

Reading

- Chapters 3.1, 3.2
 - Hastie, Trevor, et al. The elements of statistical learning: data mining, inference, and prediction. Vol. 2. New York: springer, 2009.
 - Available online: https://hastie.su.domains/Papers/ESLII.pdf
- Chapters 3.1.1, 3.1.2, 3.2.1, 3.2.2
 - James, Gareth, et al. An introduction to statistical learning.
 Vol. 112. New York: springer, 2013.
 - Available online: https://www.statlearning.com/

Linear regression from a statistical point of view

Overview

- Linear regression is one of the simplest and best understood methods in statistics/ML
- We can derive closed-form optimal solutions in many cases
- It works well with some of the fundamental results of probability theory, e.g., the Central Limit Theorem
- It has good generalization capacity for many learning problems in practice
- Most successful modern ML methods (deep learning, SVMs) are direct extensions of linear methods
- Understanding linear methods is a necessary condition for understanding more advanced topics

Linear Regression Setup

As usual, we are given N labeled IID examples:

$$(x_1, y_1), ..., (x_N, y_N)$$

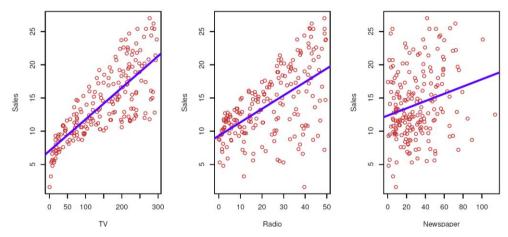
- -where $x_i \in \mathbb{R}^p$, $y_i \in \mathbb{R}$
- We assume the examples are sampled from \mathcal{D} and are realizations of random variables $(X,Y) \sim \mathcal{D}$
- The goal of linear methods is to find a linear f such that Y = f(X)
- Specifically, let $\boldsymbol{X} = \begin{bmatrix} X_1, \dots, X_p \end{bmatrix}^T$
- The goal is to find parameters w_i such that

$$Y = w_0 + w_1 X_1 + \dots + w_p X_p$$

—The book uses β_i for parameters but w_i is the standard notation in ML

Advertising Example

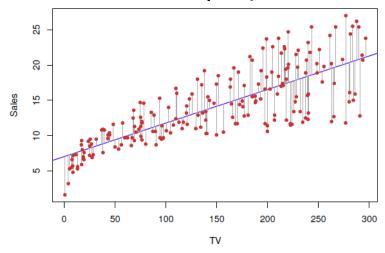
- Suppose you are a sales analyst and would like to assess the benefit of different ways of advertising
 - You have data for a product sold at 200 different markets
 - For each market, the product has been advertised on TV, radio and newspaper



- Your job is to analyze the relative contribution of each advertising method
 - You need to build a model of how ad spending affects sales

Advertising Example, cont'd

- Suppose you hypothesize that there is a linear relationship between the amount of dollars invested and the sales
 - Of course, true relationship is unknown
 - But if a line captures most of the variability (modulo some noise), then that's a good start
- Consider first just TV ads
 - How do you estimate the slope (and intercept) of the line?



Best fit line

- Suppose we want a line that minimizes the average distance to all points
 - How do we pick w_0 and w_1 ?
- First note that for any w_0, w_1 :
 - Given an example x_i , the line prediction is $\hat{y}_i = w_0 + w_1 x_i$
 - The prediction error is

$$e_i = y_i - \hat{y}_i = y_i - (w_0 + w_1 x_i)$$

- Suppose we pick the weights to minimize $\frac{1}{N}\sum_{i=1}^{N}e_i$
 - What is wrong with this strategy?
 - e_i can be made arbitrarily negative, i.e., minimum is $-\infty$
 - What's an alternative formulation?
 - Least squares!

