
Q-Learning with Function Approximation

1



Reading

• Sutton, Richard S., and Barto, Andrew G. Reinforcement 
learning: An introduction. MIT press, 2018.

– http://www.incompleteideas.net/book/the-book-2nd.html

– Chapters 9.1-9.4

• David Silver lecture on Value Function Approximation

– https://www.youtube.com/watch?v=UoPei5o4fps

• Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., 
Wierstra, D., & Riedmiller, M. (2013). Playing atari with deep 
reinforcement learning. arXiv preprint arXiv:1312.5602.
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Overview

• Classic Q-learning only works for finite-state and finite-action 
MDPs

– Can’t be used for most real-world problems

– Even if state-space is finite, it may be extremely large
• Hard for Q-learning to even visit all states

• E.g., all images

• In classic Q-learning, Q values are stored in a table

–Here, we approximate the Q function with another function
• E.g., line, decision tree, neural network

– Essentially cast the problem as a regression problem

• Modern deep Q learning is an instantiation of this setting

–Will talk about the first deep Q network (DQN)
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Function Approximation

• The value function maps every state to a value

• Ideally, we want to approximate the value function, e.g., using 
least squares:

𝑀𝑆𝐸 =
1

𝑆
෍

𝑠∈𝑆

𝑣 𝑠 − ො𝑣 𝑠
2
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Function Approximation, cont’d

• What is the first challenge when minimizing squared error?

෍

𝑠∈𝑆

𝑣 𝑠 − ො𝑣 𝑠
2

• We don’t have labels!

–We don’t know the true 𝑣(𝑠)

–We have no training data either!

• What is a naïve way of alleviating this challenge?

– Collect returns 𝐺𝑡 for each state, similar to MC

– But 𝐺𝑡 are not the actual values
• Turns out that minimizing least squares over 𝐺𝑡 is still unbiased
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Linear Regression as a Function Approximator

• Suppose the approximator ො𝑣 is a linear function, i.e.,
ො𝑣 𝒔 = 𝒘𝑇𝒔

–where the state 𝒔 ∈ ℝ𝑛 can now be high-dimensional
• E.g., position, velocity, etc.

• A simple way to train the value function would be to use linear 
regression with least squares

–We collect data from multiple episodes

– Collect all (𝑆𝑡,𝑖 , 𝐺𝑡,𝑖) pairs and treat it as training data

• What are some issues with this?

–Waiting for returns is very slow, same as in the MC case

– True value function may not be a linear function
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Linear Regression as a Function Approximator

• What are some issues with this?

– True value function may not be a linear function
• Will address that with other functions (wink, wink)

–Waiting for returns is very slow, same as in the MC case
• We’ll come up with an iterative solution, similar to TD learning
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Gradient Descent

• In standard ML, we use SGD to minimize non-convex losses

• In RL, we can use SGD to iteratively update the weights of the 
approximation function

• Recall standard gradient descent (for least squares)

– Suppose we receive a new pair (𝒙, 𝑦)

𝒘′ = 𝒘 − 𝛼 2 𝒘𝑇𝒙 − 𝑦 𝒙

• Of course, we don’t have labeled data in RL

– If we wait for the final return, could treat a point 𝑆𝑡 , 𝐺𝑡  as 
labeled data (rename to 𝒔, 𝑔  just for simplicity)

–Gradient descent is now

𝒘′ = 𝒘 − 𝛼 2 𝒘𝑇𝒔 − 𝑔 𝒔

– Turns out this converges to the least squares optimum
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Semi-Gradient Methods

𝒘′ = 𝒘 − 𝛼 2 𝒘𝑇𝒔 − 𝑔 𝒔

• If we don’t wait for the final return, what can we do?

– Think TD learning

–Use the immediate reward

– “Label” becomes the Bellman prediction
𝑅𝑡+1 + 𝛾𝒘𝑇𝑺𝑡+1

• Now the update becomes

𝒘′ = 𝒘 − 𝛼 2 𝒘𝑇𝑺𝑡 − 𝑅𝑡+1 − 𝛾𝒘𝑇𝑺𝑡+1 𝑺𝑡

– Called a semi-gradient because it’s bootstrapped
• i.e., we use out estimate of 𝒘 to get the predicted return
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Semi-Gradient Methods as Linear Systems

• Rewrite the semi-gradient

𝒘′ = 𝒘 − 𝛼 2 𝒘𝑇𝑺𝑡 − 𝑅𝑡+1 − 𝛾𝒘𝑇𝑺𝑡+1 𝑺𝑡

 = 𝒘 − 𝛼𝑺𝑡2 𝑺𝑡 − 𝛾𝑺𝑡+1
𝑇𝒘 + 𝛼2𝑅𝑡+1𝑺𝑡

= 𝑨𝒘 + 𝛼𝒃 

–where 𝑨 = 𝑰 − 𝛼𝑺𝑡2 𝑺𝑡 − 𝛾𝑺𝑡+1
𝑇, 𝒃 = 2𝑅𝑡+1𝑺𝑡

• When does this system converge?

