Policy Gradient Theorem, REINFORCE Algorithm

Reading

* Reinforcement Learning
— http://www.incompleteideas.net/book/the-book-2nd.html
— Chapters 13.1-13.3

* David Silver lecture on Policy Gradients
— https://www.youtube.com/watch?v=KHZVXao4gXs&t=3s

http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html
http://www.incompleteideas.net/book/the-book-2nd.html

Overview

* In Q-learning, we select actions based on their g values
* With policy gradient methods, the controller is just a function
that has no notion of g values
— Of course, during training, it will be trained to select actions
that maximize q values
* Policy gradient methods are more flexible than standard Q-
learning for a number of reasons
— Can handle partially observable MDPs
— Can handle continuous control systems

At the same time, training with policy gradient methods is very
unstable

Policy Gradients vs Q-learning

* In Q-learning, we have one function (approximation)
—We have an estimate q(s, a) for each s, a pair
—Those estimates define a deterministic policy
* In policy gradient methods, we have one function to estimate
action values and a separate function for the policy
— We update the two separately (using gradients)

—Even if the Q approximations are (temporarily) wrong, the
policy may not be affected much since it’s slowly updated
according to its learning rate

Finite-MDP Setup

* The finite MDP setup is the same as before
—An MDP is the usual 5-tuple (S,4,P,R,n)
* The main difference is that now the policy does not depend on
the g-values:

—recall that m(als; @) is the probability that action a is taken
from state s

—the parameters 0 are determined during training

—looks the same as before except there is no explicit
computation of g-values

Policy Example

* Can encode a probabilistic policy, with parameters 0, using
softmax

—How?
e Let the current state be s

* Let x(s,a) be a feature vector of all states and actions, e.g., one-
hot encoding

* Then the probability of taking action a from state s is:
0T x(s,a)

;0) =
T[(als) Za, eBTx(s,al)

* The encoding x(s, a) can be any encoding, including non-linear
functions of the states and actions

» Of course, m may also be arbitrarily complex (wink, wink)

Partial Observability

e Consider this short corridor example
S =26

— Actions are left/right, but their effect is reversed in state 2
—Suppose features are x(s,right) = [1 0], x(s, left) = [0 1]

e Same features regardless of the value of s

* You don’t see which state you're in effectively

— Reward of -1 after each step

* What is the optimal policy (without knowing where you are)?
— Need to make two rights and a left

e So cannot be deterministic

—Turns out a coin flip with a slight bias to the right is optimal

* More next

Partial Observability, cont’d

 What would an action-value method do? +SH =G
—1f Q([1 0]) > Q([0 1]), always go right
* Or with e-greedy probability

— Cannot learn different policies per state
* At best, take correct action w.p. €

* Policy gradient method will learn a better probability than e-
greedy

116

optimal
stochastic
policy

£-greedy right

=G

g-greedy left

-100 -

1 1 1 1 1 1 1 1 L 1 l
0 0.1 02 03 04 05 06 07 08 09 1

probability of right action

Policy Gradient Setup

* Unlike Q-learning, we now have a policy that is learned
separately from the g-values

* The policy m is defined in the same way as before:
n(als; 0) = P [A; = a|S; = s]
* The state values, v;(s), and action values, g, (s, a), are
defined in the same way as before

—The main difference is that the policy is now trained
separately from the value estimates

— We are now directly training the policy to maximize the
value of each state

Optimization Function

* What function should the policy optimize?
— Maximize the value v, (s) for all s
—What are some issues with this?

* Don’t know the real v,
* Also, v, is policy-specific, so it changes every time we change i

—If we knew v, (s) for each state s, how would we train ?

* To maximize v, need to calculate its gradient w.r.t. 0
— Here, the policy T is parameterized by 0 (written my)
—In this case, the gradient is called a policy gradient
—The policy can be any function, as usual

e E.g., a neural network’s parameters
* When clear from context, we’ll just write
* Only requirement is that it’s differentiable w.r.t 8

Policy Gradients

* Look at policy gradient (w.r.t. @) in finite state case:

Vor(s) = V| D m(als)n(s, @

a

_ z Un(al)au(s, @) + 7(al$)Van(a,s)
— za: Vr(als)q (s, a) +

a +7(als)V) P(s,a,5)[R(s,a,5") + ()]
= Z vr(als)q,(s, :) + yn(als) Z P(s,a,s")Vvg(s’)