Least Squares

 Instead of minimizing the average error, minimize the sum of squared errors

$$\frac{1}{N} \sum_{i=1}^{N} e_i^2 =$$

$$= \frac{1}{N} \sum_{i=1}^{N} (y_i - w_0 - w_1 x_i)^2$$

- —The problem is now well defined because $e_i^2 \ge 0$
- This approach has many names: least squares, minimum squared error (MSE), residual sum of squares
- Note that 1/N is constant and doesn't affect the w_0 and w_1 that minimize the MSE

Minimize the sum of squares

- First, consider the special case $w_0 = 0$
- Problem is

$$\min_{w_1} \sum_{i=1}^{N} (y_i - w_1 x_i)^2$$

Expanding the parentheses, we get

$$\sum_{i=1}^{N} y_i^2 - \sum_{i=1}^{N} 2w_1 y_i x_i + \sum_{i=1}^{N} w_1^2 x_i^2$$

• Quadratic equation in w_1 , min is achieved when derivative is 0

Minimize the sum of squares, cont'd

Expanding the parentheses, we get

$$\sum_{i=1}^{N} y_i^2 - \sum_{i=1}^{N} 2w_1 y_i x_i + \sum_{i=1}^{N} w_1^2 x_i^2$$

- Quadratic equation in w_1 , min is achieved when derivative is 0
- Derivative w.r.t w₁ is

$$-2\sum_{i=1}^{N} y_i x_i + 2w_1 \sum_{i=1}^{N} x_i^2 = 0$$

$$w_1^* = \frac{\sum_{i=1}^{N} y_i x_i}{\sum_{i=1}^{N} x_i^2}$$

• If we stack all data in vectors x and y, then $w_1^* = \frac{y^T x}{x^T x}$

What about multiple dimensions?

• Suppose you would like to build a model that takes all 3 X variables as inputs, i.e.,

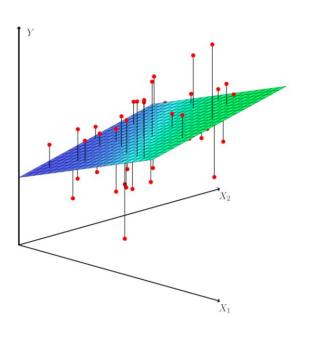
$$f(X) = w_0 + w_1 X_1 + w_2 X_2 + w_3 X_3$$

- Why would you do this instead of building a separate model for each dimension?
 - Can capture interactions between different dimensions
 - E.g., suppose TV ads are the most effective, but all ads were increased simultaneously
 - In each dimension, there will be a correlation between ad spending and sales
 - But if you build the 3D model, the TV coefficient will likely dominate
 - In general, causality is very hard to capture, but building a multidimensional model is always better than building many 1D models

Multiple dimensions, cont'd

- The function f now becomes a plane
- Individual regression coefficients

	Coefficient	Std. error	t-statistic	<i>p</i> -value
Intercept	7.0325	0.4578	15.36	< 0.0001
TV	0.0475	0.0027	17.67	< 0.0001
	Coefficient	Std. error	t-statistic	p-value
Intercept	9.312	0.563	16.54	< 0.0001
radio	0.203	0.020	9.92	< 0.0001
	•			
	Coefficient	Std. error	t-statistic	<i>p</i> -value
Intercept	12.351	0.621	19.88	< 0.0001
newspaper	0.055	0.017	3.30	0.00115



- Multiple-dimension regression coefficients
 - Note the newspaper coefficient

	Coefficient	Std. error	t-statistic	p-value
Intercept	2.939	0.3119	9.42	< 0.0001
TV	0.046	0.0014	32.81	< 0.0001
radio	0.189	0.0086	21.89	< 0.0001
newspaper	-0.001	0.0059	-0.18	0.8599

Interpretation of linear coefficients

- Suppose we have obtained a parameter estimate \widehat{w}_1
- We say that a unit change in X_1 is correlated, on average, with a \widehat{w}_1 unit change in Y
 - Note the word "correlated"! It is very difficult to establish causality using a purely data-driven method
 - —Also note the expression "on average"! The coefficient \widehat{w}_1 is averaged over all training points
 - will have different prediction error for different points
- This interpretation is specific to linear models
 - But causality is hard to establish in any setting!

Multidimensional regression

Consider the multi-dimensional linear function

$$f(X) = w_0 + w_1 X_1 + \dots + w_p X_p$$

Without loss of generality, we can write

$$f(X) = \mathbf{w}^T X^*$$

- -where $\mathbf{w} = \begin{bmatrix} w_0 \ w_1 \ ... \ w_p \end{bmatrix}^T$
- -How?
- $-\operatorname{Rewrite} \boldsymbol{X}^* = \begin{bmatrix} 1 & \boldsymbol{X}^T \end{bmatrix}^T$
- To avoid clutter, we will just write X instead of X^*

