Gradient Descent, cont’d
	Slide 13: Back Propagation
	Slide 14: Computing NN derivatives is a massive chain rule
	Slide 15: Example
	Slide 16: Example, cont’d
	Slide 17: Example, cont’d
	Slide 18: General setup: one-hot encoding
	Slide 19: Computational Graphs
	Slide 20: Example, forward propagation
	Slide 21: Example, backward propagation (start)
	Slide 22: Implementation
	Slide 23: Minibatch Algorithms
	Slide 24: SGD Properties
	Slide 25: Epochs
	Slide 26: Optimization Challenges
	Slide 27: Optimization Challenges, cont’d
	Slide 28: Optimization Challenges, cont’d
	Slide 29: SGD Summary
	Slide 30: Momentum
	Slide 31: Parameter Initialization
	Slide 32: Batch Normalization
	Slide 33: Batch Norm, cont’d
	Slide 34: Batch Norm Summary

