Q-Learning with Function Approximation

Reading

e Sutton, Richard S., and Barto, Andrew G. Reinforcement
learning: An introduction. MIT press, 2018.

— http://www.incompleteideas.net/book/the-book-2nd.html
— Chapters 9.1-9.4

e David Silver lecture on Value Function Approximation
— https://www.youtube.com/watch?v=UoPei504fps

* Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, |.,
Wierstra, D., & Riedmiller, M. (2013). Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602.

http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
https://www.youtube.com/watch?v=UoPei5o4fps
https://www.youtube.com/watch?v=UoPei5o4fps

Overview

* Classic Q-learning only works for finite-state and finite-action
MDPs

— Can’t be used for most real-world problems
— Even if state-space is finite, it may be extremely large

e Hard for Q-learning to even visit all states
* E.g., allimages
* |n classic Q-learning, Q values are stored in a table
— Here, we approximate the Q function with another function

* E.g., line, decision tree, neural network

— Essentially cast the problem as a regression problem

* Modern deep Q learning is an instantiation of this setting
— Will talk about the first deep Q network (DQN)

Function Approximation

* The value function maps every state to a value

* |deally, we want to approximate the value function, e.g., using
least squares:

1
MSE = mZ(v(s) — 9(s))’

SES

Function Approximation, cont’d

* What is the first challenge when minimizing squared error?
. 2
D (v(s) - 9()
SES
* We don’t have labels!

—We don’t know the true v(s)
— We have no training data either!

* What is a naive way of alleviating this challenge?
— Collect returns G; for each state, similar to MC
— But G; are not the actual values

* Turns out that minimizing least squares over G; is still unbiased

Linear Regression as a Function Approximator

* Suppose the approximator ¥ is a linear function, i.e.,
D(s) =w!ls
—where the state s € R™ can now be high-dimensional
* E.g., position, velocity, etc.
* A simple way to train the value function would be to use linear
regression with least squares
— We collect data from multiple episodes

— Collect all (S¢;, G¢;) pairs and treat it as training data

* What are some issues with this?
— Waiting for returns is very slow, same as in the MC case
— True value function may not be a linear function

Linear Regression as a Function Approximator

* What are some issues with this?
— True value function may not be a linear function
« Will address that with other functions (wink, wink)

— Waiting for returns is very slow, same as in the MC case

 We’ll come up with an iterative solution, similar to TD learning

Gradient Descent

In standard ML, we use SGD to minimize non-convex losses

* In RL, we can use SGD to iteratively update the weights of the
approximation function

Recall standard gradient descent (for least squares)
—Suppose we receive a new pair (x,y)

w =w—a|2(wlx —y)x]
e Of course, we don’t have labeled data in RL

— If we wait for the final return, could treat a point (S, G;) as
labeled data (rename to (s, g) just for simplicity)

— Gradient descent is now
w =w—a|2(wls — g)s]

—Turns out this converges to the least squares optimum

Semi-Gradient Methods

w =w—a|2(wls — g)s]
* If we don’t wait for the final return, what can we do?
—Think TD learning
— Use the immediate reward
— “Label” becomes the Bellman prediction
Rev1 + YW Seyq
* Now the update becomes
w =w—a|2(WI'S; — Rii1 — yWTS:11)S:]
— Called a semi-gradient because it’s bootstrapped

* j.e., we use out estimate of w to get the predicted return

Semi-Gradient Methods as Linear Systems

* Rewrite the semi-gradient
W’ =W — C([Z(WTSt - Rt+1 - yWTSt+1)St]
=W —aS;2(S; —¥S¢41)' W+ a2R 1S,
= Aw + ab

—whereA=1-—aS,2(S; —yS;.1)", b =2R;.S;
* When does this system converge?
—When all eigenvalues of A4 are in the unit circle

* Similarly, the conditional expectation is
Elwiyqlw,] = E[A]w; + aE[b]
* |t can be shown that this converges (see book for proof)
— Eigenvalues of E[A] are in the unit circle
—What does it converge to, however?

Semi-Gradient Linear Methods, cont’d

* The semi-gradient linear method converges to the “best” linear
approximation of the value function

—Where “best” is defined as the projection of the true value
function to the set of linear functions

—Don’t have time to make this more formal
* Of course, the “best” linear approximation may not be good
enough in many cases
— Especially in rich settings such as images

Semi-Gradient Polynomial Methods

* How can we learn a polynomial approximation?
—How does polynomial regression work?