Multidimensional Least Squares

- Goal is the same as in the 1D case
 - Find w such that the line minimizes squared errors
- For a given w, the prediction is $\hat{y}_i = w^T x_i$
 - The prediction error is

$$e_i = y_i - \hat{y}_i$$

And the sum of squares is

$$\sum_{i=1}^{N} e_i^2 =$$

$$= \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

The sum of squares is

$$\sum_{i=1}^{N} (y_i - \boldsymbol{w}^T \boldsymbol{x}_i)^2$$

• To minimize, once again expand the parentheses

$$\sum_{i=1}^{N} y_i^2 - \sum_{i=1}^{N} 2y_i \mathbf{w}^T \mathbf{x}_i + \sum_{i=1}^{N} (\mathbf{w}^T \mathbf{x}_i)^2$$

• Then, take gradient w.r.t. w and set equal to 0

$$-2\sum_{i=1}^{N} y_i x_i + 2\sum_{i=1}^{N} (w^T x_i) x_i = 0$$

Aside: Vector Calculus

- Suppose we are given a function $f: \mathbb{R}^n \to \mathbb{R}$
 - We are interested in the derivative of f
- When n=1, it is just the partial derivative $f'=\frac{\partial f}{\partial x}$
- When n > 1, the derivative is a vector of all partial derivatives:

$$\nabla_{x} f = \begin{bmatrix} \frac{\partial f}{\partial x_{1}} & \dots & \\ \frac{\partial f}{\partial x_{n}} & \dots & \\ \frac{\partial f}{\partial x_{n}} & \dots & \end{bmatrix}$$

- -This is called the gradient of f
- The gradient is the multi-dimensional extension of the derivative

$$-2\sum_{i=1}^{N} y_i x_i + 2\sum_{i=1}^{N} (w^T x_i) x_i = 0$$

- Temporary notation: Let $\mathbf{y} = [y_1, ... y_N]^T$ and $\mathbf{X} = [\mathbf{x}_1 ... \mathbf{x}_N]$
- Note that for any matrix A and vector x, the following is true $Ax = x_1 a_1 + \cdots + x_n a_n$
- Thus, $\sum_{i=1}^{N} y_i x_i = Xy$

• Similarly,
$$\sum_{i=1}^N (w^Tx_i)x_i = X \begin{vmatrix} w^Tx_1 \\ ... \\ w^Tx_N \end{vmatrix} = X(w^TX)^T = XX^Tw$$

$$-2\sum_{i=1}^{N} y_i x_i + 2\sum_{i=1}^{N} (w^T x_i) x_i = 0$$

- Temporary notation: Let $\mathbf{y} = [y_1, ... y_N]^T$ and $\mathbf{X} = [\mathbf{x}_1 ... \mathbf{x}_N]$
- Then the above becomes

$$-2Xy + 2XX^Tw = 0$$
$$XX^Tw = Xy$$

- To solve for w, we need to multiply by $(XX^T)^{-1}$ on the left
 - When is that matrix invertible?
 - Recall $X \in \mathbb{R}^{p+1 \times N}$
 - So X must be a wide matrix (and full rank)
 - Typically, we need much more examples than dimensions for learning to succeed (i.e., $N \gg p$)

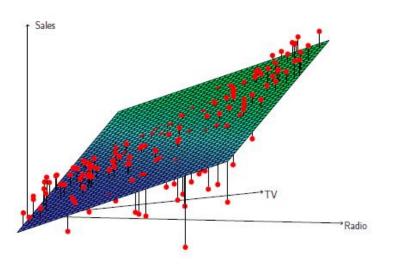
$$\boldsymbol{w}^* = \left(\boldsymbol{X}\boldsymbol{X}^T\right)^{-1}\boldsymbol{X}\boldsymbol{y}$$

- Notice that XX^T is symmetric
 - -Why?

$$(\mathbf{X}\mathbf{X}^T)^T = (\mathbf{X}^T)^T \mathbf{X}^T = \mathbf{X}\mathbf{X}^T$$

How accurate are our parameter estimates?

