
Logistic Regression
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Reading

• Chapters 4.1, 4.2, 4.4

–Hastie, Trevor, et al. The elements of statistical learning: 
data mining, inference, and prediction. Vol. 2. New York: 
springer, 2009.

–Available online: https://hastie.su.domains/Papers/ESLII.pdf

• Chapters 4.1, 4.2, 4.3

– James, Gareth, et al. An introduction to statistical learning. 
Vol. 112. New York: springer, 2013.

–Available online: https://www.statlearning.com/

• Logistic regression from a statistical point of view
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Overview

• Similar to linear regression, logistic regression is one of the 
most established methods in ML/stats

• Logistic regression is usually used in classification settings

–Word “regression” is used since we’re estimating the 
probabilities of each label given the features

– The labels are now discrete values (e.g., objects in an image, 
the presence/absence of a disease)

• One could also extend regression methods for classification 
(e.g., by thresholding the output of the function 𝑓)

– But those do not typically estimate probabilities

• Logistic regression is an example of a very simple neural 
network
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Example Classification Tasks

• Many classical ML problems are classification tasks

– Image classification (i.e., object recognition)

–Determine whether a patient has cancer from MRI images

–Determine whether an email is ham or spam

• In the context of autonomous systems and control, many 
problems can also be mapped to classification tasks

–Decide which route to a destination to take

–Decide which action to take (out of a finite number)

– In general, decision making is one of the main parts of 
autonomous systems (and it is typically a discrete choice)
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Linear Classification Setup

• As before, we are given 𝑁 labeled IID examples: 
𝒙1, 𝑦1 , … , (𝒙𝑁, 𝑦𝑁)

–where 𝒙𝑖 ∈ ℝ𝑝

–Unlike in regression, 𝑦𝑖 is a discrete label (e.g., cat, dog)

–We encode labels with integers, i.e., 𝑦𝑖 ∈ 1, … , 𝐾

• We assume the examples are sampled from 𝒟 and are 
realizations of random variables 𝑿, 𝑌  ~ 𝒟

• The goal of classification is to find an 𝑓 such that
𝑌 = 𝑓(𝑿)

– Same as in regression, modulo the fact that 𝑌 is discrete
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Probabilistic View of Classification

• The final goal of classification is a function of the form 
𝑌 = 𝑓(𝑿)

• An even stronger requirement is to output the probabilities for 
each label, given an example 𝑿

– This is a statistical view of the classification problem

– For 𝐾 labels, consider the 𝐾-dimensional vector 𝒀 ∈ 0,1 𝐾

– The value of each element 𝑌𝑖 represents
ℙ[𝑌 = 𝑖|𝑿]

– That implies σ𝑖=1
𝐾 𝑌𝑖 = 1

• Thus, the goal of classification is also to develop a function 𝐹
𝒀 = 𝐹(𝑿)

• 𝐹 predicts the probabilities of all labels given an example 𝑿
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Probabilistic View of Classification, cont’d

• Thus, the goal of classification is also to develop a function 𝐹
𝒀 = 𝐹(𝑿)

• Note that we can build a classifier on top of 𝐹

–How?
𝑓 𝑿 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖  𝐹(𝑿)

– i.e., just take the 𝑌𝑖 with highest probability

– So computing probabilities of labels is strictly harder than 
just outputting the most likely label

• Both types of approaches exist

– Logistic regression takes the latter approach

– Support vector machines only perform classification
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Why not use linear regression for classification?

• One could apply regression to classification problems, by using 
least squares, i.e., minimize

෍

𝑖=0

𝑁

𝑦𝑖 − 𝒘𝑇𝒙𝑖
2

–where each 𝑦𝑖 is an integer

– Then, predict a discrete label by thresholding 𝒘𝑇𝒙𝑖

• E.g., in the binary case: 𝑓 𝒙𝑖 = 1 if 𝒘𝑇𝒙𝑖 > 0.5

• Linear regression is not designed to output probabilities

– Can output values outside of [0,1]
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Linear regression: classification issue in binary 

case

• Suppose we fit a line and choose a 
classification threshold

–Most probabilities for label 1 are very low

– Some probabilities for label 0 are negative
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Linear regression: classification issue in 

multi-label case

• Linear regression gets tricky with multiple labels

• Suppose we are trying to classify an image directly from pixels

– Labels are: cat, elephant, dog

• What potential issue do you see?

