
Convolutional Neural Networks
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Reading

• Deep Learning: chapter 9

– https://www.deeplearningbook.org/contents/convnets.html
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Overview

• CNNs are one of the most successful classes of NNs

• Specialized for tasks with known topology and grid-like inputs

– E.g., image processing, point-cloud processing

• Inspired by the visual cortex of the brain that is known to 
perform convolution

– Convolution is very effective at recognizing object edges, 
shades, etc.

–David Hubel and Torsten Wiesel received a Nobel prize for 
these findings

• CNNs can be considered as a subclass of fully-connected NNs, 
with a bunch of 0 weights and a bunch of shared weights
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The convolution operation

• In math, convolution is an operation on two functions that 
produces a third function

• Typically the functions are signals (i.e., functions of time)

• Convolution can capture many natural phenomena

– Filtering out noise in data, modeling the response of a 
circuit to an electrical impulse, etc.

• Definition

𝑓 ∗ 𝑔 𝑡 ≔ න
−∞

∞

𝑓 𝜏 𝑔 𝑡 − 𝜏 𝑑𝜏 
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Convolution, cont’d

• Also has a discrete-time version

𝑓 ∗ 𝑔 𝑛 = ෍

𝑘=−∞

∞

𝑓 𝑘 𝑔 𝑛 − 𝑘

• Mostly used in analyzing control/industrial systems
• 𝑔 is the system’s response to a “unit” impulse

• 𝑓 is the specific input signal (multiplied by the impulse)

• 𝑔 is reversed for mathematical convenience

• Convolution is commutative
𝑓 ∗ 𝑔 = 𝑔 ∗ 𝑓

– this is the benefit of reversing time
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Example

• Suppose during my PhD I publish 0,0,1,2,3,1 papers each year

– Each paper is cited 100,50,25,0 times a year at 0,1,2,3 years

• How do I calculate my total citations per year?

– Convolution!

• Citations per paper is the system’s response, 𝑔, to my input, 𝑓

• To calculate number, reverse 𝑔 and convolve

• In year 3
• 100

• In year 5
• 300 + 100 + 25 = 425
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Motivation

• Pattern matching

– signal 𝑓 is the input example (e.g., image)

– signal 𝑔 is also known as a kernel in ML

– a convolutional filter tries to find similar patterns in the data 
(e.g., cats, dogs, etc.)

• Training

– Each kernel has few parameters, so easier to train

– Similar to a (very) sparse fully-connected NN

• Equivariant representation

–More on this later
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Convolution example
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Could also add a 
bias term 𝛽

+ 𝛽

+ 𝛽+ 𝛽+ 𝛽

+ 𝛽+ 𝛽



Convolutional Kernel Structure

• Dimensions: 𝑚 × 𝑛

–Usually 2D, but can also be 1D

–A total of 𝑚 ∗ 𝑛 weights (plus one optional bias parameter)

• Images usually have 𝑐 channels (i.e., a 3rd dimension)

– e.g., RGB (red, green, blue)

– one weight per channel

– total number of weights becomes 𝑚 ∗ 𝑛 ∗ 𝑐

• Kernel dimensions usually much smaller than input

–Need to slide it right and down, using same weights – 
shared parameters
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Convolutional Kernel Structure, cont’d

• Stride

– Step size when sliding (right and down)

– Typical values are 1 and 2, though others possible, too

• Padding

– If kernel doesn’t fit on the last step(s), extend image by 0s

– Could distribute the 0s on both sides evenly

• Computing output dimension of a kernel is tricky because of 
these issues

– E.g., suppose input is a 32 × 32 image and kernel is 4 × 4 
with a stride of 1

– Can slide it across and down 29 times, so output is 29 × 29

– You need to know these details when constructing your NN
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CNN Example: CIFAR10

• Simple CNN architecture on CIFAR10

– Each filter’s output is one channel in the next layer

–How many weights does the 2nd hidden layer have?
• Each filter has 43 weights, so total number is 8 ∗ 43 = 512

– FC layer has 200 ∗ 5408 = 1081600 
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Input image: 
32 × 32 × 3

Convolution:
 4 × 4 × 3 filters

29 × 29 × 4 26 × 26 × 8

Convolution:
 4 × 4 × 4 filters

… ……

…

200

Each neuron has 
26 ∗ 26 ∗ 8 = 5408 
inputs



A very simple convolution

• Take an image and form a new image by subtracting from each 
pixel its neighboring pixel to the left
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What does the kernel look like?

[-1  1]



Convolutional Layers as Sparse 

“Fully”-Connected Layers
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Convolutional Layers as Sparse 

“Fully”-Connected Layers
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…

Note the drastic savings in 
number of parameters!
• A fully connected layer would 

have 4 ∗ 9 parameters 



Benefits of convolutional layers over fully 

connected layers

• Very few parameters for similar representation complexity

– Fully-connected NNs are universal approximators but finding 
the right parameters is hard in high-dimensional spaces

– CNNs are tailored for grid-like inputs and have sufficient 
expressive power with fewer parameters

• Easier to train

– Both faster and better optimization since searching in lower-
dimensional spaces

• Require less memory

–May make a big difference with large modern models
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Translational equivariance

• If we translate the image (e.g., move to the right), the 
convolved image is similarly translated

𝑓 𝑔 𝑥 = 𝑔(𝑓 𝑥 )

• Not quite invariant to translation, but next best thing

–Useful image features still propagated to the next layer

– For example, first layer may be trained to detect edges

• Convolution is not naturally invariant to rotation or scale

–Other mechanisms are necessary for these

– E.g., data-augmentation

16



Pooling

• A small layer that usually goes hand in hand with a 
convolutional layer

–Newer architectures do not use it as much, so it doesn’t 
seem to be essential

• Usually convolution is followed by an activation as before

– Pooling comes after the activation

• Pooling is a local function that we slide across the image

– E.g., take the mean/max of nearby pixels
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Pooling Motivation

• Local translation invariance

– If we shift pixels by a few places, max pooling will not be 
affected

• Useful for downsampling

– If input image is too large, can use max pooling to reduce it 
to required size while preserving high-level features

– If used in the middle of the NN, can reduce the number of 
parameters in the rest of the NN
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Typical Convolutional Layer Summary

• Picking kernel size depends on application

– Standard choices are 8 × 8, 16 × 16

–Might need bigger if image is very big

• Stride is usually 1 but bigger values may
be more efficient (fewer outputs)

• Padding is not very important, but you
need to be careful since it affects the
number of outputs

• Pooling does not help tremendously but 
may lead to more stable training

• Typically, a CNN ends with a fully-connected
layer or two, partly to reshape the output
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