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Reading

• Chapters 7.1, 7.2

–Hastie, Trevor, et al. The elements of statistical learning: 
data mining, inference, and prediction. Vol. 2. New York: 
springer, 2009.

–Available online: https://hastie.su.domains/Papers/ESLII.pdf

• Zhang, Chiyuan, Samy Bengio, Moritz Hardt, Benjamin Recht, 
and Oriol Vinyals. "Understanding deep learning (still) requires 
rethinking generalization." Communications of the ACM 64, no. 
3 (2021): 107-115.

2

https://hastie.su.domains/Papers/ESLII.pdf


Overview

• Generalization is a central concept in all areas of ML

• Just because your model works on your training data doesn’t 
mean it will work on your test data

–One can go further: even if your model works on your test 
data, it doesn’t mean it will work on new test data
• But that’s “better” evidence than working on training data

• Generalization is particularly important in deep learning

–Neural networks can overfit any dataset we currently have

–Users need to always be careful about generalization

• We’ll discuss how to estimate generalization error and what 
makes a model more likely to overfit
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Training vs Test Data

• Almost any supervised ML task involves the collection of data

• Typically, once the data is collected, we split it into 3 sets:

– Training set

–Validation set

– Test set

• Historically, datasets weren’t large enough for such a split, so 
researchers had to develop other techniques

– E.g., cross validation

• But the end goal is the same

– If we develop a model based on the data we have, how well 
does this model perform on new data?
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Generalization error

• Let 𝐷𝑡𝑟 , 𝐷𝑣 , 𝐷𝑡𝑒  be the training, validation and test sets, 
respectively

• Each of those sets is drawn IID from the same distribution 𝒟

• The error of a model 𝑓 on a dataset 𝐷 is defined as:

𝐸𝑟𝑟𝐷 𝑓 =
1

|𝐷|
෍

𝒙,𝑦 ∈𝐷

𝑰(𝑓 𝒙 ≠ 𝑦)

–Where 𝑰 is the indicator function
• 𝑰 𝑓 𝒙 ≠ 𝑦 = 1 when 𝑓 𝒙 ≠ 𝑦 and 0, otherwise

• The generalization error of a model 𝑓 is defined as:
𝐺𝐸 𝑓 = ℙ 𝑓 𝑿 ≠ 𝑌

–where 𝑿, 𝑌 ~𝒟

– i.e., it is the probability of making an error on unseen data
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Generalization Error, cont’d

• An unbiased estimate of the generalization error is the 
classifier’s performance on the test set:

෢𝐺𝐸 𝑓 = 𝐸𝑟𝑟𝐷𝑡𝑒
𝑓

• An estimator is said to be unbiased if its expected value is 
equal to the quantity it is trying to estimate

– E.g., 𝔼 𝐸𝑟𝑟𝐷𝑡𝑒
𝑓 = 𝐺𝐸(𝑓)

–Why?

– Consider any random test set 𝐷

–All 𝒙𝑖 , 𝑦𝑖 ∈ 𝐷 are drawn IID from some distribution 𝒟
• Each corresponds to a random variable (𝑿𝑖 , 𝑌𝑖)
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Generalization Error, cont’d

• An unbiased estimate of the generalization error is the 
classifier’s performance on the test set:

෢𝐺𝐸 𝑓 = 𝐸𝑟𝑟𝐷𝑡𝑒
𝑓

• An estimator is said to be unbiased if its expected value is 
equal to the quantity it is trying to estimate

– E.g., 𝔼 𝐸𝑟𝑟𝐷𝑡𝑒
𝑓 = 𝐺𝐸(𝑓):

𝔼 𝐸𝑟𝑟𝐷 𝑓 =
1

|𝐷|
෍

𝑖

𝔼[𝑰 𝑓 𝑿𝑖 ≠ 𝑌𝑖 ] 

=
1

|𝐷|
෍

𝑖

ℙ[𝑓 𝑿𝑖 ≠ 𝑌𝑖] 

=
1

|𝐷|
෍

𝑖

ℙ[𝑓 𝑿1 ≠ 𝑌1] 

=
|𝐷|

|𝐷|
ℙ 𝑓 𝑿1 ≠ 𝑌1  
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Generalization Error, cont’d

• Being unbiased is a nice property but it’s not enough

– The test error on a single point is also an unbiased estimate

– But if we do well on a larger test set, that is better than 
doing well on a smaller test set!