• Assigning number labels to categories is arbitrary

– E.g., does cat=0, elephant=1, dog=2 make sense?
• That would imply dog is farther from cat than from elephant

• We’d be assuming that a unit difference in 𝑦 means something

–We would learn a different function if we change the labels
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Linear regression: classification issue in 

multi-label case
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• Suppose we have three labels in 1D

– If we pick the labels right, linear regression may work well

– But if we switch the labels, linear regression would lose at 
least one class

–How do we address this issue?
• One option: multiple binary regressions

𝑥

𝑦

1

2

3

𝑥

𝑦

1

2

3



Logistic Regression

• Linear regression models the labels directly

– i.e., 𝑌 = 𝑓(𝑿)

• Logistic regression models the probability of a given label

– e.g., in the binary case: 𝑓 𝑿 = ℙ 𝑌 = 1 𝑿

• How do we come up with such a function?

• Can we adapt linear regression to output numbers in [0,1]?

–Maybe we can normalize the output to be between 0 and 1?
• Only works if the inputs are bounded

–Maybe feed the output of linear regression into a function 
that is always in [0,1]?
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Logistic Regression, cont’d

• Feed the output of linear regression into a function in [0,1]

– Solution: the logistic function
(also known as the sigmoid)

𝜎 𝑥 =
𝑒𝑥

1 + 𝑒𝑥

• As 𝑥 → ∞, 𝜎(𝑥) → 1

• As 𝑥 → −∞, 𝜎(𝑥) → 0

• How do we feed the output of linear regression into 𝜎?

𝑓 𝑥 =
𝑒𝑤0+𝑤1𝑥

1 + 𝑒𝑤0+𝑤1𝑥

• In multiple dimensions (again appending a 1 to 𝒙):

𝑓 𝒙 =
𝑒𝒘𝑇𝒙

1 + 𝑒𝒘𝑇𝒙
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Logistic Regression, cont’d

• In the binary case:

ℙ 𝑌 = 1 𝑿 = 𝒙 =
𝑒𝒘𝑇𝒙

1 + 𝑒𝒘𝑇𝒙

– Similarly, ℙ 𝑌 = 0 𝑿 = 𝒙 = 1 − ℙ 𝑌 = 1 𝑿 = 𝒙

– i.e.,

ℙ 𝑌 = 0 𝑿 = 𝒙 = 1 −
𝑒𝒘𝑇𝒙

1 + 𝑒𝒘𝑇𝒙
 

 =
1 + 𝑒𝒘𝑇𝒙 − 𝑒𝒘𝑇𝒙

1 + 𝑒𝒘𝑇𝒙

 =
1

1 + 𝑒𝒘𝑇𝒙
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Example

• Use a simulated dataset from the book

• Goal is to predict whether a person will default on their credit 
card payment

– Features are annual income and current balance
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Logistic vs. Linear Regression

• Some probabilities predicted by linear regression are negative 

• In terms of classification, two methods are the same

–Why?

– Classification threshold can be adjusted for each method to 
maximize classification accuracy
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Learning the Logistic Regression Coefficients

• In linear regression, we learned the coefficients using MSE

෍

𝑖=1

𝑁

𝑒𝑖
2

–where 𝑒𝑖 = 𝑦𝑖 − 𝑓(𝒙𝑖) are the prediction errors

• We could do the same for logistic regression:

෍

𝑖=1

𝑁

𝑒𝑖
2 = ෍

𝑖=1

𝑁

𝑦𝑖 −
𝑒𝒘𝑇𝒙𝑖

1 + 𝑒𝒘𝑇𝒙𝑖

2

–What issues do you see with this expression?

– It’s not quadratic in 𝒘, so we can’t minimize it by hand

– There exist minimization algorithms, will look at them later 
in the course
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Learning the Logistic Regression Coefficients:

Maximum Likelihood Estimation

• An alternative way to learning the coefficients is through 
maximizing the data likelihood

• The real data is distributed according to an unknown 
distribution

– E.g., each example (𝒙, 𝑦) has an unknown conditional 
distribution

ℙ 𝑌 = 𝑦 𝑿 = 𝒙

• For given logistic weights 𝒘, logistic regression predicts 
probability (e.g., for 𝑦 = 1)

ℙ𝒘 𝑌 = 1 𝑿 = 𝒙 =
𝑒𝒘𝑇𝒙

1 + 𝑒𝒘𝑇𝒙

– Pick weights 𝒘 that maximize predicted training data 
probability
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Learning the Logistic Regression Coefficients:

Maximum Likelihood Estimation, cont’d

• True data likelihood can be simplified
ℙ 𝑦1, … , 𝑦𝑁|𝒙1, … , 𝒙𝑁 = 

 = ෑ

𝑖=1

𝑁

ℙ 𝑦𝑖|𝒙𝑖

• Why?

–Data is IID
• Joint probability is equal to the product of individual probabilities

• How do we maximize the predicted likelihood by the sigmoid?