— Construct polynomial features and learn weights, e.g.,
p(x1,%5) = Wy + WXy + WoXy + WaXi Xy + Wex? + wexs

Essentially the same as linear regression
— Need to construct features first

* To approximate a g value, need to stack states and actions

—E.g., suppose you have n states and 1 action
S =|[sy..5,a]

Construct polynomial features, e.g., 2"? order:
f(S,a)=[15s; .. s, a s? ..s2 a? s;5,..5,4]

Semi-Gradient Polynomial Methods, cont’d

* To approximate a g value, need to stack states and actions

—E.g., suppose you have n states and 1 action
S =][sq..5, 4]

* Construct polynomial features, e.g., 2"4 order:
f(S,a)=[1s; ..s, a s? .. s2 a® s;Sy ...5,0]

* Then,
4(s,a) = w'f(s, a)

* The semi-gradient is now the same as before:
w=w-—-a« [2 (WTf(St»At) —Riy1 — VmC?X W f(Sei1, a)) f(St»At)]

— Note this is still for the case of finite actions

Playing Atari with Deep Reinforcement Learning

14

Overview

* One of the first paper to apply RL to problems with raw image
data

e Authors made use of several recent breakthroughs in ML and
RL
— CNNs with stochastic gradient descent, batch norm, etc.
— Experience replay
—New exploration mechanisms
— Based also on standard Q-learning theory
* Achieved super-human performance on many Atari games that
have image inputs
—Inputis 210 X 160 RGB video at 60Hz

Setup

* Environment is the Atari game engine

* Assumed to be a standard MDP: 5-tuple (5,A4,P,R,1n)
—where S is the finite set of states (aka the state space)

—The true game state is not observed — the observations are
instead RGB images

* Note that this means that the MDP is partially observable since the
image does not capture things like velocity

* A sequence of images should cover the full hidden state

— Do you see any issues with the MDP assumption in this case?

Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

16

Setup, cont’d

* Environment is the Atari game engine

* Assumed to be a standard MDP: 5-tuple (5,A4,P,R,1n)
—where A is the finite set of actions (aka the action space)

* Here, A varies across games but is finite and typically small (< 10)

—where P is the transition function

 |tis unknown but (mostly) deterministic in Atari games

— Some environments have added non-determinism to prevent
hardcoded policies

—where 7 is the initial distribution

 Some games have randomized initial positions for extra uncertainty

—where R: S X A XS = Ris the reward function
* Based on the engine’s internal state, so unknown
* |t is deterministic in Atari games
* Reward structure varies from game to game

MDP Assumption in Atari Environments

Is the MDP assumption justified?

Certainly, the environment is unobservable using a single
image
— Can address that by stacking multiple frames as “state”

Games tend to change as you progress

—E.g., enemies move faster
* If rewards are based on game scores, then returns from the
same state may not be very meaningful

—If score in Pong is 20:20, vs 0:0, what happens to the
returns?

Q-learning learning

* Could use standard value iteration
Qi+1(s,a) = E[R¢+q + VmaE}X Qi(5t+1:a’) 1S = 5,4 = a

— As usual, we don’t have good estimates of expected R and Q
— Unstable if we use a single datapoint to estimate expectation

* Recall the Q-learning iteration
Q'S Ae) = QS Ap) + € [Reyy +7 maxQ(Ses1,@) — QS Ay)|
—How do we proceed?
* Could use the semi-gradient method from before
0 =0 — |20) = Rers = Yy max(Sear, @) V5051 40)|

—What issues do you see with this setup?

* Q-learning can diverge with non-linear function approximators?

Tsitsiklis, John N., and Benjamin Van Roy. "An analysis of temporal-difference learning with function approximation." IEEE
Transactions on Automatic Control. 1997,

Q-learning learning, cont’d

* Recall the Q-learning iteration
Q'(St,Ar) = Q(St, Ap) + a|Reyq + VmC?XQ(St+1» a) — Q(St»At)]

 What is the limitation of the semi-gradient method
—The semi-gradient method only looks at the latest data
—How can we improve upon that?
— What if we went back to older data as well?