–We can use the Law of Large Numbers and Hoeffding’s 
inequality to further analyze our model’s performance
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Probability Aside: Law of Large Numbers

• Let 𝑋1, … , 𝑋𝑛 be 𝑛 IID random variables

• Let 𝑆𝑛 = 𝑋1 + ⋯ + 𝑋𝑛

• (Weak) Law of Large Numbers:

ℙ
𝑆𝑛

𝑛
− 𝔼 𝑋1 < 𝜖 → 1 as 𝑛 → ∞

– for any positive 𝜖

• As we collect more data, the sample mean 𝑆𝑛/𝑛 converges to 
the expected mean 𝔼 𝑋1

– Since the 𝑋𝑖  are IID, 𝔼 𝑋1 = 𝔼[𝑋𝑖] for any 𝑖
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The Benefit of the Law of Large Numbers

• What is the benefit of the Law of Large Numbers?

ℙ
𝑆𝑛

𝑛
− 𝔼 𝑋1 < 𝜖 → 1 as 𝑛 → ∞

• Think of 
𝑆𝑛

𝑛
 as your model’s test error

𝐸𝑟𝑟𝐷 𝑓 =
1

|𝐷|
෍

𝒙,𝑦 ∈𝐷

𝑰(𝑓 𝒙 ≠ 𝑦)

–Here, 𝑆𝑛: = σ 𝒙,𝑦 ∈𝐷 𝑰(𝑓 𝒙 ≠ 𝑦) and 𝑛: = |𝐷|

– So the test error converges to the true expected error as the 
test set gets large

• Practically speaking, the larger the dataset the better

– E.g., if your model achieves good accuracy on a large test 
set, then it will likely work well on new data also 10



Probability Aside: Hoeffding’s Inequality

• Suppose your model has good accuracy on a test set

– Is it possible that you just got lucky and your model isn’t 
that great after all?

• Let 𝑋1, … , 𝑋𝑛 be 𝑛 independent random variables

– Each bounded by 𝑎𝑖 ≤ 𝑋𝑖 ≤ 𝑏𝑖

• Let 𝑆𝑛 = 𝑋1 + ⋯ + 𝑋𝑛

• Hoeffding’s Theorem:

ℙ 𝑆𝑛 − 𝔼 𝑆𝑛 ≥ 𝑡 ≤ exp −
2𝑡2

σ𝑖=1
𝑛 𝑏𝑖 − 𝑎𝑖

2

• Two-tailed version:

ℙ 𝑆𝑛 − 𝔼 𝑆𝑛 ≥ 𝑡 ≤ 2exp −
2𝑡2

σ𝑖=1
𝑛 𝑏𝑖 − 𝑎𝑖

2
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Probability Aside: Hoeffding’s Inequality, cont’d

• Suppose each 𝑋𝑖  is Bernoulli, i.e., 𝑋𝑖 ∈ {0,1}, i.e., 𝑏𝑖 − 𝑎𝑖 = 1

– E.g., 𝑋𝑖  denotes correct or wrong classification on example 𝑖

• The bound simplifies to:

ℙ 𝑆𝑛 − 𝔼 𝑆𝑛 ≥ 𝑡 ≤ exp −
2𝑡2

𝑛

• Furthermore, suppose we are interested in bounding the mean

– E.g., your model’s accuracy

ℙ
1

𝑛
(𝑆𝑛 − 𝔼 𝑆𝑛 ) ≥ 𝑡 = 

 = ℙ 𝑆𝑛 − 𝔼 𝑆𝑛 ≥ 𝑛𝑡 ≤ exp −2𝑡2𝑛

• For fixed 𝑡, the sample mean is less likely to be farther from 
the expected mean as we collect more data
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Importance of the test set accuracy