–When all eigenvalues of 𝑨 are in the unit circle

• Similarly, the conditional expectation is
𝔼 𝒘𝑡+1 𝒘𝑡 = 𝔼 𝑨 𝒘𝑡 + 𝛼𝔼[𝒃]

• It can be shown that this converges (see book for proof)

– Eigenvalues of 𝔼[𝑨] are in the unit circle

–What does it converge to, however?
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Semi-Gradient Linear Methods, cont’d

• The semi-gradient linear method converges to the “best” linear 
approximation of the value function

–Where “best” is defined as the projection of the true value 
function to the set of linear functions

–Don’t have time to make this more formal

• Of course, the “best” linear approximation may not be good 
enough in many cases

– Especially in rich settings such as images
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Semi-Gradient Polynomial Methods

• How can we learn a polynomial approximation?

–How does polynomial regression work?

– Construct polynomial features and learn weights, e.g.,
𝑝 𝑥1, 𝑥2 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥1𝑥2 + 𝑤4𝑥1

2 + 𝑤5𝑥2
2

• Essentially the same as linear regression

–Need to construct features first

• To approximate a 𝑞 value, need to stack states and actions

– E.g., suppose you have 𝑛 states and 1 action
𝑺 = [𝑠1 … 𝑠𝑛 𝑎]

• Construct polynomial features, e.g., 2nd order:
𝒇(𝑺, 𝑎) = [1 𝑠1  …  𝑠𝑛 𝑎 𝑠1

2  … 𝑠𝑛
2 𝑎2 𝑠1𝑠2 … 𝑠𝑛𝑎]
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Semi-Gradient Polynomial Methods, cont’d

• To approximate a 𝑞 value, need to stack states and actions

– E.g., suppose you have 𝑛 states and 1 action
𝑺 = [𝑠1 … 𝑠𝑛 𝑎]

• Construct polynomial features, e.g., 2nd order:
𝒇(𝑺, 𝑎) = [1 𝑠1  …  𝑠𝑛 𝑎 𝑠1

2  … 𝑠𝑛
2 𝑎2 𝑠1𝑠2 … 𝑠𝑛𝑎]

• Then,
ො𝑞 𝒔, 𝑎 = 𝒘𝑇𝒇(𝒔, 𝑎)

• The semi-gradient is now the same as before:

𝒘′ = 𝒘 − 𝛼 2 𝒘𝑇𝒇 𝑺𝑡 , 𝐴𝑡 − 𝑅𝑡+1 − 𝛾 max
𝑎

𝒘𝑇𝒇 𝑺𝑡+1, 𝑎 𝒇(𝑺𝑡 , 𝐴𝑡)

–Note this is still for the case of finite actions
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Playing Atari with Deep Reinforcement Learning
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Overview

• One of the first paper to apply RL to problems with raw image 
data

• Authors made use of several recent breakthroughs in ML and 
RL

– CNNs with stochastic gradient descent, batch norm, etc.

– Experience replay

–New exploration mechanisms

– Based also on standard Q-learning theory

• Achieved super-human performance on many Atari games that 
have image inputs

– Input is 210 × 160 RGB video at 60Hz
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Setup

• Environment is the Atari game engine

• Assumed to be a standard MDP: 5-tuple (𝑆, 𝐴, 𝑃, 𝑅, 𝜂)

–where 𝑆 is the finite set of states (aka the state space)

– The true game state is not observed – the observations are 
instead RGB images
• Note that this means that the MDP is partially observable since the 

image does not capture things like velocity

• A sequence of images should cover the full hidden state

– Do you see any issues with the MDP assumption in this case?
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Setup, cont’d

• Environment is the Atari game engine

• Assumed to be a standard MDP: 5-tuple (𝑆, 𝐴, 𝑃, 𝑅, 𝜂)

–where 𝐴 is the finite set of actions (aka the action space)
• Here, 𝐴 varies across games but is finite and typically small (< 10)

–where 𝑃 is the transition function
• It is unknown but (mostly) deterministic in Atari games

– Some environments have added non-determinism to prevent 
hardcoded policies

–where 𝜂 is the initial distribution
• Some games have randomized initial positions for extra uncertainty

–where 𝑅: 𝑆 × 𝐴 × 𝑆 → ℝ is the reward function
• Based on the engine’s internal state, so unknown

• It is deterministic in Atari games

• Reward structure varies from game to game 17



MDP Assumption in Atari Environments

• Is the MDP assumption justified?