* Notice that Vv, appears recursively

Policy Gradients, cont’d

Vv (s) = Z Vr(als)q,(s,a) + ym(als) z P(s,a,s’)

z Vr(a'|s)q,(s’,a") + yrn(a'|s’) z P(s',a',s")Vv (s"")
| a’ s’ i

* Notation:

* P[s = x, k,] is the probability that state x is visited from state
s after k steps (following policy m)
e Pls » x,0,r] =1ifs =xand0, otherwise
e Pls > x,1,m] =) ,m(als)P(s,a,x)
¢ Pls - x,2,m] =Y m(als) Y P(s,a,s")Y,m(a|s)P(s’,a’,x)

Policy Gradients, cont’d

Vv (s) = Z Vr(als)q,(s,a) + ym(als) z P(s,a,s’)

e Look at first term:

D Vn(als)an(s,0) =

= Z P[s - x,0,] z Vr(alx)q,(x,a)

XES a

—since P[s - x,0,7] = 1 onlywhenx = s

z Vr(a'|s)q,(s’,a") + yrn(a'|s’) z P(s',a',s")Vv (s"")
| a’ s’ i

13

Policy Gradients, cont’d

Vv (s) = Z Vr(als)q,(s,a) + ym(als) z P(s,a,s’)

z Vr(a'|s)q,(s’,a") + yrn(a'|s’) z P(s',a',s")Vv (s"")
I al S” |
* Look at second term (rename s’ to x):

1% z m(als) Z P(s,a,x) z Vr(a'|x)q,(x,a")| =

= yz Z Vr(a'|x)q,(x,a") z n(als)P(s,a, x)

a

XES

— z P[s - x,1,] z Vr(a'|x)q,(x,a")

Policy Gradients, cont’d

* Rewriting the policy gradient:
Vv, (s) = z P[s - x,0,] z Vr(alx)q,(x,a) +

XES a

+yz P[s - x,1, 7] z Vr(alx)q,(x,a)

X a
+ Y yn(als)) P(s,a,s)|) yr(@ls)) P(s',a,s")Vun(s")
a S/ al S”

* We can continue the expansion in the same fashion for future
steps

15

Policy Gradients, cont’d

Vv, (sg) = Z z YEP[s, — s, k, 7 ZVn(als)qn(s a)

SES k=

* We can treat the sum of probabilities as the discounted
aggregate state visitation “probability”

—Callitd,

—Similar to the stationary distribution i, but not the same
UP =

* What probability does u,; capture?
lim P[sy — s, k, 7]

k—oo

* If you want to treat d,; as a real probability distribution, need
to normalize it so that it sums up to 1

Policy Gradients, cont’d

Vv, (sg) = Z z YEP[s, — s, k, 7 ZVn(als)qn(s a)

SES k=

* We can treat the sum of probabilities as the discounted
aggregate state visitation probability

—Callitd,
* So, finally

Vor(50) =) dn(s)) V(als)an(s, a)

* This is the policy gradient theorem!

Using the policy gradient theorem

* To improve a given a policy g, we observe the next state-
action-reward pair, and compute the gradient

* Note that we can think of the gradient as an expectation

Vor(50) =) dr(s)) V(als)qn(s, 0)

= Eq, |) Vr(@lS)an(S,, @
a

—Technically need to normalize d;

e That’s just a constant which would be multiplied by the learning
rate anyway

 How do we approximate the expectation using real data?
— Average over real data

Using the policy gradient theorem, cont’d

* Note that we can think of the gradient as an expectation

Vor(50) = Ea |) V(alS)ax(Se, @

 How do we approximate the expectation using real data?
— Average over real data
— For each state s, compute gradient over all actions:

Z Vr(als)qr(s, a)

— Any issues with this?
—Need to know all g.(s,a)

REINFORCE algorithm

* The benefit of the policy gradient theorem is that we can
compute gradients w.r.t. @ and improve the policy

— As long as we have good estimates g of the real g function
—We'll discuss several ways to get g

* We could directly instantiate a gradient-descent algorithm:

Ori1 =0 + az q(Sy, a)Vr(alSs; 0)
a

* Of course, this requires good estimates g for all state-action
pairs

— Also a 0 update updates the entire function, not just the
current action parameters

— Could be very unstable

REINFORCE algorithm, cont’d

* To avoid needing an estimate for each action value, one could
modify the policy gradient theorem

— Could use the return G, directly

— To simplify the math, focus on finite-horizon case
Vo, (s) = VE,[G4]S; = 5]

(law of ic(.)tal — Z VP_[tr|S; = s]E,[G,|tr]
probability) tr=(SL.ALRL...)