• Suppose we have trained a model 𝑓

• As far as the test set is concerned, 𝑓 is now just a function

• Suppose the test set is 𝒙1, 𝑦1 , … , 𝒙𝑛, 𝑦𝑛

– In other words, we have realizations of IID variables 
𝑿1, 𝑌1 , … , (𝑿𝑛, 𝑌𝑛)

• Define the variable 𝑍𝑖 = 1 if 𝑓 𝑿𝑖 = 𝑌𝑖  and 0, otherwise

– Then the 𝑍𝑖  are IID Bernoulli variables

– The expected value 𝔼 𝑍𝑖  is the true accuracy of 𝑓

– The sample mean 
1

𝑛
σ𝑖 𝑧𝑖 is the accuracy of 𝑓 on the test set

• How can we bound 𝔼 𝑍𝑖  in terms of 
1

𝑛
σ𝑖 𝑧𝑖?

–We can directly apply Hoeffding’s inequality on the test set 13



Example: Hoeffding’s Inequality

• Suppose our model achieves a test accuracy of 80% over 1000 
datapoints

–What’s the probability the true accuracy is less than 70%?

–Note that ℙ
1

𝑛
𝔼 𝑆𝑛 − 𝑆𝑛 ≤ −𝑡 = ℙ

1

𝑛
(𝑆𝑛 − 𝔼 𝑆𝑛 ) ≥ 𝑡

– Then, using Hoeffding’s inequality:

ℙ
1

1000
(𝑆1000 − 𝔼 𝑆1000 ) ≥ 0.1 ≤ 

 exp −2 ∗ 0.12 ∗ 1000 ≈ 2 ∗ 10−9

• Even 1000 points give us strong probabilistic guarantees
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What about the training set?

• Can we apply Hoeffding’s inequality to the training set?

– Suppose training set is 𝒙1, 𝑦1 , … , (𝒙𝑁 , 𝑦𝑁)

– Let 𝑧𝑖 be the same as before

– The 𝑧𝑖 are no longer independent!
• 𝑓 is function of all (𝒙𝑖 , 𝑦𝑖), so the 𝑓(𝒙𝑖) are not independent

• Intuitively, it makes sense that we can’t evaluate our model on 
the training data

–As with any training task, you eventually remember the task 
too well (you overfit!)

• There are some cases where we can bound the test set 
performance in terms of training set performance

–VC dimension! 
15



What about the validation set?

• In theory, the model 𝑓 is only trained on the training set

• In practice, we choose different hyper-parameters of 𝑓 and 
iterate the training process

– E.g., number of neighbors in KNN

–After each iteration, we evaluate the model’s accuracy on 
the validation set only (not the test set!)

–Why?

–We can overfit the hyper-parameter values also

• Once we train a good model, we evaluate on the test set

– If there is a big difference between the test and validation 
sets, then overfitting is likely to blame
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Cross Validation

• When the test set is not large (a few dozen examples), 
Hoeffding’s inequality provides loose bounds

• Cross validation very useful in this case

– Split the data randomly into 90% training and 10% testing

– Train on the training data and record the test accuracy

– Repeat multiple (e.g., 10) times

– Take the average test error over all runs

–A better estimate of generalization error than a single split

• Most modern datasets are big enough such that this is no 
longer an issue

– Cross validation is still useful but is not commonly used 
since it’s quite computationally expensive
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Bias, Variance, and Model Complexity

• We’ve already seen examples of models that perfectly overfit 
the training data without having any generalization capacity

– E.g., a table with rules

• Turns out this is a general phenomenon that has to do with a 
model’s complexity

– The more complex a model is, the easier it is to achieve zero 
training error

–However, it is also easier to overfit
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Model Complexity vs Generalization

• Typically, there exists a point beyond which increasing the 
model complexity does not bring any generalization benefits

– Book authors trained a LASSO algorithm on simulated data

– LASSO is a more sophisticated regression technique
• See book if you are interested
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Model Complexity vs Generalization

• Typically, there exists a point beyond which increasing the 
model complexity does not bring any generalization benefits

–As the model complexity is increased:
• Train error (bias) decreases, but eventually test error starts 

increasing (overfitting!)