• Certainly, the environment is unobservable using a single 
image

– Can address that by stacking multiple frames as “state”

• Games tend to change as you progress

– E.g., enemies move faster

• If rewards are based on game scores, then returns from the 
same state may not be very meaningful

– If score in Pong is 20:20, vs 0:0, what happens to the 
returns?
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Q-learning learning

• Could use standard value iteration
𝑄𝑖+1 𝑠, 𝑎 = 𝔼[𝑅𝑡+1 + 𝛾 max

𝑎′
𝑄𝑖(𝑆𝑡+1, 𝑎′) |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

–As usual, we don’t have good estimates of expected 𝑅 and 𝑄

–Unstable if we use a single datapoint to estimate expectation

• Recall the Q-learning iteration

𝑄′ 𝑆𝑡 , 𝐴𝑡 = 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼 𝑅𝑡+1 + 𝛾 max
𝑎

𝑄(𝑆𝑡+1, 𝑎) − 𝑄 𝑆𝑡 , 𝐴𝑡

–How do we proceed?

• Could use the semi-gradient method from before

𝜽′ = 𝜽 − 𝛼 2 𝑄 𝑆𝑡 , 𝐴𝑡 − 𝑅𝑡+1 − 𝛾 max
𝑎

𝑄 𝑆𝑡+1, 𝑎 ∇𝜽𝑄(𝑆𝑡 , 𝐴𝑡)

–What issues do you see with this setup?
• Q-learning can diverge with non-linear function approximators1
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Q-learning learning, cont’d

• Recall the Q-learning iteration

𝑄′ 𝑆𝑡, 𝐴𝑡 = 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼 𝑅𝑡+1 + 𝛾 max
𝑎

𝑄(𝑆𝑡+1, 𝑎) − 𝑄 𝑆𝑡 , 𝐴𝑡

• What is the limitation of the semi-gradient method

– The semi-gradient method only looks at the latest data

–How can we improve upon that?

–What if we went back to older data as well?

• Could cast the problem as a “supervised” learning problem

– Supervised learning is known to be a more stable learning 
setting
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Q-learning learning, cont’d

• Recall the Q-learning iteration

𝑄′ 𝑆𝑡, 𝐴𝑡 = 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼 𝑅𝑡+1 + 𝛾 max
𝑎

𝑄(𝑆𝑡+1, 𝑎) − 𝑄 𝑆𝑡 , 𝐴𝑡

– The semi-gradient method only looks at the latest data

–What if we went back to older data as well?

• Could cast the problem as a supervised learning problem

– Change of notation: 𝑄 ≔ 𝑄𝜽𝑖−1
, 𝑄′ ≔ 𝑄𝜽𝑖

– For each historic tuple (𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡+1, 𝑆𝑡+1):
• Inputs are 𝑆𝑡 , 𝐴𝑡

• (bootstrapped) Labels are 𝑦 = 𝑅𝑡+1 + 𝛾 max
𝑎

𝑄𝜽𝑖−1
𝑆𝑡+1, 𝑎

• Can use least-squares loss (or any other regression loss)

𝐿 𝜽𝑖 , 𝑆𝑡 , 𝐴𝑡 , 𝑦 = 𝑄𝜽𝑖
𝑆𝑡 , 𝐴𝑡 − 𝑦

2
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Convergence of Q-learning with neural networks

• Convergence guarantees are out the window

– If the algorithm does converge, unclear what the limit is

– Could be a bad local optimum, as usual

• At the same time, just because some runs may diverge doesn’t 
mean all runs diverge

–Many techniques have been developed to improve the 
stability of RL since then

–Will look at some in these slides
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Experience Replay

• An old idea in the RL community1

• In standard Q-learning, each data-point is only used once and 
discarded

–However, some past experiences are rare and may be costly 
to obtain (e.g., a crash)