* Could cast the problem as a “supervised” learning problem

— Supervised learning is known to be a more stable learning
setting

Q-learning learning, cont’d

* Recall the Q-learning iteration
Q'S A = QS o) + & [Reyy +7 max Q(Sev1,@) = Qe Ao)|
—The semi-gradient method only looks at the latest data
—What if we went back to older data as well?
* Could cast the problem as a supervised learning problem
—Change of notation: Q := Qg,_., Q" := Qp,

— For each historic tuple (S¢, A¢, Ry 1, Se4+1):
* Inputs are S;, A;

* (bootstrapped) Labelsare y = R;y1 + y maxQq,_, (S¢11,a)
a

e Can use least-squares loss (or any other regression loss)
2
L(8;, S, Ary) = (Qei(st;At) — Y)

Convergence of Q-learning with neural networks

e Convergence guarantees are out the window
—If the algorithm does converge, unclear what the limit is
— Could be a bad local optimum, as usual

* At the same time, just because some runs may diverge doesn’t
mean all runs diverge

— Many techniques have been developed to improve the
stability of RL since then

— Will look at some in these slides

Experience Replay

* An old idea in the RL community?

* |n standard Q-learning, each data-point is only used once and
discarded

— However, some past experiences are rare and may be costly
to obtain (e.g., a crash)

— Makes sense to train on past experience also

* On the other hand, past experience introduces a bias since the
behavior policy may be significantly different from target

—How can this be a problem?
* May have too many suboptimal actions

* “Training data” may be out of distribution
— Bootstrapped Q-estimates may be bad

ILin, Long-Ji. Reinforcement learning for robots using neural networks. Carnegie Mellon University, 1992.

Experience Replay, cont’d

* Store each experience as a tuple (S¢, A¢, Ry 1, Se+1)
* Can be used as training data in the Q-learning algorithm

* Typically, a buffer is used to store past experience, so that
newer experiences gradually replace older ones

— Also mitigates the bias of using past policies

* Many variants have been developed since the original paper
—E.g., prioritized experience replay

In the Atari games paper, they use a vanilla buffer and sample
experiences at random

* Experience replay also removes data correlations
—Semi-gradient method performs updates on correlated data

Training specifics

* As usual, we would like to do gradient descent over the entire
dataset, but that’s too expensive, so we use SGD

* We have now cast the problem as a supervised regression
problem, so all standard hyperparameters need to be chosen
— Mini-batch size, learning rate, NN architecture, etc.
— Extra RL hyperparameter is the discount rate y
* Typically set to a large value, = 0.9
e Algorithm is model-free
—The underlying MDP is not known or learned
* Algorithm is off-policy
—Training data is generated by a previous version of the policy

* In essence, historic data is generated by a behavior policy

Data Preprocessing

* Raw images are 210 X 160 X 3
— Challenging both computationally and statistically

* |mages are converted to grayscale, downscaled and cropped,
for a final size of 84 X 84 x 1

e 4 consecutive images are stacked together as the input to the
NN

— Effectively the MDP *state™; can capture dynamics such as
velocity

— Final input dimension is thus 84 X 84 X 4

Model Architecture: Deep Q-Network (DQN)

* The intuitive thing to do is build a NN that has one output, i.e.,
the Q value of the input state-action pair
—What is the drawback of this?
n(s) = max Q(s,a)

* Need to compute Q(s, a) for each action a

* The alternative is to have an output layer that has as many
neurons as possible actions

— Problem effectively becomes a classification task in which
the action with the highest Q value is picked

* Used a CNN with the following layers
1. 16 8 X 8filters, stride =4, RelLU
2. 324 x 4filters, stride = 2, ReLU
3. Fully connected layer with 256 neurons, RelLU

Experiments overview

* Performed experiments on 7 Atari games

— Beam Rider, Breakout, Enduro, Pong, Q*bert, Seaquest,
Space Invaders

— Atari games have become one of the most widely used
benchmarks since then
* Used the same architecture and hyperparameters for all games
* Normalized all positive rewards to 1 and all negative rewards
to-1
— Scores vary too much in magnitude

— Probably exist better ways of normalizing, in order to
maintain the relative magnitude

Training Stability

 To this day, stability remains a major challenge in RL

— Learning quickly diverges even if it seems to have converged

* Rewards per episode vary considerably, though there is an
overall trend
* Average Q values output by the NN increase consistently

— Authors claim this is a good sign, though that is a
questionable statement (why?)