• Test error variance increases; models are sensitive to training noise
20
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Understanding deep learning (still) requires 

rethinking generalization
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Overview

• This paper is actually an updated version of a 2017 paper with 
the same name (without the ‘still’)

• The authors show that generalization is not a well understood 
for powerful models such as neural networks

– Typically, we tend to think of overfitting as an unwanted 
phenomenon

–Authors show that with deep learning it is possible to overfit 
and do well on test data OR do badly on test data
• Very hard to predict at training time

• The notion of a “distribution” is really not well defined (at least 
in the case of images)
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Theoretical Bounds on Generalization Error

• The classical approach is to quantify the classifier’s expressive 
power (also known as capacity)

• Intuitively, argument works as follows:

– Suppose you have a “simple” classifier and you have 
correctly classified a “large” training set
• “simple” as measured through VC dimension, for example

• “large” with respect to the simplicity of the classifier

– Chances are you’ll correctly classify new points also (you’ve 
already seen a large chunk of the distribution)

• Traditional generalization error arguments don’t work for NNs

– In some ways, it is surprising that they generalize at all
• There are many methods to fit the training data that don’t 

generalize
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Random Labels, Random Pixels and Shuffled Pixels

• First set of experiments in the paper

• Randomly shuffle all labels

– By design, generalization isn’t possible

• Random pixels but keep the original labels

–Once again, generalization isn’t possible

• Shuffle pixels but keep the original labels

–Depending on the transformation, this may add little to 
significant noise

• One way of assessing the NN capacity

– Is it able to learn (i.e., memorize) even the noisy data?

– Is the learning going to slow down or be otherwise 
adversely affected by the irregular training set?
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Training Results, CIFAR10

• In all cases, the NN is able to memorize the entire training set!

• Training with random labels takes the longest but it still 
converges to 0 loss

– Training with random pixels is faster probably because the 
data is more separated in space due to the noise
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Label corruption, CIFAR10

• In order to assess the effect of label corruption on training and 
generalization, the authors also try corrupting a fraction of the 
labels

– Ranging from 0% to 100% of all labels are corrupted

• Higher label corruption makes it significantly harder to overfit 
the training set

• Higher label corruption leads to higher generalization error
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Training/Test Results Summary, CIFAR10

• All sufficiently large models can
perfectly overfit training data

• Regularization improves generalization

– But not necessary or sufficient

–Major overfitting even with
generalization

• Both convolution and fully-connected
NNs show the same trends
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Training/Test Results Summary, ImageNet

• Similar to CIFAR10

–Overfitting only 95% of training data (still very surprising!)

• Regularization helps generalization

– But once again not necessary or sufficient (still major 
overfitting even with regularization)

28



Role of Regularization

• Remember Occam’s Razor

–Usually want the simplest model that can learn the task

– This is what regularization tries to achieve

• Standard regularization techniques (dropout, weight decay, 
batch normalization) do not prevent overfitting in CIFAR10

– Provide limited benefit on ImageNet as well
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NN Expressivity

• Turns out that it doesn’t take a very large NN to perfectly 
overfit a given training set

• Theorem: Given a training set 𝑆 = {(𝑥1𝑦1), … , (𝑥𝑛, 𝑦𝑛)} of size 
𝑛, where each 𝑥𝑖 ∈ ℝ𝑑, there exists a 2-layer NN with ReLU 
activations and 2𝑛 + 𝑑 weights that can perfectly overfit 𝑆.

• Proof is not very hard

• This means that even very high-dimensional datasets can be 
overfit with small NNs

–Hence we need to rethink generalization
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Conclusion

• Generalization is one of the most important aspects of ML

• It is especially important for expressive models such as neural 
networks where overfitting is very easy

• The most robust method of establishing your model’s 
generalization performance is through a test set

– The larger and more diverse, the better!
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