(log trick) = Z P_[tr|S; = s]Vlog(P,[tr|S; = s])E,[G|tr]
tT:(Sl,Al,Rl...)

T
= z P.[tr|S; = s]Vlog (1_[T(A¢|S)P(St, Ag, St+1)> Er[Gyltr]

tT':(Sl,Al,Rl...) t=1

z Pr[tr|S; = s] <z Vlog(ﬂ(At|St)) + Vlog(P(St»At» St+1))> Er[Gqltr]
tr t

= IEn[Z?:l VIOg(T[(Atlst)) G1|51 = S]

REINFORCE algorithm, cont’d

* Final form for the gradient is
Vug(s) = IE,T[ZszVIOg(n(AASt)) lesk = S]
— Book proves a slightly different result

* Expected value over next action only

* Once we have the gradient, update weights as usual
0" =0+ aVevg,(s)

—Similar to the Monte Carlo methods where we wait until the
end of the episode to observe G;

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for .

Input: a differentiable policy parameterization 7(als, 6)
Algorithm parameter: step size a > 0
Initialize policy parameter @ € R (e.g., to 0)

Loop forever (for each episode):

Generate an episode Sy, Ao, R1,...,S7_1, Ar_1, Bp, following =(-|-,0)
Loop for each step of the episode t =0,1,..., 7T — 1:
T e
G« Zk:t+1 T"k ‘ IRk (Gy)

0 — 0+ ay'GVInr(A4:S;:,0)

22

Partial Observability, cont’d

* What would an action-value method do? <§—» =[G
—1f Q([1 0]) > Q([0 1]), always go right
* Or with e-greedy probability

— Cannot learn different policies per state
* At best, take correct action w.p. €

* Policy gradient method learns a better policy than e-greedy

891-1+92-0

—Suppose we use softmax policy m([1 0]) = 001102

116 "
o0l op'umall o Al #
stochastic -20} al
policy \ it
-40 - . ’ A
) (S) E-greedy rlght (1“ s ! i A b.\'a\-hﬁf~','~'\'v‘-*'“wb;"‘“"‘f<\"~)"»""'-""l*‘\‘ yrH
| Total reward N [y e
60} on episode |/
averaged over 100 runs 60!
d
‘=[] G ;
80r [e-greedy left !
80+ "
-100 Ca L 1 | L L 1 I I I I -90; Al ' !
0 01 02 03 04 05 06 07 08 09 1 1 200 400 600 800 1000

. . : _—
probability of right action pisode -

Issues with REINFORCE

* Can you spot any issues with this iteration?
Vur(s) = Eq[Zi=k Viog(n(A¢IS)) Gk[S =]
—How important is the magnitude of G, ?
—Turns out quite a bit — tasks have greatly varying returns
— Especially problematic if *good™* runs have zero returns
* Gradientis O!
* Vanilla REINFORCE has very large variance depending on Gy,

e Next time we’ll discuss how to address this issue

	Slide 1: Policy Gradient Theorem, REINFORCE Algorithm
	Slide 2: Reading
	Slide 3: Overview
	Slide 4: Policy Gradients vs Q-learning
	Slide 5: Finite-MDP Setup
	Slide 6: Policy Example
	Slide 7: Partial Observability
	Slide 8: Partial Observability, cont’d
	Slide 9: Policy Gradient Setup
	Slide 10: Optimization Function
	Slide 11: Policy Gradients
	Slide 12: Policy Gradients, cont’d
	Slide 13: Policy Gradients, cont’d
	Slide 14: Policy Gradients, cont’d
	Slide 15: Policy Gradients, cont’d
	Slide 16: Policy Gradients, cont’d
	Slide 17: Policy Gradients, cont’d
	Slide 18: Using the policy gradient theorem
	Slide 19: Using the policy gradient theorem, cont’d
	Slide 20: REINFORCE algorithm
	Slide 21: REINFORCE algorithm, cont’d
	Slide 22: REINFORCE algorithm, cont’d
	Slide 23: Partial Observability, cont’d
	Slide 24: Issues with REINFORCE