* could be overfitting, selecting wrong actions, maximization bias

g 250 Average Reward on Breakout 1800 . Average Reward on Seaquest _ . Average Q on Breakout o AverageQon Seaguest

2 l 21600 I [1 Sast g s}

(=% J .

200 N I 1400 | [”ﬁ]‘w ‘i‘ ‘| P % 3l % 71

@ T Il ',T @ 1200 WA T (L g L S 6r

5 1507 'w”””"'“ r"‘.ﬂ\r&""""‘fﬁ“w'“"; 21000} N‘I‘“l‘r“h’ \| I bz 28 c 5|

2 M T L 3 WYL b € 2 2

= 00! ﬁﬂ,"k'hﬂ“i P S 8001 1] i th i MI |‘\T| [g 3 4t

& ik : ! l & 600} M“!‘f'r\"‘ ,w‘yn‘@ \ | ll‘ :I“‘lﬁ v 15 3 3t

& 5o Pogeoor o U L g

g € ool [\ [*1 2os; 2 1l

g § 200 J4 | ! < <

L Qe ol 0 o
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Training Epochs Training Epochs Training Epochs Training Epochs

29

Visualizing the Value Function

* One way to judge how good the learned policy is by looking at
specific scenarios and looking at the value function output by
the NN

* In the example below, we can see that the Q value is high
when our sub is about to destroy an enemy sub

* And low when there are no immediate targets
— Unclear if the relative difference should be that different

10.9 ‘
10.8 - B
10.7 N

10.6 | A - /Y
105 [N |
10.4 | /

10.3 . i

10.2 + AW

101 ‘

10

W ,4.’4.’ .\. f
9.9+ “C \

9.8
0 5 10 15 20 25 30
Frame #

Figure 3: The leftmost plot shows the predicted value function for a 30 frame segment of the game
Seaquest. The three screenshots correspond to the frames labeled by A, B, and C respectively.

30

Main Evaluation

 Compared DQN (in terms of average reward) with a number of
methods using hand-crafted features from images

— Used Q-learning-based methods on those images
— Comparison is unfairly in favor of prior work since features
use knowledge that objects have only one color, etc.
* Superhuman performance on some games!
— Not so surprising anymore
— Can nowadays achieve superhuman performance on most

B. Rider | Breakout | Enduro | Pong | Q¥bert | Seaquest | S. Invaders
Random 354 1.2 0 —20.4 157 110 179
Sarsa [3] 996 5.2 129 —19 614 665 271
Contingency [4] 1743 6 159 —17 960 723 268
DQN 4092 168 470 20 1952 1705 581
Human 7456 31 368 —3 18900 28010 3690

Conclusion

e Q-learning has now been applied to a number of hard control
tasks, including challenging games such as Go, Starcraft, etc.

* The Atari games paper was one of the first to demonstrate the
feasibility of RL in a challenging high-dimensional setting
 However, RL is far from mature
— stability issues
— exploration vs. exploitation

—requires rewards (which makes it hard to use in a real-world
setting)

—robustness issues (!)

e Q-learning only works for discrete actions (more next)

	Slide 1: Q-Learning with Function Approximation
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: Function Approximation
	Slide 5: Function Approximation, cont’d
	Slide 6: Linear Regression as a Function Approximator
	Slide 7: Linear Regression as a Function Approximator
	Slide 8: Gradient Descent
	Slide 9: Semi-Gradient Methods
	Slide 10: Semi-Gradient Methods as Linear Systems
	Slide 11: Semi-Gradient Linear Methods, cont’d
	Slide 12: Semi-Gradient Polynomial Methods
	Slide 13: Semi-Gradient Polynomial Methods, cont’d
	Slide 14: Playing Atari with Deep Reinforcement Learning
	Slide 15: Overview
	Slide 16: Setup
	Slide 17: Setup, cont’d
	Slide 18: MDP Assumption in Atari Environments
	Slide 19: Q-learning learning
	Slide 20: Q-learning learning, cont’d
	Slide 21: Q-learning learning, cont’d
	Slide 22: Convergence of Q-learning with neural networks
	Slide 23: Experience Replay
	Slide 24: Experience Replay, cont’d
	Slide 25: Training specifics
	Slide 26: Data Preprocessing
	Slide 27: Model Architecture: Deep Q-Network (DQN)
	Slide 28: Experiments overview
	Slide 29: Training Stability
	Slide 30: Visualizing the Value Function
	Slide 31: Main Evaluation
	Slide 32: Conclusion