– Choose weights 𝒘 that maximize predicted likelihood

ෑ

𝑖=1

𝑁

ℙ𝒘 𝑦𝑖|𝒙𝑖
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Learning the Logistic Regression Coefficients:

Maximum Likelihood Estimation, cont’d

• Instead of maximizing the likelihood, we are actually going to 
maximize the logarithm of likelihood

𝐿𝐿 = log ෑ

𝑖=1

𝑁

ℙ𝒘 𝑦𝑖|𝒙𝑖

• Claim: the 𝒘 that maximizes the likelihood also maximizes the 
log-likelihood (why?)

– Logarithm is monotonic

– So maximizing the log-likelihood is the same as maximizing 
the likelihood

𝐿𝐿 = log ෑ

𝑖=1

𝑁

ℙ𝒘 𝑦𝑖|𝒙𝑖 = ෍

𝑖=1

𝑁

log ℙ𝒘 𝑦𝑖|𝒙𝑖
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Learning the Logistic Regression Coefficients:

Maximum Likelihood Estimation, cont’d

𝐿𝐿 = ෍

𝑖=1

𝑁

log ℙ𝒘 𝑦𝑖 𝒙𝑖

• Note ℙ𝒘 𝑦𝑖 = 1 𝒙𝑖 =
𝑒𝒘𝑇𝒙𝑖

1+𝑒𝒘𝑇𝒙𝑖
 and ℙ𝒘 𝑦𝑖 = 0 𝒙𝑖 =

1

1+𝑒𝒘𝑇𝒙𝑖

• So we can write

log ℙ𝒘 𝑦𝑖 𝒙𝑖 = 𝑦𝑖 log
𝑒𝒘𝑇𝒙𝑖

1 + 𝑒𝒘𝑇𝒙𝑖
+ 1 − 𝑦𝑖 log

1

1 + 𝑒𝒘𝑇𝒙𝑖
 

 = 𝑦𝑖 log
𝑒𝒘𝑇𝒙𝑖

1 + 𝑒𝒘𝑇𝒙𝑖

1 + 𝑒𝒘𝑇𝒙𝑖

1
+ log

1

1 + 𝑒𝒘𝑇𝒙𝑖

= 𝑦𝑖 log 𝑒𝒘𝑇𝒙𝑖 + log
1

1 + 𝑒𝒘𝑇𝒙𝑖
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Learning the Logistic Regression Coefficients:

Maximum Likelihood Estimation, cont’d

𝐿𝐿 = ෍

𝑖=1

𝑁

𝑦𝑖𝒘𝑇𝒙𝑖 − log 1 + 𝑒𝒘𝑇𝒙𝑖

• To find the maximizing 𝒘, take the derivative w.r.t. 𝒘 and set it 
equal to 0

– Logistic regression LL is a concave function in 𝒘

• Unfortunately, the derivative becomes a transcendental 
equation, so it has no closed-form solution ☺

– Similar to non-linear least squares, algorithms exist for 
solving this numerically
• We’ll look at them later in the course

22



Loss functions

𝐿𝐿 = ෍

𝑖=1

𝑁

𝑦𝑖𝒘𝑇𝒙𝑖 − log 1 + 𝑒𝒘𝑇𝒙𝑖

• ML people like to minimize functions (instead of maximize), so 
we typically minimize the negative log-likelihood:

𝑁𝐿𝐿 = − ෍

𝑖=1

𝑁

𝑦𝑖𝒘𝑇𝒙𝑖 − log 1 + 𝑒𝒘𝑇𝒙𝑖

• Negative log-likelihood and least squares are our first examples 
of loss functions

–More later
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Multinomial Logistic Regression

• What about the case of multiple labels?

–All probabilities must sum up to 1
ℙ𝒘 𝑌 = 1 𝑿 = 𝒙 + ⋯ +  ℙ𝒘 𝑌 = 𝐾 𝑿 = 𝒙 = 1

• We need a separate weight vector for each label

𝑓𝑖(𝒙) =
𝑒𝒘𝑖

𝑇𝒙

1 + 𝑒𝒘𝑖
𝑇𝒙

• Then normalize

ℙ𝒘 𝑌 = 𝑖 𝑿 = 𝒙 =
𝑓𝑖 𝒙

σ𝑖=1
𝐾 𝑓𝑖 𝒙

• This approach is called multinomial logistic regression

–Also known as softmax in deep learning
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Multinomial Logistic Regression, cont’d

• Probability for each label is

ℙ𝒘 𝑌 = 𝑖 𝑿 = 𝒙 =
𝑓𝑖 𝒙

σ𝑖=1
𝐾 𝑓𝑖 𝒙

• Now, LL becomes

𝐿𝐿 = ෍

𝑖=1

𝑁

log ℙ𝒘 𝑦𝑖 𝒙𝑖

 = ෍

𝑖=1

𝑁

log
𝑓𝑦𝑖

𝒙𝑖

σ𝑗=1
𝐾 𝑓𝑗 𝒙𝑖

• Maximizing the LL is once again done using specialized 
algorithms based on gradient descent
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