–Makes sense to train on past experience also

• On the other hand, past experience introduces a bias since the 
behavior policy may be significantly different from target

–How can this be a problem?
• May have too many suboptimal actions

• “Training data” may be out of distribution

– Bootstrapped Q-estimates may be bad 

23
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Experience Replay, cont’d

• Store each experience as a tuple (𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡+1, 𝑆𝑡+1)

• Can be used as training data in the Q-learning algorithm

• Typically, a buffer is used to store past experience, so that 
newer experiences gradually replace older ones

–Also mitigates the bias of using past policies

• Many variants have been developed since the original paper

– E.g., prioritized experience replay

• In the Atari games paper, they use a vanilla buffer and sample 
experiences at random

• Experience replay also removes data correlations

– Semi-gradient method performs updates on correlated data
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Training specifics

• As usual, we would like to do gradient descent over the entire 
dataset, but that’s too expensive, so we use SGD

• We have now cast the problem as a supervised regression 
problem, so all standard hyperparameters need to be chosen

–Mini-batch size, learning rate, NN architecture, etc.

– Extra RL hyperparameter is the discount rate 𝛾
• Typically set to a large value, ≥ 0.9

• Algorithm is model-free

– The underlying MDP is not known or learned

• Algorithm is off-policy

– Training data is generated by a previous version of the policy
• In essence, historic data is generated by a behavior policy
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Data Preprocessing

• Raw images are 210 × 160 × 3

– Challenging both computationally and statistically

• Images are converted to grayscale, downscaled and cropped, 
for a final size of 84 × 84 × 1

• 4 consecutive images are stacked together as the input to the 
NN

– Effectively the MDP *state*; can capture dynamics such as 
velocity

– Final input dimension is thus 84 × 84 × 4

26



Model Architecture: Deep Q-Network (DQN)

• The intuitive thing to do is build a NN that has one output, i.e., 
the Q value of the input state-action pair

–What is the drawback of this?
𝜋 𝑠 = max

𝑎
𝑄(𝑠, 𝑎)

• Need to compute 𝑄(𝑠, 𝑎) for each action 𝑎

• The alternative is to have an output layer that has as many 
neurons as possible actions

– Problem effectively becomes a classification task in which 
the action with the highest Q value is picked

• Used a CNN with the following layers

1. 16 8 × 8 filters, stride = 4, ReLU

2. 32 4 × 4 filters, stride = 2, ReLU

3. Fully connected layer with 256 neurons, ReLU
27



Experiments overview

• Performed experiments on 7 Atari games

– Beam Rider, Breakout, Enduro, Pong, Q*bert, Seaquest, 
Space Invaders

–Atari games have become one of the most widely used 
benchmarks since then

• Used the same architecture and hyperparameters for all games

• Normalized all positive rewards to 1 and all negative rewards 
to -1

– Scores vary too much in magnitude 

– Probably exist better ways of normalizing, in order to 
maintain the relative magnitude
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Training Stability

• To this day, stability remains a major challenge in RL

– Learning quickly diverges even if it seems to have converged

• Rewards per episode vary considerably, though there is an 
overall trend

• Average Q values output by the NN increase consistently

–Authors claim this is a good sign, though that is a 
questionable statement (why?)
• could be overfitting, selecting wrong actions, maximization bias
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Visualizing the Value Function

• One way to judge how good the learned policy is by looking at 
specific scenarios and looking at the value function output by 
the NN

• In the example below, we can see that the Q value is high 
when our sub is about to destroy an enemy sub

• And low when there are no immediate targets

–Unclear if the relative difference should be that different
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Main Evaluation

• Compared DQN (in terms of average reward) with a number of 
methods using hand-crafted features from images

–Used Q-learning-based methods on those images

– Comparison is unfairly in favor of prior work since features 
use knowledge that objects have only one color, etc.

• Superhuman performance on some games!

–Not so surprising anymore

– Can nowadays achieve superhuman performance on most
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Conclusion

• Q-learning has now been applied to a number of hard control 
tasks, including challenging games such as Go, Starcraft, etc.

• The Atari games paper was one of the first to demonstrate the 
feasibility of RL in a challenging high-dimensional setting

• However, RL is far from mature

– stability issues

– exploration vs. exploitation

– requires rewards (which makes it hard to use in a real-world 
setting)

– robustness issues (!)

• Q-learning only works for discrete actions (more next)
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