Convolutional Neural Networks

Reading

* Deep Learning: chapter 9
— https://www.deeplearningbook.org/contents/convnets.html

https://www.deeplearningbook.org/contents/convnets.html
https://www.deeplearningbook.org/contents/convnets.html

Overview

CNNs are one of the most successful classes of NNs

* Specialized for tasks with known topology and grid-like inputs
—E.g., image processing, point-cloud processing

Inspired by the visual cortex of the brain that is known to
perform convolution

— Convolution is very effective at recognizing object edges,
shades, etc.

— David Hubel and Torsten Wiesel received a Nobel prize for
these findings

CNNs can be considered as a subclass of fully-connected NNs,
with a bunch of 0 weights and a bunch of shared weights

The convolution operation

* In math, convolution is an operation on two functions that
produces a third function

Typically the functions are signals (i.e., functions of time)

* Convolution can capture many natural phenomena

— Filtering out noise in data, modeling the response of a
circuit to an electrical impulse, etc.

e Definition
(0]
(f * g)(0) = f f(Dg(t —1)dr
—C0
SR S RS ! j Y i Py | ST USRS SRS RN ARSI e e mia s |
DB G U U R fir) 1 : : : : : :)
ofi - att-u) H git-z)
’ : (=gt (1. S TR P e T I, (Fg it
|:|4_. , e " - -
bzl P SO PO VRN RN e L . :
oL i i i i I | ol L
. 5 . Y D Y . 5 2 1.5 1 0.5 0 0.5 . 1 1.5 z 15 3
&t T

Source: wikipedia

Convolution, cont’d

* Also has a discrete-time version

(From= Y flogh -

k=—o0

e Mostly used in analyzing control/industrial systems
* g isthe system’s response to a “unit” impulse
* f is the specific input signal (multiplied by the impulse)
* g isreversed for mathematical convenience

e Convolution is commutative
fxg=g+f
—this is the benefit of reversing time

Example

* Suppose during my PhD | publish 0,0,1,2,3,1 papers each year
— Each paper is cited 100,50,25,0 times a year at 0,1,2,3 years

How do | calculate my total citations per year?
— Convolution!

Citations per paper is the system’s response, g, to my input, f

To calculate number, reverse g and convolve

In year 3
« 100

In year 5
* 300+ 100+ 25 =425

0

25

50

100

0

0

25

50

100

Motivation

e Pattern matching
—signal f is the input example (e.g., image)
—signal g is also known as a kernel in ML
— a convolutional filter tries to find similar patterns in the data
(e.g., cats, dogs, etc.)
* Training
— Each kernel has few parameters, so easier to train
—Similar to a (very) sparse fully-connected NN

* Equivariant representation
— More on this later

Convolution example

Input
Kernel
i
w
, Could also add a
H bias term 3
[
v Output
_h.
aw + br + b + er cw + dr +
ey + fz fy + gz gy + hz
+p +p +p
ew + fr + fw + gr gw + hr +
iy 4+ jz jy + k= ky + Iz
+ B + B +p

Convolutional Kernel Structure

* Dimensions:m X n
— Usually 2D, but can also be 1D
— A total of m * n weights (plus one optional bias parameter)

* Images usually have ¢ channels (i.e., a 3" dimension)
—e.g., RGB (red, green, blue)
—one weight per channel
—total number of weights becomes m *n * ¢

* Kernel dimensions usually much smaller than input

— Need to slide it right and down, using same weights —
shared parameters

Convolutional Kernel Structure, cont’d

 Stride
— Step size when sliding (right and down)
—Typical values are 1 and 2, though others possible, too

e Padding
—If kernel doesn’t fit on the last step(s), extend image by Os
— Could distribute the Os on both sides evenly
* Computing output dimension of a kernel is tricky because of
these issues

—E.g., suppose inputisa 32 X 32 image and kernel is 4 X 4
with a stride of 1

— Can slide it across and down 29 times, so output is 29 X 29
—You need to know these details when constructing your NN

