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Reading

• Deep Learning: chapter 7

– https://www.deeplearningbook.org/contents/regularization
.html

• Regularization overview, with a deep learning bias
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Regularization

• Occam’s Razor

– Try to use simplest model family possible

• Neural nets can easily overfit any dataset we have come up 
with

– Regularization adds constraints to keep models well-
behaved

• A bit of a funky concept

–We want to minimize the loss, but we also want to minimize 
it the right way!

– Comes to indicate that our losses could be improved
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Parameter Norm Penalties

• One of the most popular regularizations

• Suppose original loss is 𝐽(𝜽; 𝑿, 𝒚)

• Come up with an extra term Ω(𝜽) that penalizes the 
parameters

• Final loss becomes
ሚ𝐽 = 𝐽(𝜽; 𝑿, 𝒚) + 𝛼Ω(𝜽)

–where 𝛼 is a (small) hyper-parameter

• Often reduces variance at the expense of some bias
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𝑳𝟐 Penalty

• Most standard penalty
Ω 𝜽 = 𝒘𝑇𝒘

– Recall that 𝜽 = [𝒘, 𝒃]

• Usually applied only to weights, not to biases

– Regularizing biases leads to underfitting without major 
variance benefits

• Also known as weight decay

– Recall that weights are updated as follows
𝒘′ = 𝒘 − 𝜖∇ ሚ𝐽(𝜽; 𝑿, 𝒚)

–With 𝐿2 penalty, the update is 

𝒘′ = 𝒘 − 𝜖 2𝛼𝒘 + ∇𝐽 𝜽; 𝑿, 𝒚

 = 1 − 2𝛼𝜖 𝒘 − 𝜖∇𝐽(𝜽; 𝑿, 𝒚)
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𝑳𝟐 Penalty, cont’d

• If true loss is quadratic, 𝐿2 penalty penalizes learning in 
directions where the loss isn’t affected

– Prevents learning spurious functionality due to 
overparameterization (proof in book)

• Same idea in general – keep weights small unless necessary

– Simplifies models and improves robustness

• In linear regression, makes fitting more robust to variance
−2𝑿𝒚 + 2𝑿𝑿𝑇𝒘 + 2𝛼𝒘 = 0 

• Then 𝒘∗ = 𝑿𝑿𝑇 + 𝛼𝑰
−1

𝑿𝒚

• I have also used 𝐿2 penalty in my research
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𝑳𝟏 Penalty

• A slightly less standard penalty

Ω 𝒘 = 𝒘
1

= ෍

𝑖

|𝑤𝑖|

• Note that ∇𝒘Ω 𝒘 = 𝑠𝑖𝑔𝑛(𝒘)

• So the weight update is now

𝒘′ = 𝒘 − 𝜖 𝛼𝑠𝑖𝑔𝑛(𝒘) + ∇𝐽 𝜽; 𝑿, 𝒚

– i.e., a constant factor along the direction of the 1-norm

–Might lead to sparser weight matrices (more 0s)

• Hard to derive nice mathematical formulae

• Overall regularization effect is similar to 𝐿2

7



Norm Penalties as Constrained Optimization

• Instead of penalizing bigger weights, we can impose an explicit 
constraint

𝜽∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜽 𝐽 𝜽; 𝑿, 𝒚
 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 Ω 𝜽 < 𝑘

• Explicit constraints may stabilize the learning process in certain 
cases (since the loss is simplified)

–However, it may hurt in others

– Constrained non-convex optimization is a hard problem

• Can also reformulate the problem as
𝜽∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜽 max

𝛼
𝐽 𝜽; 𝑿, 𝒚 + 𝛼(Ω 𝜽 − 𝑘)

– Same idea, optimization algorithm slightly different

–Dual formulation of the constrained problem above
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Data Augmentation

• Using fake data for training is not always a good idea!

– But sometimes OK…

• In image classification, we can usually generate “new” data 
from a given dataset

– Rotate, translate, add white noise to images

–Useful because it discourages learning spurious 
relationships (similar to regularization)

– You can overdo it, though. Thoughts?
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Weight Noise Robustness

• Can also apply noise to the weights

– E.g., in Bayesian neural networks every weight is drawn 
from a Gaussian with learned parameters

– Pushes weights to region where model is less sensitive to 
perturbations

• Can also do it at the output layer

– “Soft” labels aka label smoothing
• E.g., one-hot labels are not (0,1) but maybe (0.1, 0.9)

–Discourages the NN from learning very big weights in trying 
to approximate the hard 0/1 outputs
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Semi-supervised learning

• A lot of deep learning has to do with learning representations 
of the training data that are separated in some embedding 
space

• What if we learn the embedding separately from the classifier?