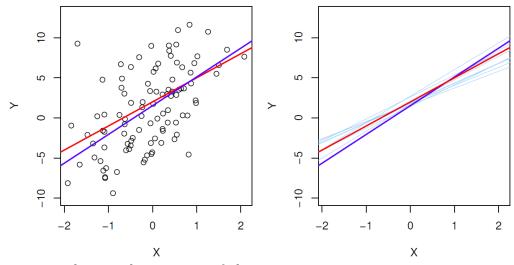
- There are several factors to consider when talking about accuracy
- Is the true relationship linear or close to linear?
 - If not, then no line will be a great predictor
- In many real-life cases, relationship is not truly linear but a linear model is still a good way to describe trends



How accurate are our parameter estimates?

• If the relationship is linear, how close to the true line is the line

we learned?



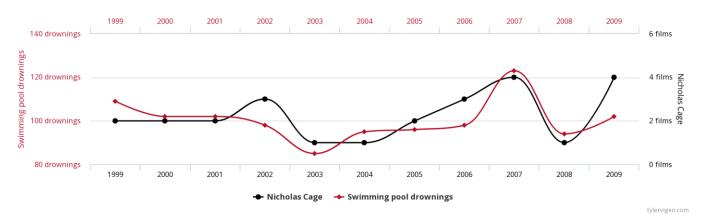
- Red: true line; Blue: learned lines
- As we collect more data, the learned line will converge to the true line (Law of Large Numbers)
- Each slope estimate follows a bell-shaped distribution
 - Converges to a Gaussian with more data (Central Limit Theorem)

Spurious Correlation Examples

Number of people who drowned by falling into a pool

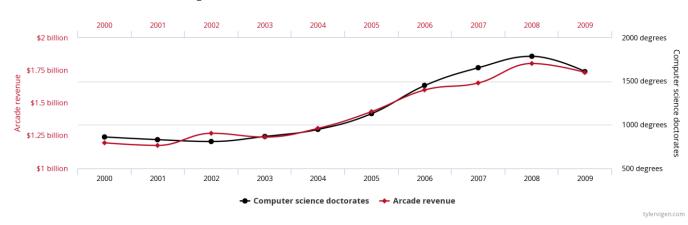
correlates with

Films Nicolas Cage appeared in



Total revenue generated by arcades correlates with

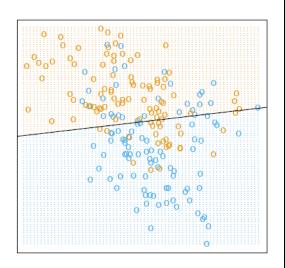
Computer science doctorates awarded in the US

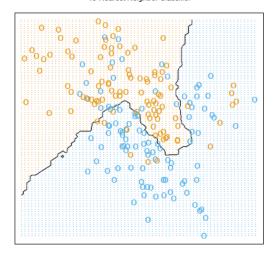


source: http://www.tylervigen.com/spurious-correlations

Linear Regression vs Nearest Neighbors

- Linear regression cannot capture complex relationships
 - Will talk more about classification next
- Nearest neighbor actually works quite well in some cases
 - What are cases where nearest neighbor would not work so well?
 - High-dimensional settings where data is sparse
 - This issue is called the curse of dimensionality
 - Quite common across ML





First Dataset: MNIST

A dataset of 60K grayscale images of handwritten digits

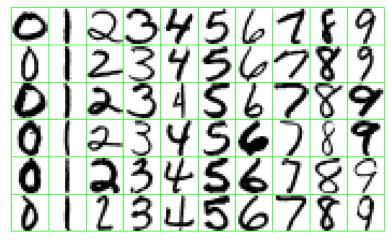


FIGURE 1.2. Examples of handwritten digits from U.S. postal envelopes.

- Each image is a 28×28 matrix of pixels
 - Each pixel is an integer between 0 and 255
 - Often normalized between 0 and 1 for numeric stability
- Dataset more or less *solved*
 - Can achieve >99% accuracy with various methods

MNIST, cont'd

- We'll have a few homeworks on MNIST
- First, we'll try a linear regression/classifiication method
 - Does this make sense?
 - What do you expect to see?

What about non-linear terms?

- One can add non-linear terms to the function f, e.g., $f(X) = w_0 + w_1 X_1 + w_2 X_2 + w_3 X_1 X_2$
- And then learn the coefficients in the same way using MSE
- You should only do this if you have a good reason to believe this non-linearity is present in the data
- Intuitive interpretation gets harder for non-linear models
 - In general, non-linear models complicate the math very quickly, and statistical guarantees are harder to get
- In modern ML, if the data has an unknown non-linear relationship, then neural networks are the model of choice
 - More on this later