Regularization

Reading

* Deep Learning: chapter 7

— https://www.deeplearningbook.org/contents/regularization
.html

e Regularization overview, with a deep learning bias

https://www.deeplearningbook.org/contents/regularization.html
https://www.deeplearningbook.org/contents/regularization.html
https://www.deeplearningbook.org/contents/regularization.html

Regularization

* Occam’s Razor
—Try to use simplest model family possible

* Neural nets can easily overfit any dataset we have come up
with
— Regularization adds constraints to keep models well-
behaved
* A bit of a funky concept

—We want to minimize the loss, but we also want to minimize
it the right way!

— Comes to indicate that our losses could be improved

Parameter Norm Penalties

One of the most popular regularizations
* Suppose original loss is [(0; X,y)

* Come up with an extra term (0) that penalizes the
parameters

* Final loss becomes
J=](6;X,y) +aQ(6)
—where a is a (small) hyper-parameter

» Often reduces variance at the expense of some bias

Penalty

Most standard penalty
00) =w'w
—Recall that 8 = [w, b]
Usually applied only to weights, not to biases
— Regularizing biases leads to underfitting without major
variance benefits
Also known as weight decay
— Recall that weights are updated as follows
w =w-¢€VJ(0;X,y)
—With L, penalty, the update is
w =w—e(2aw + V/(6;X,y))
= (1—-2ae)w —€VJ(0;X,y)

L, Penalty, cont’d

* If true loss is quadratic, L, penalty penalizes learning in
directions where the loss isn’t affected

— Prevents learning spurious functionality due to
overparameterization (proof in book)

* Same idea in general — keep weights small unless necessary
— Simplifies models and improves robustness

* In linear regression, makes fitting more robust to variance
—2Xy + 2XX"w + 2aw = 0

« Thenw* = (XXT + al)” Xy

* | have also used L, penalty in my research

L1 Penalty

* Aslightly less standard penalty

aw) = [Iwl], =) Iwi

i

Note that V,,Q(w) = sign(w)
* So the weight update is now
w=w-— e(asign(w) + VJ(6; X, y))
—i.e., a constant factor along the direction of the 1-norm
— Might lead to sparser weight matrices (more 0s)

Hard to derive nice mathematical formulae

Overall regularization effect is similar to L,

Norm Penalties as Constrained Optimization

* Instead of penalizing bigger weights, we can impose an explicit
constraint
0" = argming J(6; X, y)
subjectto Q(0) < k
* Explicit constraints may stabilize the learning process in certain
cases (since the loss is simplified)
— However, it may hurt in others
— Constrained non-convex optimization is a hard problem
* Can also reformulate the problem as
0" = argmingmaxJ(0; X,y) + a(Q(0) — k)
a
—Same idea, optimization algorithm slightly different
— Dual formulation of the constrained problem above

Data Augmentation

* Using fake data for training is not always a good idea!
— But sometimes OK...
* |n image classification, we can usually generate “new” data
from a given dataset
— Rotate, translate, add white noise to images

— Useful because it discourages learning spurious
relationships (similar to regularization)

—You can overdo it, though. Thoughts?

Weight Noise Robustness

* Can also apply noise to the weights

—E.g., in Bayesian neural networks every weight is drawn
from a Gaussian with learned parameters

— Pushes weights to region where model is less sensitive to
perturbations
* Canalso do it at the output layer

— “Soft” labels aka label smoothing
e E.g., one-hot labels are not (0,1) but maybe (0.1, 0.9)

— Discourages the NN from learning very big weights in trying
to approximate the hard 0/1 outputs

Semi-supervised learning

* Alot of deep learning has to do with learning representations
of the training data that are separated in some embedding
space

 What if we learn the embedding separately from the classifier?

—i.e., learn a generative model of the data first
— An active research area, improves robustness a great deal
* Many types of generative models, such as generative

adversarial networks (GANs), variational autoencoders (VAEs)
and others

Early Stopping

e Often, training loss keeps decreasing while validation loss
starts increasing

— A sign of overfitting

. 0.20 | |
3 e—e Training set loss

= 0154 — Validation set loss [
&

~ 0.10

S 005 4
7

— 0.00

0 50 100 150 200 250

Time (epochs)

e Can stop training as soon as this happens

— (or save trained weights frequently and go back to that
checkpoint)

—Technique called early stopping

12

Early Stopping, cont’d

* Simple and effective

e Essentially another hyper-parameter

Periodically storing weights is not a major overhead

* However, if early stopping is necessary, then you’re violating

Occam’s Razor

— If your model overfits drastically, you should consider using

a simpler model

Related to L, penalty

13

Ensemble Methods

* Avery old and effective idea in ML

* Train multiple models on the same task and average their
outputs

* Very effective if done well (i.e., models make independent
errors)

— Can greatly reduce the variance compared to a single model

* Suppose you have k models, each makes (regression) error ¢;
e =fi(X)—-Y
—To simplify math, assume E[¢;] = 0