– i.e., learn a generative model of the data first

–An active research area, improves robustness a great deal

• Many types of generative models, such as generative 
adversarial networks (GANs), variational autoencoders (VAEs) 
and others
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• Often, training loss keeps decreasing while validation loss 
starts increasing

–A sign of overfitting

• Can stop training as soon as this happens

– (or save trained weights frequently and go back to that 
checkpoint)

– Technique called early stopping

Early Stopping
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Early Stopping, cont’d

• Simple and effective

• Essentially another hyper-parameter

• Periodically storing weights is not a major overhead

• However, if early stopping is necessary, then you’re violating 
Occam’s Razor

– If your model overfits drastically, you should consider using 
a simpler model

• Related to 𝐿2 penalty
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Ensemble Methods

• A very old and effective idea in ML

• Train multiple models on the same task and average their 
outputs

• Very effective if done well (i.e., models make independent 
errors)

– Can greatly reduce the variance compared to a single model

• Suppose you have 𝑘 models, each makes (regression) error 𝜖𝑖

𝜖𝑖 = 𝑓𝑖 𝑿 − 𝑌

– To simplify math, assume 𝔼 𝜖𝑖 = 0

• The ensemble’s output is then

𝑓 𝑿 =
1

𝑘
෍

𝑖

𝑓𝑖 𝑿
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Ensemble Methods, cont’d

• Suppose you have 𝑘 models, each makes error 𝜖𝑖 (where 𝜖𝑖 is a 
zero-mean random variable)

𝜖𝑖 = 𝑓𝑖 𝑿 − 𝑌

– To simplify math, assume 𝔼 𝜖𝑖 = 0

• The ensemble’s output is then

𝑓 𝑿 =
1

𝑘
෍

𝑖

𝑓𝑖 𝑿

• What is the ensemble’s error?
𝜖 = 𝑓 𝑿 − 𝑌

 =
1

𝑘
෍

𝑖

𝑓𝑖 𝑿 − 𝑌

=
1

𝑘
෍

𝑖

𝜖𝑖  
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Ensemble Methods, cont’d

• What is the ensemble’s expected error?

–We know 𝔼 𝜖 = 0, since each 𝔼 𝜖𝑖 = 0

• But the variance can be drastically reduced

• Suppose they have same variance 𝔼 𝜖𝑖
2 = 𝑣, and covariances 

are 𝔼 𝜖𝑖𝜖𝑗 = 𝑐
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Ensemble Methods, cont’d

• Suppose 𝔼 𝜖𝑖
2 = 𝑣 and 𝔼 𝜖𝑖𝜖𝑗 = 𝑐

• Expected squared error (i.e., variance) is

𝔼
1

𝑘
෍

𝑖

𝜖𝑖

2

= 

 = 𝔼
1

𝑘2 (𝜖1 + ⋯ + 𝜖𝑘)(𝜖1 + ⋯ + 𝜖𝑘)

 =
1

𝑘2 𝔼 ෍

𝑖

𝜖𝑖
2 + ෍

𝑖≠𝑗

𝜖𝑖𝜖𝑗

 =
1

𝑘
𝑣 +

𝑘 − 1

𝑘
𝑐

• If perfect correlation, 𝑣 = 𝑐, average doesn’t help

• If no correlation, 𝑐 = 0, squared error inversely proportional to 
number of models
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Ensemble Methods, cont’d

• Suppose you resample original dataset and train a different 
model each time

–Models learn different important features

–More robust overall since spurious features averaged out

– This is the idea of boosting
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Dropout

• Generated a lot of attention a few years ago

• A computationally cheap way to approximate ensemble of 
methods

• The “ensemble” is the set of
all subnetworks of a given NN

– To eliminate a neuron, just
multiply its output by 0

• Slightly different from classic
ensembles since data is the
same
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Dropout, cont’d

• During training, select a random bit mask 𝜇 for each iteration 
of gradient descent

– Enumerating all subnetworks is intractable

– E.g., keep input neurons with a probability of 0.8 and hidden 
neurons with probability of 0.5

–Once you have determined 𝜇, train as before using backprop
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Dropout Prediction

• Suppose we have trained our model with dropout

• How do we predict the label given a new example?

• Ideally, we enumerate all subgraphs and compute the mean of 
all subnetwork outputs

–What’s the challenge with this?
• Exponentially many subnetworks

• One option is to sample a number of masks and average over 
those (a reasonably good estimate of the true average)

–Not deterministic

• Better idea: output expected value of each neuron (how?)

–multiply all weights by the keep probability, 𝑝

– binary variable with parameter 𝑝
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Dropout Prediction

• One idea that works very well in practice is to multiply all 
weights by the keep probability, 𝑝

–Most common choice

• Another idea is to sample masks and compute geometric mean

ℙ𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝑦 𝒙) =
2𝑑

ෑ

𝝁

ℙ𝑑𝑟𝑜𝑝𝑜𝑢𝑡 𝑦 𝒙, 𝝁)

–Normalize over classes (doesn’t sum up to 1 otherwise)

– For some architectures, this is the same as multiplying the 
weights by 𝑝
• E.g., networks with one layer and a softmax output

• See proof in book
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Beware of overfitting!

• Neural networks can perfectly overfit any existing dataset

– Even if you randomly shuffle the labels

• In some sense, not clear why NNs perform as well as they do

• Always a good idea to use as small a model as possible

– If your training accuracy is significantly higher than test 
accuracy, then likely you need to regularize or reduce your 
model

• Deep learning is a powerful tool but it requires a strong 
understanding of statistics

23

Zhang, Chiyuan, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. "Understanding deep learning (still) 

requires rethinking generalization." Communications of the ACM 64, no. 3 (2021): 107-115.



Summary

• Many, many ways to regularize

• Usually trial and error is the best approach

–With proper statistical evaluation

• If you set up everything well (right model, right features, etc.), 
you may not even need much regularization

• An 𝐿2 regularization will typically get you a long way
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