CNN Example: CIFAR10

* Simple CNN architecture on CIFAR10
— Each filter’s output is one channel in the next layer

—How many weights does the 2" hidden layer have?
* Each filter has 43 weights, so total number is 8 * 43 = 512

—FC layer has 200 * 5408 = 1081600
29 X 29 X 4 26 X 26 X 8

Input image:
32X 32 X3

Each neuron has

Convolution: Convolution:

4 X 4 x 3 filters 4 X 4 X 4 filters 26 x 26 * 8 = 5408
inputs

11

A very simple convolution

* Take an image and form a new image by subtracting from each
pixel its neighboring pixel to the left

What does the kernel look like?

[-1 1]

12

Convolutional Layers as Sparse
“Fully”-Connected Layers

Input

Kernel
Wy Wi
Wy | W3

13

Convolutional Layers as Sparse
“Fully”-Connected Layers

Layer 1

Note the drastic savings in
number of parameters!

e A fully connected layer would

have 4 * 9 parameters

14

Benefits of convolutional layers over fully
connected layers

* Very few parameters for similar representation complexity

— Fully-connected NNs are universal approximators but finding
the right parameters is hard in high-dimensional spaces

— CNNs are tailored for grid-like inputs and have sufficient
expressive power with fewer parameters
* Easier to train
— Both faster and better optimization since searching in lower-
dimensional spaces
* Require less memory
—May make a big difference with large modern models

Translational equivariance

* If we translate the image (e.g., move to the right), the
convolved image is similarly translated

flg() = g(f(x))
* Not quite invariant to translation, but next best thing
— Useful image features still propagated to the next layer
— For example, first layer may be trained to detect edges

e Convolution is not naturally invariant to rotation or scale
— Other mechanisms are necessary for these
—E.g., data-augmentation

Pooling

* A small layer that usually goes hand in hand with a
convolutional layer

— Newer architectures do not use it as much, so it doesn’t
seem to be essential
* Usually convolution is followed by an activation as before
— Pooling comes after the activation

* Pooling is a local function that we slide across the image
—E.g., take the mean/max of nearby pixels

POOLING STAGE

17

Pooling Motivation

* Local translation invariance
— If we shift pixels by a few places, max pooling will not be
affected
* Useful for downsampling

—If input image is too large, can use max pooling to reduce it
to required size while preserving high-level features

—If used in the middle of the NN, can reduce the number of
parameters in the rest of the NN

Typical Convolutional Layer Summary

* Picking kernel size depends on application e——

— Standard choicesare 8 X 8,16 X 16 ?

— Might need bigger if image is very big Comvolutional Layes
* Stride is usually 1 but bigger values may Pooling stae
be more efficient (fewer outputs)
* Padding is not very important, but you Detector stage:

. . Nonlinearity
need to be careful since it affects the oo rectified linear
number of outputs A

Convolution stage:
* Pooling does not help tremendously but Affine transform
may lead to more stable training A
* Typically, a CNN ends with a fully-connected Lnput to layer

layer or two, partly to reshape the output

	Slide 1: Convolutional Neural Networks
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: The convolution operation
	Slide 5: Convolution, cont’d
	Slide 6: Example
	Slide 7: Motivation
	Slide 8: Convolution example
	Slide 9: Convolutional Kernel Structure
	Slide 10: Convolutional Kernel Structure, cont’d
	Slide 11: CNN Example: CIFAR10
	Slide 12: A very simple convolution
	Slide 13: Convolutional Layers as Sparse “Fully”-Connected Layers
	Slide 14: Convolutional Layers as Sparse “Fully”-Connected Layers
	Slide 15: Benefits of convolutional layers over fully connected layers
	Slide 16: Translational equivariance
	Slide 17: Pooling
	Slide 18: Pooling Motivation
	Slide 19: Typical Convolutional Layer Summary