* The ensemble’s output is then

1
FOO =7) fi0

Ensemble Methods, cont’d

* Suppose you have k models, each makes error €; (where ¢; is a
zero-mean random variable)

e = fi(X)—Y
— To simplify math, assume E[¢;] = 0

* The ensemble’s output is then
1
FOO =7) fi0
i

e What is the ensemble’s error?
e=fX)-Y

1
=2 20 =)

l
1
DY
L

Ensemble Methods, cont’d

 What is the ensemble’s expected error?
—We know E[e] = 0, since each E[¢;] =0

e But the variance can be drastically reduced

* Suppose they have same variance IE[Elz] = v, and covariances
are IE[EiEj] =

Ensemble Methods, cont’d

» Suppose E|ef| = vand Ele;e;] = ¢

* Expected squared error (i.e., variance) is

&2l

=[E i(61 + -t ep)(eg + o+ ek)]

L[S (24T ae)

i%]j
_1 Lkl
“ kT Tk

* If perfect correlation, v = ¢, average doesn’t help

C

* If no correlation, ¢ = 0, squared error inversely proportional to
number of models

Ensemble Methods, cont’d

e Suppose you resample original dataset and train a different
model each time

— Models learn different important features
— More robust overall since spurious features averaged out
—This is the idea of boosting

Original dataset

@DEO®

First resampled dataset

®©®>0©>0O)

Second resampled dataset Second ensemble member

@O®>@>0O)

First ensemble member

18

Dropout

* Generated a lot of attention a few years ago

* A computationally cheap way to approximate ensemble of

methods

* The “ensemble” is the set of
all subnetworks of a given NN

—To eliminate a neuron, just
multiply its output by O

o
c¥o
oL0N

Base network

* Slightly different from classic
ensembles since data is the

same

dBdgeh 2
i
:
@@ ®

19

Dropout, cont’d

* During training, select a random bit mask u for each iteration
of gradient descent

— Enumerating all subnetworks is intractable

—E.g., keep input neurons with a probability of 0.8 and hidden
neurons with probability of 0.5

— Once you have determined p, train as before using backprop
O, oo
Q*Q o¥o
X OGO
DRSO

efoXofe

20

Dropout Prediction

* Suppose we have trained our model with dropout
* How do we predict the label given a new example?
* |deally, we enumerate all subgraphs and compute the mean of

all subnetwork outputs
—What'’s the challenge with this?

* Exponentially many subnetworks

* One option is to sample a number of masks and average over
those (a reasonably good estimate of the true average)

— Not deterministic

* Better idea: output expected value of each neuron (how?)
— multiply all weights by the keep probability, p
—binary variable with parameter p

Dropout Prediction

* One idea that works very well in practice is to multiply all
weights by the keep probability, p

— Most common choice

* Another idea is to sample masks and compute geometric mean

2
Pensemble (y | .X') —

\

d
1_[]P)dropout (y | X, ﬂ)
u

—Normalize over classes (doesn’t sum up to 1 otherwise)

— For some architectures, this is the same as multiplying the

weights by p

* E.g., networks with one layer and a softmax output

* See proof in book

Beware of overfitting!

* Neural networks can perfectly overfit any existing dataset
— Even if you randomly shuffle the labels

* |n some sense, not clear why NNs perform as well as they do

* Always a good idea to use as small a model as possible

—If your training accuracy is significantly higher than test
accuracy, then likely you need to regularize or reduce your
model

* Deep learning is a powerful tool but it requires a strong
understanding of statistics

Zhang, Chiyuan, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. "Understanding deep learning (still)
requires rethinking generalization." Communications of the ACM 64, no. 3 (2021): 107-115.

Summary

* Many, many ways to regularize

* Usually trial and error is the best approach
— With proper statistical evaluation

* If you set up everything well (right model, right features, etc.),
you may not even need much regularization

* An L, regularization will typically get you a long way

	Slide 1: Regularization
	Slide 2: Reading
	Slide 3: Regularization
	Slide 4: Parameter Norm Penalties
	Slide 5: bold italic cap L sub bold 2 Penalty
	Slide 6: bold italic cap L sub bold 2 Penalty, cont’d
	Slide 7: bold italic cap L sub bold 1 Penalty
	Slide 8: Norm Penalties as Constrained Optimization
	Slide 9: Data Augmentation
	Slide 10: Weight Noise Robustness
	Slide 11: Semi-supervised learning
	Slide 12: Early Stopping
	Slide 13: Early Stopping, cont’d
	Slide 14: Ensemble Methods
	Slide 15: Ensemble Methods, cont’d
	Slide 16: Ensemble Methods, cont’d
	Slide 17: Ensemble Methods, cont’d
	Slide 18: Ensemble Methods, cont’d
	Slide 19: Dropout
	Slide 20: Dropout, cont’d
	Slide 21: Dropout Prediction
	Slide 22: Dropout Prediction
	Slide 23: Beware of overfitting!
	Slide 24: Summary

